Volume *26*

Number 18

September 9, 1987

Inorganic **Chemistry**

0 Copyright 1987 by the American Chemical Society

Communications

The First Mononuclear Molybdenum(V) Complex with a Terminal Sulfido Ligand: [HB(MezC3NzH),]MoSC12

Sir:

There is considerable evidence that active xanthine oxidase in its oxidized resting state contains both a terminal sulfido ligand and a terminal oxo ligand bound to $Mo(VI).^{1,2}$ The transient molybdenum(V) states that are produced during turnover of the functional enzyme exhibit EPR spectra with relatively low *A-* $(95,97)$ Mo) values and relatively high g values.³ These EPR parameters are generally ascribed to the presence of thiolate ligands coordinated on an oxo-Mo(V) center, but a terminal sulfido ligand has also been proposed⁴ to be present in these transient states, particularly that producing the very rapid EPR signal. The ability of RS⁻ ligands to increase g values and lower $A^{(95,97}Mo)$ values in $oxo-Mo(V)$ complexes is now well documented⁵⁻⁷ for model compounds. Thiolate groups cis to the terminal oxo group are especially effective in producing trends in the g and $A(^{95,97}Mo)$ values that are similar to those observed in molybdenum enzymes.⁷ To date, however, it has not been possible to assess the effect of a terminal sulfido ligand on the EPR spectrum of a Mo(V) complex because no model compounds containing an **[Mo=S])+** center were known.⁶ Previous attempts to prepare such centers invariably yielded diamagnetic binuclear or polynuclear molybdenum compounds.⁶ Recently we have used the sterically encumbering hydrotris(3,5-dimethyl-1-pyrazolyl) borate ligand $(HB(Me,pz),\)$ to stabilize a wide range of mononuclear oxo-Mo(V) complexes **(l).7** This same ligand has now been used to stabilize the first isolable mononuclear sulfido $-Mo(V)$ complex **(2).** Herein we present EPR and other spectroscopic data for this novel complex and compare the data to those for the oxo analogue.

The reaction of $[HB(Me₂pz)₃]MoOCl₂(1)$ with excess $B₂S₃$ in dry deoxygenated dichloromethane produces orange-brown [HB(Mezpz),]MoSCI, **(2)** in 55% yield.8 Compound **2,** which

- Cramer, S. P.; Wahl, R.; Rajagopalan, K. V. *J. Am. Chem. SOC.* **1981,** *ini* **⁷⁷⁷¹**
- Bordas, J.; Bray, R. C.; Garner, C. D.; Gutteridge, S.; Hasnain, S. S. *Biochem. J.* **1980,** *191,* **499.**
- Bray, R. C. *Adv. Enzymol. Relat. Areas Mol. Biol.* **1980,** *51,* **107.**
- Bray, R. C.; Gutteridge, S.; Stotter, D. **A.;** Tanner, S. J. *Biochem. J.* **1979,** *177,* **357.**
- Spence, **J. T.** *Coord. Chem. Rev.* **1983,** *48,* **59.**
- Bristow, **S.;** Garner, C. D. In *Molybdenum Enzymes;* Spiro, T. G. Ed.; (6) Wiley: New York, **1985;** p **343.**
- Cleland, W. E., **Jr.;** Barnhart, K. **M.;** Yamanouchi, K.; Collision, D.; (7) Mabbs, F. E.; Ortega, **R. B.;** Enemark, **J. H. Inorg.** *Cjem,* **1987,** *26,* **1017.** Enemark, **J.** H.; Cleland, W. E., Jr.; Collison, D.; Mabbs, F. E. **In** *Frontiers in Bioinorganic Chemistry;* Xavier, **A.** V., Ed.; VCH Verlagsgesellschaft: Weinheim, FRG, **1986;** p **47.**

is mildly air and moisture sensitive, has been characterized by elemental analyses, infrared and mass spectroscopy, X-ray powder diffraction, 9 and electronic and EPR spectroscopy.

The electronic absorption spectra for 1 and **2** are summarized in Figure 1. The extinction coefficients of the lowest energy bands⁸ are consistent with their assignments to $d \rightarrow d$ transitions from the essentially $d_{x^2-y^2}$ ground-state orbital to the metal d_y and/or d_{xz} orbitals.¹⁰ The lower energy for the first transition of 2 (9090 cm^{-1}) compared to that of 1 (14180 cm^{-1}) is consistent with the weaker π -donor ability of a sulfido vs. an oxo ligand, which decreases the energy separation to the metal $d\pi^*$ orbitals (d_{xx}, d_{yy}) in 2 compared to that in 1. These energy differences are supported by molecular orbital calculations.¹¹ A similar weak

- **(9)** The X-ray powder pattern for *2* is very similar to that of **1,** consistent with isomorphous substitution of S for 0. The major difference is the peak at $d = 9.0$ Å, which is strong in 1 and very weak in 2.
- (10) The molecules have C_s symmetry. We have chosen the molecular z axis to be parallel to the Mo=E bond and the xz plane to be the mirror plane. The lobes of the $d_{x^2-y^2}$ orbital lie between the atoms in the N_2Cl_2 plane normal to the Mo=E bond.

⁽⁸⁾ Preparation of $[HB(Me_2pz)_3]MoSCl_2$ (2): A suspension of $[HB (Me_2pz)_3]MoOCl_2 (1)⁷ (1.5 g, 3.1 mmol) and B₂S₃ (0.9 g, 7.6 mmol)$ in dry, deoxygenated CH₂Cl₂ (80 mL) was stirred under nitrogen for **1** day. The reaction mixture was filtered anaerobically and the filtrate evaporated to dryness in vacuo. The resulting residue was dissolved in $CH₂Cl₂$ (50 mL), the mixture was filtered, and methanol (200 mL) was added to precipitate the complex. after the mixture was allowed to stand for **30** min, the brown solid was filtered off and washed with methanol. Yield = 0.85 g (1.7 mmol, 55%). Recrystallization from CH₂Cl₂/
MeOH yielded orange-brown crystals. Anal. Calcd for MeOH yielded orange-brown crystals. Anal. Calcd for C,5H22BCIzM~N6S: C,**36.31;** H, **4.47;** N, **16.94;** CI, **14.29;** S, **6.46.** Found: C, **35.79;** H, 4.55; N, **16.76;** CI, 15.51; **S, 6.36.** IR: **2556** (B-H): 523 (Mo-S): 338, 322 (Mo-Cl) cm⁻¹. Electronic absorption *ID3, 7721*. spectra [energy (10^3 cm^{-1}) $(\epsilon$ $(L \text{ mol}^{-1} \text{ cm}^{-1}))$]: **1,** 14.18 (50), 22.99 sh (- **LOOO), 29.67 (5200); 2, 9.90** (50), **22.22** (880), **32.26 (6980).** Mass spectra for **1** and **2** obtained by using an AEI MS30 mass spectrometer with ionization effected by electron impact showed the respective parent ions for $[HB(Me_2pz)_3]MoOCl₂ (m/z 481)⁷$ and $[HB-$ (Me2pz)3]MoSCI2 *(m/z* **497)** with the same relative intensity patterns (mass numbers on I2C, IH, 14N, "B, I6O, 98Mo, **32S,** and 37Cl).

 (2)

 (1)

Figure 1. Electronic absorption spectra in CH₂Cl₂ of [HB- $(Me_2C_3N_2H)_3]MoOCl_2$ (1) $(--)$ and $[HB(Me_2C_3N_2H)_3]MoSCl_2$ (2) $(-)$; (a) $\vec{A} \times 50$ for **1**; (b) $\vec{A} \times 80$ for **2**. Extinction coefficients appear in footnote 8

 π -donor effect for a terminal sulfido ligand was predicted for $[V=E]^{2+}$ (E = O, S) complexes¹³ and has been experimentally verified for two different groups of square-pyramidal $[V=E]^{2+}$ complexes.^{14,15}

The intense absorptions in the spectra of **1** and **2** above 23 000 The intense absorptions in the spectra of 1 and 2 above 23000 cm⁻¹ are assigned to charge-transfer transitions. Their intensities preclude the location of the other $d \rightarrow d$ transitions, but their preclude the location of the other $d \rightarrow d$ transitions, but their positions set a lower limit on the energies of the other $d \rightarrow d$ bands. We would anticipate little change in the energy of the transition involving electronic promotion from the essentially $d_{x^2-y^2}$ ground state to the essentially d_{xy} excited state because the ligands perpendicular to the terminal oxo (sulfido) ligand remain the same. Furthermore, the similarity between the higher energy parts of the spectra of **1** and **2** indicates that the charge-transfer transitions are controlled by the ligands cis to the terminal ligand.

A comparison of the EPR spectra of **1** and **2** in both fluid and frozen solutions (Table I, Figure 2) shows that the **g** tensor elements in **2** are all significantly smaller than those in **1.** Thus, the smaller $\langle g \rangle$ for the sulfido complex is a consequence of the lowering of all the **g** tensor elements and is not due to any changes in the sense of the anisotropy. The **A** tensor and *(A),* on the other hand, show little difference for **1** and **2.** These EPR spectral changes upon converting **1** to **2** (lowering of the **g** tensor elements with a virtually constant **A** tensor) are in marked contrast to the EPR changes observed upon systematically substituting RSligands for RO^- ligands cis to a terminal oxo group⁷ [cf. the following: $[HB(Me_2pz)_3]MoO(0Me)_2$, $g_1 = 1.960$, $g_2 = 1.942$, $g_3 = 1.904$, $\langle A \rangle = 45.2 \times 10^{-4}$ cm⁻¹; $[HB(Me_2pz)_3]M_0O(SEt)_2$, $g_1 = 2.011$, $g_2 = 1.952$, $g_3 = 1.931$, $\langle A \rangle = 36.7 \times 10^{-4}$ cm⁻¹. Simulation of the **EPR** spectra of **1** and **2** assuming C, symmetry requires only that g_2 (g_{yy}) and A_2 (A_{yy}) be coincident and

- (13) Wasson, J. R.; Hall, J. W.; Hafield, W. E. *TransitionMet. Chem.* **1978,** *3,* 195.
-
- (14) Callahan, P.; Durand, P. J. *Inorg. Chem.* **1980**, *19*, 3211.
(15) Money, J. K.; Folting, K.; Huffman, J. C.; Collison, D.; Temperley, J.; Mabbs, F. E.; Christou, G. *inorg. Chem.* **1986,** *25,* 4583.

 \mathcal{N}_{\perp} **Figure 2.** X-Band EPR spectra of **1** and **2** (top) in frozen toluene solutions at 77 K. The detailed EPR parameters appear in Table I.

/I

perpendicular to the mirror plane.¹⁶ The remaining tensor axes cannot be directly related to molecular geometry, but we use the previous criterion that the **A** tensor will be close to metal-ligand directions or pseudo symmetry axes^{17,18} and that largest value of *A* is close to that for $Mo=E, ^{19,20}$ as occurs in high-symmetry (C [MoOX4]- complexes. This leads to the assignment of the **g** and **A** tensor elements in Table I with reference to the axis system in the Appendix. The gross changes in the principal g values may be qualitatively understood by approximating the d-orbital splittings to those of a C_{4v} molecule, i.e. $\Delta_2 \approx \Delta_4 [(\mathbf{d}_{x^2-y^2})^1 \rightarrow (\mathbf{d}_{xz})^1$ or $(d_{yz})^1$. The reductions in g_{xx} , g_{yy} , and g_{zz} on substituting terminal oxo by sulfido correlate with the corresponding decrease in the lowest energy bands in the respective electronic spectra (Figure 1) that are assigned to Δ_2 and Δ_4 . Equations A6-A8 show that smaller values of Δ_2 and Δ_4 lead to a lowering of all the g values for the same extent of d-orbital mixing and for constant $\Delta_3[(\mathrm{d}_{x^2-y^2})^1 \to (\mathrm{d}_{xy})^1].$

A similar amount of d-orbital mixing in **1** and **2** is indicated by their similar Euler angles, α , the angle by which the **g** tensor is rotated relative to the **A** tensor in the mirror plane (x,z) of the molecule. If the smaller values for Δ_2 and Δ_4 for 2 are attributed to the poor π -donor ability of the terminal sulfido group, then we would also expect the molecular orbital coefficients δ and β to increase on changing from **oxo** to sulfido, thus reinforcing the trends in the g values caused by the changes in the transition energies. Similar but less marked changes have been observed¹⁵ in g_{xx} and g_{yy} in $[VE(SCH_2CH_2S)_2]^2$ ⁻ (E = O, S), for which the spin-orbit coupling constant is smaller.

- (16) Collison, D.; Mabbs, F. **E.;** Enemark, J. H.; Cleland, W. E., Jr. *Poly- hedron* **1986, 5,** 423.
- (17) Garner, C. D.; Lambert, P.; Mabbs, F. E.; King, T. J. *J. Chem. Sor., Dalton Trans.* **1977,** 1191.
- (18) Scullane, M. I.; Taylor, R. D.; Minelli, M.; Spence, J. T.; Yamanouchi,
K.; Enemark, J. H.; Chasteen, N. D. *Inorg*, Chem. 1979, 18, 3213.
(19) Garner, C. D.; Hill, L. H.; Mabbs, F. E.; McFadden, D. L.; McPhail,
A. T.
-
- (20) Nilges, M. J.; Belford, R. L. *J. Magn. Reson.* **1979, 35,** 259.

^(1 1) Fenske-Hall'* molecular orbital calculations on the model pseudooctahedral Mo(V) complexes $fac-[NH_3)_3MOOCl_2]^+$ and $fac-[NH_3)_3MOOCl_2]^+$ show the same pattern of orbital orderings for both complexes. The highest occupied molecular orbital $(HOMO)$ is $d_{x^2-y^2}$; the two lowest unoccupied molecular orbitals (LUMO's) are nearly degenerate and primarily d_{xz} and d_{yz} . The calculated HOMO-LUMO gap for the sulfido complex is 1.3 eV smaller than that for the oxo analogue.

⁽¹²⁾ Hall,hM. **B.;** Fenske, R. F. *inorg. Chem.* **1972,** *11,* 768.

The ligands cis to the terminal oxo or sulfido ligand remain constant in **1** and **2,** and thus to a good approximation the character of the ground state remains unchanged.¹¹ Since the composition of the ground state mainly determines the magnitudes of the principal **A** tensor elements (see *eq* A10-A13 in Appendix), relatively little change in the principal **A** tensor values on substituting sulfido for oxo is anticipated.

Our present observations show that merely changing an oxygen donor ligand for a sulfur donor ligand does not necessarily increase the g values and decrease the A values of a $Mo(V)$ complex. Such changes are dependent at least on the ligand type, and probably on the position of substitution relative to the other ligands. Three mechanisms that would lead to *increases* in the g values upon replacing an oxygen donor atom by a sulfur donor atom are as follows:

(i) Admixture of charge-transfer states involving significant contributions from appropriate metal d orbitals. Such excited charge-transfer states mix into the ground state under metal spin-orbit coupling to give contributions with the sign opposite from those involving simple d-d excitations.^{21,22} This mechanism can give g values ≥ 2.0023 .

(ii) Increased covalency of the metal-ligand bond leading to delocalization of the unpaired electron and reduction of the metal molecular orbital coefficients in the $d-d$ contribution to the g values. This mechanism will only permit g values ≤ 2.0023 .

(iii) The increased value of the single electron spin-orbit coupling constant of sulfur vs. oxygen. This mechanism can decrease the amount by which some g_{ii} are reduced from 2.0023.

It is difficult to completely separate these mechanisms from one another, but the $[HB(Me_2pz)_3]MoOXY$ complexes $(X, Y =$ monoanions) and **1** and **2** have enabled us to investigate the effects of a variety of single-ligand substitutions on the EPR spectra of a six-coordinate Mo(V) center of known stereochemistry. Our previous study⁷ showed that g values \geq 2.0023 correlate with the observation of low-energy charge-transfer transitions and points to the importance of (i) since this mechanism is the only one cited that can raise g above 2.0023. That study also confirmed that two $RS⁻$ ligands cis to a terminal oxo ligand produce g values approaching or exceeding 2.

The present results for **1** and **2** demonstrate for the first time that a terminal sulfido ligand bound to Mo(V) produces *lower* g values than a terminal oxo ligand. The lower g values for **2** correlate with the lower energy of the first d-d transition of **2,** as expected from ligand field theory (Appendix). Mechanisms i-iii may also contribute to the final EPR parameters for **1** and **2,** but these mechanisms cannot be the dominant factors in the observed differences in g values between **1** and **2.**

Acknowledgment. Partial support of this research by the National Institutes of Health (Grant GM-37773) is gratefully acknowledged. D.C. thanks the Royal Society for the award of a University Research Fellowship and F.E.M. thanks SERC for financial support. We thank Drs. D. **L.** Lichtenberger, S. A. Roberts, and J. T. Spence for helpful discussions and Dr. M. Sterns for the X-ray powder diffractometry experiments.

Appendix. For **g** and **A** tensors in **C,** symmetry with *z* parallel to Mo=E and *y* perpendicular to the mirror plane, d-orbital mixings in the antibonding molecular orbitals are

$$
\phi_1 = \alpha [a_1 \mathbf{d}_{x^2-y^2} + b_1 \mathbf{d}_{xz} + c_1 \mathbf{d}_{z^2}] \qquad a_1 > b_1, c_1 \qquad (A1)
$$

$$
\phi_2 = \beta [a_2 d_{x^2-y^2} + b_2 d_{xz} + c_2 d_{z^2}] \qquad b_2 > a_2, c_2 \qquad (A2)
$$

$$
\phi_5 = \epsilon [a_5 d_{x^2-y^2} + b_5 d_{xz} + c_5 d_{z^2}] \qquad c_5 > a_5, b_5 \qquad (A3)
$$

$$
\phi_3 = \gamma [e_3 d_{xy} + f_3 d_{yz}] \qquad e_3 > f_3 \qquad (A4)
$$

$$
\phi_4 = \delta [e_4 d_{xy} + f_4 d_{yz}] \qquad f_4 > e_4 \qquad (A5)
$$

$$
\phi_3 = \gamma [e_3 \mathbf{d}_{xy} + f_3 \mathbf{d}_{yz}] \qquad e_3 > f_3 \tag{A4}
$$

$$
\phi_4 = \delta[e_4 d_{xy} + f_4 d_{yz}] \qquad f_4 > e_4 \tag{A5}
$$

Using ϕ_1 (mainly $d_{x^2-y^2}$) as the ground state and Δ_i ($i = 2-5$) as the energy separations between ϕ_1 and ϕ_i , we have

$$
g_{zz} =
$$

$$
2.0023 - \frac{2\xi(\alpha\gamma)^2(2a_1e_3 + b_1f_3)^2}{\Delta_3} - \frac{2\xi(\alpha\delta)^2(2a_1e_4 + b_1f_4)^2}{\Delta_4}
$$
(A6)

$$
g_{xx} = 2.0023 - \frac{2\xi(\alpha\gamma)^2[b_1e_3 + (a_1f_3 + 3^{1/2}c_1f_3)]^2}{\Delta_3} - \frac{2\xi(\alpha\delta)^2[b_1e_4 + (a_1f_4 + 3^{1/2}c_1f_4)]^2}{\Delta_4} \tag{A7}
$$

$$
g_{yy} = 2.0023 - \frac{2\xi(\alpha\beta)^2[(a_1b_2 - b_1a_2) + 3^{1/2}(b_1c_2 - c_1b_2)]^2}{\Delta_2} - \frac{2\xi(\alpha\varepsilon)^2[(a_1b_5 - b_1a_5) + 3^{1/2}(b_1c_5 - c_1b_5)]^2}{\Delta_5}
$$
(A8)

$$
g_{xz} = g_{zx} = \frac{2\xi(\alpha\gamma)^2[b_1e_3 + a_1f_3 + 3^{1/2}c_1f_3][2a_1e_3 + b_1f_3]}{\Delta_3} + \frac{2\xi(\alpha\delta)^2[b_1e_4 + a_1f_4 + 3^{1/2}c_1f_4][2a_1e_4 + b_1f_4]}{\Delta_4} (A9)
$$

where ξ is the metal single-electron spin-orbit coupling constant. Ignoring terms in $1/\Delta$, we have

$$
A_{zz} \approx P \Bigg[-\alpha^2 K - \frac{2\alpha^2}{7} (4a_1^2 + b_1^2 - 2) - (2.0023 - g_{zz}) \Bigg] \tag{A10}
$$

$$
A_{xx} \approx P \left[-\alpha^2 K - \frac{2\alpha^2}{7} (a_1^2 + b_1^2 + 3c_1^2 + 2(3^{1/2}) a_1 c_1 - 2) - (2.0023 - g_{xx}) \right] (A11)
$$

$$
A_{yy} \approx P\left[-\alpha^2 K - \frac{2\alpha^2}{7}(a_1^2 + 4b_1^2 + 3c_1^2 - 2(3^{1/2})a_1c_1 - 2) - \right]
$$

$$
(2.0023 - g_{yy}) \int (A12)
$$

$$
A_{xz} = A_{zx} \approx P \left[\frac{2\alpha^2}{7} (3a_1b_1 + 3^{1/2}b_1c_1) + g_{xz} \right]
$$
 (A13)

Registry No. 1, 31371-06-9; 2, 109390-37-6; fac-[(NH₃)₃MoOCl₂]⁺, 109390-38-7; *fac*-[(NH₃)₃MoSCl₂]⁺, 109390-39-8.

(23) Present address: Department of Chemistry, La Trobe University, Bundoora, 3083 Australia.

Received February *2,* 1987

Structural, ESR, and Electrochemical Properties of Two $[Rh_2(ap)_4]^+$ Geometric Isomers (ap $= 2$ -Anilinopyridinate). **A True Mixed-Valent Rhodium(I1)-Rhodium(II1) Complex** Sir:

⁽²¹⁾ Garner, C. D.; Mabbs, F. E. *J. Inorg. Nucl. Chem.* **1979,** *41,* 1125. (22) Glarum, S. H. *J. Chem. Phys.* **1963,** *39,* 3141.

Numerous theoretical and experimental ESR studies have been reported for Rh_2^{5+} complexes containing carboxylate,^{1,2} amidate,³