
Inorg. Chem. 1987, 26, 3205-3215 3205 

Contribution from the Chemistry Department, 
University of Tasmania, Hobart, Tasmania 7001, Australia 

Temperature Dependence of the Electronic Spectrum of the Planar CuClf Ion: Role of 
the Ground- and Excited-State Potential Surfaces 
Mark J. Riley and Michael A. Hitchman* 
Receioed March 3, I987 

The cause of the unusual temperature dependence of the previously reported d-d electronic spectrum of the planar CuCI>- ion 
has been investigated. The variation of the intensity of the 2A1,(z2) - 2 B I , ( ~ 2  - y 2 )  transition in z polarization suggests that the 
potential surface of the ground state in the out of plane inducing coordinate of p2" symmetry is slightly anharmonic. A moments 
analysis has shown that the unusually large red shift which occurs in the band maximum on warming from 10 to 295 K is quite 
inconsistent with excited-state potential surfaces which are similar to those in the ground state. The angular overlap model of 
the bonding in metal complexes has been used to derive excited-state potential surfaces for each normal coordinate, and in every 
case except the qg and p2" vibrations these differ from those in the ground state merely by having somewhat reduced force constants. 
For the a,, mode, as expected, a displacement occurs that corresponds to a lengthening of each Cu-CI bond. For the p2,, vibration, 
the calculations imply a highly flattened excited-state potential with double minima corresponding to two equivalent distorted 
tetrahedral ligand geometries. The band shifts calculated with these excited state surfaces are still in poor agreement with those 
observed experimentally. However, it is shown that an excited-state potential with double minima deeper than those estimated 
by using the angular overlap model produces simulated spectra that agree well with those observed experimentally, not just as 
far as the shifts in band maximum with temperature are concerned. They also reproduce the shift in energy between z and xy 
polarization. The basic causes of the spectral band shape of the transition are discussed, and the implications of these on the 
interpretation of vibronically induced electronic transitions are considered. 

Introduction 
It is generally accepted that the intensity of the formally for- 

bidden "d-d" transitions of centrosymmetric transition-metal 
complexes is derived by vibronic coupling with higher energy 
parity-allowed transitions.' However, although the Herzberg- 
Teller theory describing the process is well established,2 this has 
been tested experimentally for comparatively few compounds. An 
important class of complexes where considerable data are available 
is that of the planar ions of the type MXd2-, where M = Pt, Pd, 
or Cu and X is a halide These have the advantage that 
the transitions between individual d orbitals may generally be 
resolved by using polarized light. Moreover, the normal vibrations 
of the complexes are simple and well characterized, which greatly 
aids in the interpretation of the effects of vibronic coupling. 

The low-temperature spectra of the Pt(I1) and Pd(I1) complexes 
show considerable vibrational fine structure, and analysis of this 
has provided a detailed picture of the nalure of the intensity-in- 
ducing vibrations and the changes in metal-ligand bond lengths 
that accompany some of the d excitations in these c o m p o ~ n d s . ~  
The spectra of three compounds containing planar C U C ~ , ~ -  have 
been studied in detail to date.4q5 While similar in general terms, 
these differ in the extent to which vibrational structure may be 
resolved at  low temperature, though where observed, this was 
analyzed in a manner similar to the analogous tetrachloro- 
platinum(I1) and -palladium( 11) species. An additional common 
feature of the spectra of the copper(I1) complexes is a dramatic 
increase in the intensity of some of the bands as the temperature 
rises from 10 to 295 K, and this has been analyzed quantitatively 
in terms of the ungerade vibrations that are involved in the vibronic 
coupling. 

A particularly unusual general feature of the CuC142- spectra 
is a significant red shift in the band maxima on warming from 
10 K to room temperature; this is readily apparent in the spectra 
of a typical compound containing this ion shown in Figure 1. It 
was noted that a shift of this magnitude (up to -950 cm-I) is 
quite incompatible with the simple theory of vibronic intensity 
stealing, and it was speculated that the breakdown in this model 
might be due to the unusually low energy ( -65  cm-') of the pZu 
v i b r a t i ~ n . ~  This normal mode carries the complex from a planar 
toward a tetrahedral ligand coordination geometry (Figure 9 in 
Appendix B) and hence effectively produces a small tetrahedral 
component to the ligand field experienced by the Cu(I1) ion at  
any instant of time. Since a tetrahedral complex has a much 
smaller d-orbital splitting than a planar complex, a relatively 

*To whom correspondence should be addressed. 

simple explanation of the observed red shift would be that the 
average ligand field shifts slightly from planar toward tetrahedral 
with the rise in temperature, due to the population of higher levels 
of the pZu vibration. However, it was shown that this mechanism 
cannot explain shifts of the observed magnitudes unless the energy 
of the pzu vibration is far lower than the value implied by the 
temperature dependence of the band intensi t ie~.~ 

Two possible alternative mechanisms were proposed for the 
anomalous red shifts: a significant anharmonicity in the pZu 
vibration in the ground electronic state and/or an equilibrium 
nuclear geometry in each excited electronic state displaced in the 
pZu coordinate to give a distorted tetrahedral ligand arrangement. 
[Note that this latter mechanism does not imply that the excit- 
ed-state potential surface is displaced along the pzu coordinate 
in a manner analogous to the totally symmetric coordinate. The 
linear terms in the potentials of non totally symmetric vibrations 
are required by group theory to be zero, a point not always fully 
appreciated in the l i t e r a t ~ r e . ~ ]  In order to test these ideas we 
have calculated the parameters defining the band shape of the 
ZA,,(z2) - 2 B , , ( ~ Z  - y z )  transition of planar CuC1:- for various 
forms of the potential surfaces of the ground and excited electronic 
states, and the present paper presents the results of these calcu- 
lations. This transition was chosen because it is relatively well 
resolved; moreover, in z polarization, theory suggests that the 
intensity should be derived solely from the single pZu vibration, 
while in xy polarization only modes of cu symmetry should be 
active, so that the dependence of the band shape on the nature 
of the intensity-inducing vibration may be studied. The simulated 
spectra have been compared with those observed experimentally 
for the methadonium salt of the tetrachlorocuprate(I1) ion, 
(~netH)~CuCl,, because for this compound vibrational structure 
is observed at low temperature on the above electronic transition, 
which shows that the intensity is derived predominantly via 
coupling with a single ungerade vibration in each polarization, 
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nuclear geometry Qo in terms of the normal coordinates: 

Mge(Q) = Z M g e ( Q 0 n )  + X(aM(Q)laQn)oQn + ... 
n n 

= CM,,"(Q,) (3) 
n 

The first term of the expansion is zero for parity-forbidden 
transitions such as those considered here. Substituting (3) into 
(1) and letting k of the normal modes be responsible for inducing 
intensity (i.e. M g e ( Q k )  # 0) yield the relationship 

inducing 

k 
Z(il,i2,...;~~~2,...) a I(iklMk(Qk)[ik)12nI(i/V/)12 / # k  (4) 

The total intensity of the transition is now found by summing over 
all vibrational quantum numbers in all normal modes of the initial 
and final states, where a temperature factor is included for the 
initial occupation of the states: 

ITOd T )  a cZcPi( T)I (iklMk(Qk) [ i k )  1' Pj( T )  I (i/[i/) 1' 
i l k  / # k  
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Figure 1. Electronic spectrum of the (100) crystal face of (methadoni- 
um)2CuC1, at, in order of increasing intensity, 10, 70, 140, and 265 K, 
with the electric vector parallel to (A) the b and (B) the c crystal axes. 

greatly simplifying the analysis. The bands due to the other 
electronic transitions show similar behavior (Figure 1); while it 
seems likely that this is caused by mechanisms similar to those 
discussed in the present paper, this has not been investigated 
quantitatively. In the case of the low energy 2Bz,(xy) +- 'B1,(x2 
- y2)  transition, this is too poorly resolved at high temperature 
to warrant detailed analysis (Figure l),  while for the 2E,(xz,yz) - 2 B , g ( ~ 2  - y2)  transition the presence of a possible Jahn-Teller 
distortion in the excited state precludes any simple treatment. 

Theoretical Relationships Defining the Band Shape and 
Intensity of an Electronic Transition 

The vibronic spectrum of a polyatomic system of N atoms 
depends upon transitions between the ground and excited potential 
surfaces in an n = 3N - 6 dimensional hyperspace. Assuming 
that the normal coordinates are parallel in the ground and excited 
states, so that there may be a displacement but no rotation of the 
normal coordinates (Le. that no Dushinsky effect is present'), the 
total band shape is a convolution of band shapes attributable to 
each normal mode taken separately.* 

The intensity of a transition between the adiabatic wave 
functions, lPgili2i 3 . . . )  and IPd lid3...), where Pg and P, are the 
ground and excited electronic states and ilri2, ... define the vi- 
brational quantum numbers of the lst, 2nd, ... normal modes, is 
then' 

I(il,i2,...ll'lj2r...) a I (i1,i2,...,IMge(Q)LiLiz...) l 2  (1) 

where 

Mge(Q) = ( * g ( Q ) l e p C r p l * e ( Q ) )  (2) 

is the electronic transition moment in the electric dipole ap- 
proximation. Equation 2 can be expanded about the equilibrium 

( 7 )  Dushinsky, F. Acta Physicochim. URSS 1937, 7, 551. 
(8) O'Brien, M. C. M. Vib. Spectra Struct. 1981, 10, 321; 323-336. 
(9) Roche, M.; Jaffe, H. H. Chem. SOC. Reo. 1976, 5 ,  165. 

The intensity due to the kth inducing mode, the inducing overlap, 
is given by 

while the noninducing overlap is given by 

These overlaps can be evaluated either in the harmonic approx- 
imation, in which case analytic formulas can be derived, or by 
the variational method if nonharmonic potentials are used. The 
temperature factors 

Pln(T) = exp(-c,"/kT)/C exp(-e,"/kT) (8) 
1 

give the fractional Boltzmann population of the ith vibrational 
level of energy t" in the nth normal mode. If the ground state 
is harmonic, (8) becomes 

Pi"(T) = exp(-ikv,/kT)[l - exp(-kun/kT)] (9) 

The summation in ( 7 )  will always be unity, meaning that the 
noninducing overlaps contribute nothing to the intensity in (5). 
However, in the expressions for the mean energy and half-width 
of a transition given below, additional terms are to be included 
in this summation that will then differ from 1.0. 

Equation 5 gives a relative rather than an absolute intensity, 
and it is customary to normalize the intensity a t  0 K to 1.0:" 

CZk(0) = 1.0 (10) 
k 

The intensity of a spectrum is the integrated absorption curve or 
zeroth moment of the spectrum. The other temperature-dependent 
quantities of interest are the mean energy and half-width of the 
transition, which are related to the first and second moments, 
respectively. In the present case the band maximum (or mode) 
of the spectrum will equal the mean energy (since the spectrum 
to be analyzed, to a good approximation, has a Gaussian line 
shape), and this is given by" 

E ( T )  = El + E2 + E3 + ... (11) 
where E,  = Z,(T)AtrJfl/(Zn(7')) and Ae,," = e," - e," is the energy 
difference between the states b,) and li,,). 

The analogous relationship for the half-width (full width at 
half-height) is 

(12) 

where H, = 2[2(ln 2)Z,(T)(Ae1y - E, , )2 / (Zn(7' ) ) ]1 /2 .  Here, E,  is 
given in (1 1) above, and in both (1 1) and (1  2) the In( 7') terms 

H(T) = HI + H2 + H3 4- ... 

(IO) Lohr, L. L. J .  Am. Chem. Soc. 1970, 92, 2210. 
(11)  Markham, J. J. Rev. Mod. Phys. 1959, S I ,  956 
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are given by either (6) if the mode is “active” or (7) if it is not. 
It is important to realize that the terms subscripted i a n d j  in (1 1) 
and (1 2) are to be included in the summation over i and j in (6) 
and (7). It can be seen that the denominators of these equations 
will be equal to unity if the mode is “inactive” (n # k). Again 
it is pointed out that while ( 5 )  only gives the relative intensity, 
(11) and (12) give the absolute mean energy and half-width, 
respectively. 

Harmonic Approximation. Analytic formulas for the tem- 
perature dependence of the three quantities of interest, the in- 
tensity, band shift, and half-width in the harmonic approximation, 
assuming a linear dependence of the electronic transition moment 
on Q, are given below. 

I. Intensity. This is given by2a 

I ( T )  = xIk(0)  coth xk (13) 
k 

where xk = (hvk/2kT). Note that if (3) contains quadratic terms, 
thenI2 

I(7‘) = xIlk(0)  coth xk + 12k(0) Coth2 xk (14) 
k 

where Ilk and 12k are determined by the relative size of the 
coefficients in (3). Equations 13 and 14 assume a harmonic 
ground state for the inducing mode while the excited state may 
take any form. The ground and excited states of the noninducing 
modes may also be an arbitrary function of the normal coordinates. 

11. Band Shift. The shift of the band maximum from that 
expected for a pure vertical electronic transition is given by”J3 

E(7‘) = EhVk tanh xk + 0.25Ch~, (6 / -  1) coth x/ (15) 
k / 

where 6, = ( h v ’ / / h v J 2 ,  hv’/ being the excited-state frequency. 
Equation 15 assumes that the potentials of all modes in both 

ground and excited states are harmonic. In addition, the k in- 
ducing modes must have their excited-state potentials undisplaced 
and be of the same frequency as the ground state. The 1 nonin- 
ducing modes may have their excited-state potentials displaced 
or have frequencies that differ from those in the ground state. 

111. Half-Width. The variation in half-width is given by1’3I3 
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temperature of less than hvk is therefore expected as a result of 
the inducing modes. 

(iv) Noninducing modes will only produce a shift in band 
maximum with temperature if the frequencies are different in the 
ground and excited states. 

(v) The half-width due to the inducing modes will grow from 
0 (0 K) to 2(2 In 2)li2hvk at  high temperature. The noninducing 
modes, however, will give a finite bandwidth at  0 K, the most 
important factor being the displacement of the surfaces AS. 

Equations 13-16 are valid, of course, only under the conditions 
in which the approximations made in their derivation are valid. 
In particular, anharmonicity of the vibrations can cause significant 
deviations from the behavior predicted by the expressions. 
Dreybrodt and Fus~gaenger’~ have derived an expression for the 
temperature dependence of the intensity for an oscillator with 
quartic anharmonicity using perturbation theory. However, this 
is very cumbersome and has only limited validity. A more 
profitable approach for an anharmonic potential is the variational 
method outlined below. 

Variational Calculations. To use the general expressions (9, 
(1 l ) ,  and (12), overlaps (6) and (7) must be evaluated and the 
energies of the vibronic levels are required. For an adiabatic 
potential surface of arbitrary shape, this is most easily done by 
the variational method, explained in detail by Lohr.Io 

For the present calculations the potentials of the ground and 
excited states are expressed as the sum of a fourth-order poly- 
nomial and a Gaussian function. The vibrational Hamiltonian 
is then 

H = -0.5d2/8t2 + V ( t ) ;  V([ )  = x a p p  + a exp(-Pt2) (17) 

Here, t is a dimensionless coordinate related to the symmetry 
coordinates by15 

S = t / x ;  x = 1.722 X 10-3(Mhv)’/2 pm-’ (18) 

where M is the inverse of the element of the G matrix in amu 
appropriate to the normal coordinate (see Appendix B) and hv 
is the unit of energy in cm-’ for (17). The ground- and excit- 
ed-state wave functions are expanded in a basis of harmonic 
oscillator functions that are characterized by a harmonic energy 
hv. 

The matrix elements of (17) in this basis are easily evaluated 
by published methods.16 After diagonalization of the secular 
equation with standard techniques,” the energies are obtained 
in (nonintegral) units of hv and the wave functions li),b) as a linear 
combination of the harmonic basis functions &: 

4 

p=o 

N 

H(7‘) = x2hvk(2(ln 2))’/2 sech Xk + 
k 

C2hv/[2(ln 2)(S61 coth X, + (6, - 1)2(coth2 X,)/8)]1/2 (16) 
I 

where S = AS26//2 is the Huang-Rys factor,” A S  is the dis- 
placement of the surfaces, and all other definitions are as before. 
Equation 16 has been derived by assuming the same conditions 
as given for (1 5 ) .  

The first summation over the inducing modes, in (1 5 )  and (1 6), 
have apparently not previously appeared in the literature. Their 
derivation is given in Appendix A. Some general comments 
concerning the above expressions may now be made. 

(i) No use has yet been made of symmetry. In general, the 
inducing modes may be of any symmetry (even totally symmetric) 
as long as other transitions of suitable symmetry are available for 
mixing. In the present centrosymetric case all inducing modes 
are required by group theory to be non totally symmetric and 
displaced. The assumption of undisplaced potentials for the in- 
ducing modes in the derivation of (1 5) and (16) is then justified. 

(ii) The intensity in (13) and (14) is due entirely to the inducing 
modes. 

(iii) The band maximum shift due to the inducing modes k goes 
from hvk near absolute zero (0 K) to 0 at  high temperature ( m  
K); Le. a t  low temperature, only the 0 -+ 1 transition will be 
observed, while at high temperature a nearly equal number of n 
-+ n + 1 and n -+ n - 1 transitions will occur, which will average 
to a mean of zero. A maximum band shift due to an increase in 

(12) Fussgaenger, K.; Martienssen, W.; Bilz, H. Phys. Siafus Solidi B 1965, 
12.  383. 

(13) Prassides, K.; Day, P. J .  Chem. Soc., Faraday Trans. 2 1984, 80, 85. 
Note: There is a misprint in eq 3 of this paper. See eq 16 of the present 
paper for the correct expression. 

Overlaps (6) and (7) can then be eva1uated:’O 
N 

Having these transition probabilities between all possible levels, 

(14) Dreybrodt, W.; Fussgaenger, K. Phys. Status Solidi B 1966, 18, 133. 
(15) Cyvin, S. J .  Molecular Vibrations and Mean Square Amplitudes; El- 

sevier: Amsterdam, 1968. 
(16) (a) Shaffer, W. H.; Krohn, B. J.  J .  Mol. Spectrosc. 1976, 63, 3 2 3 .  (b) 

Chan, S. I.; Stelman, D. J .  Chem. Phys. 1963, 39, 545. 
(17) Smith, B. T.; Boyle, J .  M.; Garbow, B. S.; Ikebe, Y.; Klema, V. C.; 

Moler, C. B. In Lecture Notes in Computer Science, 2nd ed.; Springer: 
Berlin, 1976; Vol. 6, “EISPACK guide”. 
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Figure 2. Calculated and observed temperature dependence of the in- 
tensity of the 2Alg(z2) - 'B1,(x2 - y 2 )  transition in z polarization. The 
triangles and crosses refer to data measured by using two different 
crystals. The calculated curves were obtained by using the following p2" 
potentials: (1) potential given by equation (23); (2)  harmonic potential 
with a vibrational energy of 65 cm-I; (3)  highly anharmonic potential 
chosen to fit experiment at 0 and 300 K; (4) second-order dependence 
of the transition moment, calculated by using a harmonic potential with 
hv = 75 cm-' and I , ,  = 0.9 and Io2 = 0.1 in (14). Potentials 1-3 are 
shown in Figure 3. 

the spectrum may either be simulated or, more conveniently, 
subjected to a moments analysis. For the latter, the summation 
over all such overlaps, including both temperature factors for the 
ground state and any other factors dependent on i or j from (10) 
or (1 l ) ,  gives the desired quantities. 

The size of the basis N that is required is determined largely 
by the temperature factor (eq 8). Enough energy levels must be 
included in the summation to make every temperature factor 
converge. This is most easily done by increasing the basis size 
until the temperature factors become constant. Basis sizes of about 
60 were generally found to be sufficient in the present case. 
Analysis of the *A1,(zZ) - Z B 1 , ( ~ 2  - y z )  Transition of 
(metH),CuCI4 

The experimental electronic spectra of the planar CuCld2- ion 
in this compound show a large temperature dependence (Figure 
1). It has been shown by Lohr18 that the variation of the band 
intensity with temperature is related only to the ground-state 
potential surfaces, assuming that the transition moment has a 
linear dependence on the inducing coordinates. Fixing the potential 
surfaces of the ground state in this manner greatly simplifies the 
analysis of the shift in band maximum with temperature, as it 
means that this can be considered simply in terms of possible 
potential surfaces of the excited electronic state. 

Temperature Dependence of the Intensity: Influence of the 
Ground-State Potential Surfaces. On going from 10 to 295 K, 
the spectrum increases significantly in intensity, as expected for 
a parity-forbidden electronic transition (the chromophore is sit- 
uated on a crystallographic inversion center, and so is rigorously 
centrosymmetric). When the electric vector is parallel to the c 
crystallographic axis of (metH)2CuC1,, it is aligned almost exactly 
with the molecular z axis of the planar CuC1,2- ion, and in this 
polarization only the out-of-plane p2" mode induces intensity into 
the transition of interest. As shown in a previous analysis, the 
variation of the band intensities of the observed spectra derived 
by Gaussian analysis may be explained reasonably well by using 
the simple "coth rule" given by eq 13, assuming a value of 65 cm-I 
for the energy of the p2" mode.s However, as may be seen from 
the plot in Figure 2 ,  the experimental intensities rise more rapidly 
than predicted at low temperature and tend to fall away from the 
expected increase at  higher temperatures. 

Two mechanisms have been suggested for deviations from the 
simple coth rule of intensity stealing. FergusonI9 has proposed 

(18) Lohr, L. L. J .  Chem. Phys. 1969, 50, 4596 
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Figure 3. Potential surfaces along the p2" coordinate: (A) excited-state 
potentials with curve 1 being the (nonunique) potential that fits the 
experimental data and curve 2, being the potential obtained by using the 
angular overlap model; (B) ground-state potentials, defined as given in 
Figure 2. 

that the n - n f 1 transitions of an inducing mode may become 
more intense for increasing n than is suggested by the coth rule. 
This is turn implies that the electronic transition moment should 
be expanded to second order, which yields the quadratic coth rule 
given in (14) above. However, the application of this formula 
leads to a relationship in which the intensity increases more rapidly 
at higher temperatures than is predicted by the simple rule (Figure 
2), the opposite of the behavior observed experimentally, so that 
this explanation cannot be correct in the present system. Al- 
ternatively, EnglmanZ0 has suggested that anharmonicity of the 
inducing vibration may influence the temperature dependence of 
band intensities, and a similar proposal has recently been made 
by BaccL2' The variation of the band intensity as a function of 
temperature was calculated by the variational method described 
above for a range of anharmonic potentials. To explain the 
observed behavior a t  low temperature the basic energy of the 
vibration must be less than the 65 cm-' suggested by the simple 
coth relationship, while the deviation at high temperature implies 
that the form of the anharmonicity is to cause an increase in the 
slope of the potential surface as a function of the normal coor- 
dinate. It may be noted that a similar type of anharmonicity was 
proposed by Englman to explain the temperature dependence of 
the optical spectrum of Ni(H20)62f.20 A ground-state potential 
of the form 

V ( ( )  = 0.5F2 -I- exp(-0.5F2); hv = 60 cm-I (23) 

produces satisfactory agreement with experiment (Figure 2). This 
surface is compared with the harmonic potential corresponding 
to an energy of 65 cm-' in Figure 3, from which it may be seen 
that the anharmonicity is quite modest. 

Because of the importance of defining the ground-state potential 
surface as accurately as possible in considering the cause of the 
shift in band maximum with temperature, the effect of a highly 
anharmonic ground-state potential on the variation of the intensity 
with temperature was considered. Various surfaces were inves- 
tigated, each chosen to produce a ratio of the intensity at 295 K 
to that at 10 K in agreement with that observed experimentally. 

(19) Ferguson, J .  Prog. Inorg. Chem. 1970, 12,  159. 
(20) Englman, R. Mol. Phys. 1960, 3, 23. 
(21) Bacci, M .  Chem. Phys. 1984, 88, 39. 
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However, these invariably implied a variation over the intervening 
temperatures differing drastically from experiment. A typical plot, 
obtained by using the potential surface 3 in Figure 3, is shown 
in Figure 2. It should also be noted that the root-mean-square 
amplitude of the p2, mode at  room temperature that is implied 
by the potential given by (23) (with each Cu-C1 bond making 
an angle of -2.7O with the xy plane) is in good agreement with 
the thermal ellipsoids deduced from the X-ray crystal structure 
analysis ( - 3 O ) ,  which would not be the case for the highly dis- 
torted potential surface in Figure 3. 

When the electric vector is parallel to the b crystal axis of 
(metH)2CuC14, this produces an almost pure xy molecular 
spectrum. In this polarization the 2Alg(z2) - 2Bl,(x2 - y 2 )  
transition is induced by vibrations of e, symmetry. The low- 
temperature spectrum consists of two progressions, one far more 
intense than the other. A previous analysis has shown that the 
observed temperature dependence of the intensity is in good 
agreement with the dominant progression being due to coupling 
with the e, in-plane bend of energy - 178 cm-’ (the corresponding 
stretching vibration, of energy -290 cm-l is for some unknown 
reason apparently completely inactive5). The minor progression 
(contributing -6% to the intensity a t  10 K) is due to coupling 
with what is presumably a lattice mode of energy -80 cm-’. This 
means that the “effective” energy of the e, mode in inducing 
intensity is - 165 cm-’, and the following “effective” potential 
was found to give good agreement with the temperature depen- 
dence of the band intensity in xy polarization 

V ( [ )  = 0.5E2 + 2 exp(-0.25E2); hv = 165 cm-l (24) 

with a slight anharmonicity correction being added to take into 
account the effect of the low-energy lattice vibration. 

Temperature Dependence and Polarization Behavior of the Band 
Maxima: Influence of the Excited-State Potential Surfaces. 
Perhaps the most unusual feature of the electronic spectrum of 
the planar CUCI,~- ion is the dramatic shift to lower energy of 
the band maxima as the temperature is raised from 10 to 295 K 
(Figure 1). For the band under consideration this shift is 
somewhat greater in z polarization (-950 cm-I) than in xy po- 
larization (-800 cm-l). It is also noteworthy that the band 
maximizes a t  significantly higher energy in xy than in z polari- 
zation, the energy difference being -250 an-’ at low temperature, 
with this approximately doubling by room temperature. Moreover, 
essentially identical behavior has been reported5 for this complex 
in the similar compound (~reatininium)~CuCl,, so that these 
features are apparently a general characteristic of the spectrum 
of the complex. 

The only mode in which the excited-state potential surface may 
be displaced with respect to the ground state is that of alg  sym- 
metry, and it is apparent that the observed progressions at low 
temperature are indeed in this vibration. As discussed in a previous 
p~bl icat ion,~ the band shape is consistent with a displacement in 
the excited electronic state of 21.2 pm in the minimum of this 
mode, corresponding to a lengthening of 10.6 pm in each Cu-C1 
bond. As expected from the increase in bond lengths, the observed 
progressional energy of 265 cm-l is slightly less than the 
ground-state energy of the alg  vibration, 275 ~ m - ’ . ~  

If it is assumed that, with the exception of the alg  vibration, 
the excited-state potential surfaces are identical with those in the 
ground state, then ( 1  5 )  may be used to estimate the variation of 
the band maximum as a function of temperature. The shifts 
calculated in this way are far smaller than those observed ex- 
perimentally, as may be seen from the plots shown in Figure 4; 
in these, the electronic origin has been arbitrarily chosen to make 
the band maximum in z polarization agree with experiment. Here, 
the shifts are mainly due to the “hot” bands associated with the 
inducing modes. The red-shift tends toward hv at  high temper- 
ature, where hv is the energy of the inducing mode (eq 15). The 
difference in the frequency of the alg  vibration in the ground and 
excited state also makes a small contribution. The energy dif- 
ference between the band maxima in xy and z polarization is also 
too small and tends to decrease with the increase in temperature, 
the opposite of experimental observation. It has been suggested 
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Figure 4. Temperature dependence of the band maxima. The higher 
energy experimental points and calculated curves refer to xy polarization, 
and the lower energy refers to z polarization: curve 1, obtained with the 
ground- and excited-state potentials of curves 1 in Figure 3; curve 2, 
obtained by using the excited-state potential derived from the angular 
overlap model, curve 2 in Figure 3; curve 3, obtained by using harmonic 
ground- and excited-state potentials. 

by Englman that the red shift in the band maxima of Ni(H20),2+ 
is due to an effective increase in the metal-ligand bond length 
with rise in temperature, this being quantified by a significant 
anharmonicity in the alg vibration.2o Such a mechanism is clearly 
impossible in the present case, both because of the high energy 
of this mode and because no anharmonicity is observed in the band 
structure of the electronic transitions. Moreover, the energy of 
the peak due to the a lg  vibration observed in the Raman spectrum 
of compounds containing planar CuCld2- does not shift when they 
are cooled.22 

Given that the ground-state potential surfaces of the inducing 
modes are apparently quite normal (see preceding section), it seems 
reasonable to conclude that the anomalous behavior of the elec- 
tronic bands of planar C U C ~ ~ ~ -  is related to the way in which these 
surfaces differ in the excited electronic states. Each electronic 
transition involves excitation from an approximately nonbonding 
orbital to an antibonding orbital, and as mentioned above, a 
displacement in the cylg mode occurs because of this. In general 
terms, the longer metal-ligand bonds in each excited state suggest 
a reduction in the vibrational force constants compared with the 
values in the ground state. An approximate estimate of the 
required potential surfaces may be obtained by adding to each 
ground-state potential the variation in the energy of the excited 
state as a function of that particular normal coordinate. This 
procedure is directly analogous to the well-established method of 
deducing the potential surface of a molecule that has undergone 
a Jahn-Teller distortion, where the change in electronic energy 
as a function of the Jahn-Teller active coordinate is added to the 
potential surface expected in the absence of this effect. It may 
be noted that, except for alg modes, symmetry arguments dictate 
that for a nondegenerate electronic state the change to every 
vibrational potential must be a nonlinear function of the normal 
coordinate. An approach of this kind has recently been used to 
successfully estimate the change in bond length that generally 
accompanies a rearrangement of the d electrons in a transition- 
metal complex and the displacement in the cg coordinate in 
Jahn-Teller active systems.23 

The form of the symmetry coordinates of the planar CUCI,~- 
ion are shown in Appendix B. As discussed in Appendix B, the 
ligand displacements along the PI, and cu(s) stretching coordinates 
will not cause significant changes in the d-orbital energies, apart 
from removing the degeneracy of the 2Eg(dxr,yr) state. This is 
because as two ligands approach the metal, their effect is ap- 
proximately counterbalanced by the other two moving away. 
Although attention is focused here on just one excited state, 

(22) Cassidy, P. J.; Hitchman, M. A.; McDonald, R. G., unpublished work. 
(23) Deeth, R. J.; Hitchman, M. A. Znorg. Chem. 1986, 25, 1225. 
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Table I. Parameters Defining Excited-State Potential Surfaces 
Derived by Using the Angular Overlap Model 

a,' -3.6385 0.0 0.0 0.0 0.0 
az/ 0.4643' 0.2408 0.5380 -0.0632 0.3224 
a( 0.0 0.00024 0.0012 0.00043 -0.0005 

E(0) ,d  cm-' -4.9 -20.6 3.6 -23.2,e -23.8,' 
-21.31 35.a' 

E(300),d cm-' -8.5 -56.4 9.4 -129.6,' -61.2: 
-350.4 -1 1l.v 

a Fundamental energy of vibration in the ground state. *Coefficients 
defining the excited-state potential. 'This coefficient produces an ex- 
cited-state potential having a fundamental energy equal to that ob- 
served experimentally; hu = 265 cm-'. dThese energies, at 0 and 300 
K, are given relative to the energy difference between the ground- and 
excited-state potential surfaces at the equilibrium nuclear geometry of 
the ground state. eNoninducing. fhducing. 

ZA1,(z2), for completeness the change in all the d-orbital energies 
as a function of displacements in each of the bending vibrations 
were calculated. The appropriate angular overlap expressions were 
used to parametrize the metal-ligand interactions, with the 
bonding parameters being defined by the excited-state energies 
of the limiting planar ion. Details are given in Appendix B, as 
are plots of the d-orbital energy variations as a function of each 
normal coordinate (Figure 10). The optimum fourth-order 
polynomial to describe each variation over the range & 15' was 
determined by a least-squares procedure, and this was added to 
the appropriate ground state potential to produce excited-state 
potential functions defined by the coefficients indicated in Table 
I. 

For every mode except that of pZu (and a lg )  symmetry the 
potential in the 2A1,(z2) excited state is calculated to be similar 
to that in the ground state except for the expected lowering of 
the force constant. This is because in each case the d-orbital 
energy variation obeys a relationship that is dominated by the 
quadratic coefficient (Table IV), the linear coefficient being found 
to be zero, in agreement with the requirements of group theory. 
However, the potential surface calculated for the pZu mode in the 
excited state is quite different from that in the ground state, having 
two shallow minima, of depth - 140 cm-*, located at O = f- 14'. 
This implies that the destabilization with respect to this normal 
coordinate that accompanies the electronic excitation is marginally 
more than enough to overcome the ground-state force constant, 
so that the equilibrium nuclear geometry in the excited state 
actually corresponds to two equivalent distorted tetrahedral ligand 
arrangements. The reason why this particular mode shows such 
unusual behavior is due partly to its very small force constant in 
the ground state and partly to the high sensitivity of the d-orbital 
energies to a change in this normal coordinate (Figure 10). The 
calculated excited-state potential surface as a function of the pzu 
coordinate is compared with those of the ground state in Figure 
3. It should be noted that, again in agreement with the re- 
quirements of group theory, the slope of the calculated excited-state 
potential surface is zero at  0 = 0'. 

The temperature dependence of the 2A,g(zz) band maximum, 
obtained by using the calculated potential surfaces of the excited 
state, is shown in Figure 4. Agreement with experiment is still 
not good, though as far as the red shift is concerned it is a little 
better than was obtained by assuming excited-state potential 
surfaces identical with those in the ground state. The relative 
contributions of the various different modes to the change in band 
maximum position from that predicted by assuming these ground- 
and excited-state potentials are shown in Table I. From these 
it may be seen that only the pZu and cU(b) modes make any sig- 
nificant contribution, either to the temperature dependence of the 
band maximum or to the difference in band maximum between 
z and xy polarization. Moreover, while the former vibration has 
a large effect in both polarizations, the latter only contributes 
significantly to the shift in band maximum when it is the inducing 
mode (xy  polarization). 
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Figure 5. Spectral parameters obtained by using various p2,, potentials, 
with e,,, and E,,, defined as in (25). curve A, shift in band maxima; 
curve B, energy of the band maximum in xy polarization minus that in 
z polarization. 

The dominance of the contribution of the pZu vibration to the 
shift in band maximum with temperature is clearly related to the 
fact that the potential surface of the excited electronic state differs 
substantially from that of the ground state in this normal coor- 
dinate. It was therefore decided to investigate the sensitivity of 
the polarization and temperature shifts of the band maximum to 
the depth (E,,,,,,) and angular displacement (Om!,) of the wells in 
the excited state pzu potential surface. These quantities are related 
in a simple fashion to the coefficients c2 and c4, which define the 
potential surface (see eq A7 of Appendix B): 

Om,,, = (-c2/2c4)'I2; E,,, = - ( ~ 2 ~ / 4 c ~ )  ( 2 5 )  

From the plots shown in Figure 5a, it can be seen that a red shift 
corresponding to those observed experimentally on warming from 
10 to 295 K would occur if the minima were much deeper (E,,, 

1500 cm-') than those estimated by using the angular overlap 
approach and displaced by Om,,, = 8.5'. As might be expected, 
and in agreement with observation, the shift is greater in z po- 
larization, where the &, is the inducing mode, than in xy po- 
larization, where it is not. This is because in the former case the 
calculated overlaps become increasingly more significant, com- 
pared with the latter case, as higher vibrational levels of the p2u 
mode are populated in the ground state. The red shift increases 
as the minima move inward from a large value. Classically, this 
can be visualized as being due to the vertical transition from the 
root-mean-square geometry at high temperatures in the ground 
state cutting the excited-state potential at lower and lower energy 
as the minima move in. 

The effect of the various potentials on the difference in the band 
maximum in z and xy polarization is shown in Figure 5b. It can 
be seen that agreement with experiment is obtained with similar 
values of E,,, and Om,, to those required to optimize the tem- 
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perature dependence of the band maximum. This is again a 
consequence of the fact that the p2u mode, in which the excited 
state has a double minimum, induces intensity in z but not in xy 
polarization. 

While the above potential surface is almost certainly not the 
only one that would produce the observed features (one with even 
deeper minima displaced further from planarity would probably 
do so), the fact that the red shift and the polarization behavior 
of the 2Al,(z2) band maximum independently require such a 
similar excited-state potential surface suggests that the general 
features of this are likely to be correct. In particular, the large 
size of the red shift (-900 cm-') implies that the excited-state 
potential surface decreases in energy with respect to that of the 
ground state by about this amount as the average displacement 
in the pZu coordinate increases from the zero-point value of 101 E 

1.1 ' to the value at room temperature, confirmed independently 
by the X-ray crystal structure analysis as 101 = 2.7'. This requires 
that the excited-state potential falls steeply over this range, which 
must produce a surface with double minima such as that pictured 
in Figure 3. Similar surfaces have been proposed for excited states 
of other planar complexes. For instance, Ballhausen et al.24 have 
suggested a distorted tetrahedral equilibrium nuclear geometry 
for the 1Bz,(D4h) state of Ni(CN)42-, in order to explain the 
anomalous polarization behavior of the electronic spectrum of this 
complex. Similarly, Martin et aLZ5 have proposed that the lack 
of vibrational fine structure on the 'E, - lA!, transition of PtCl2- 
may be due to a pseudotetrahedral distortion in the doubly de- 
generate excited state. 

The C U C I ~ ~ -  ion is, in fact, particularly likely to undergo a 
distortion toward a distorted tetrahedral ligand geometry, since 
this is apparently the preferred stereochemistry of this complex 
in the absence of lattice forces. The angle 0 is -25' in lattices 
with non-hydrogen-bonding counterions, and in noncoordinating 
solvents.26 Moreover, one of the compounds that contains planar 
CuC1,2- a t  room temperature undergoes a phase transition to a 
form containing pseudotetrahedral species at -69 0C.27 At first 
sight it might seem disquieting that the potential surface giving 
optimum agreement with the spectral behavior differs so sub- 
stantially from that estimated by using the angular overlap model 
(Figure 3). However, it should be noted that the latter approach 
only considers the contribution to the excited-state potential caused 
by the rearrangement of the d electrons. The vibronic coupling 
with excited-charge-transfer states is also expected to contribute 
to the distortion from planarity in the excited d states (in planar 
C U C I ~ ~ -  the lowest charge-transfer states are only -8000 cm-I 
above the excited d states2*). Vibronic coupling with a neigh- 
boring excited state has recently been shown to strongly influence 
the potential surface of an excited state of S02,29 and it has also 
been proposed that the photophysical properties of several ni- 
trogen-heterocyclic and aromatic carbonyl compounds can be 
attributed to vibronic coupling between nearby n r *  and m* 
excited states.30 

Variation of Half-Width with Temperature. The half-width of 
the band is due largely to progressions in the ai, vibration. A 
previous analysis of the relative intensities of the band components 
yielded an estimate of A S  = 21.2 pm for the displacement in this 
mode in the 2AI,(z2) excited state,5 and the present simulations 
of the spectra confirm this. 

A moments analysis of the temperature dependence of the 
half-widths using (16) was actually found to give better agreement 
with the parameters obtained from Gaussian analysis of the spectra 
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if identical potential surfaces in the ground and excited state were 
assumed than if the distorted excited-state potentials described 
above were used. This is because a moments analysis, which 
calculates the mean width of a line shape, can only be related to 
the half-width when the line shape is Gaussian.I3 Clearly this 
is not the case for the non totally symmetric modes, and the use 
of (12) or (16) will grossly overestimate the contribution of these 
modes to the half-width of the total band shape. Under these 
circumstances, rather than consider the half-widths as such, it is 
better to compare simulated spectra with the line shapes observed 
at various temperatures. 

Simulation of the Spectra. If the observed spectral curves a t  
low temperature are considered to be progressions in the a,, mode, 
built on a single vibronic origin, then the ground- and excited-state 
potentials in this symmetry coordinate in pm are given by 
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Chem. 1965. 4 .  514. 
Martin,DlS., Jr.; Tucker, M. A.; Kassman, A. J. Inorg. Chem. 1965, 
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Harlow, R. L.; Wells, W. J.; Watt, G. W.; Simonsen, S.  H. 
Chem. 1975, 14, 1768. 
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Desjardins, S. R.; Penfield, K. W.; Cohen, S. L.; Musselman, 
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These correspond to harmonic potentials displaced by AS = 21.2 
pm, with vibrational energies of 275 and 265 cm-' for the ground 
and excited states, respectively. In the dimensionless units ap- 
propriate to a variational calculation with the energy units hv = 
275 cm-', these potentials are 

V,(F) = 0.464E2 - 3.347[ (27) 

The appropriate mass for this vibration is that of one ligand, and 
the relationship between the "force constants" is given in (18). 

Ideally, the spectra should be simulated by calculating the 
vibronic overlaps between the complex in every combination of 
all the vibrational levels of the ground and excited state a t  each 
temperature under consideration, with weighting factors being 
introduced to account for the Boltzmann distribution over the 
ground-state levels. In practice, such a procedure would be ex- 
tremely time consuming, and only the potential surfaces of the 
alg  mode, and the inducing vibrations, p2u in z polarization and 
tu in xy polarization, have been considered here. The first of these 
provides the band envelopes, while the second two provide the 
intensity and energy of each vibronic origin upon which the bands 
are built. The effects of the noninducing modes on the energies 
of the transitions can be quite substantial, particularly that of the 
p2" vibration in xy polarization, and these have been included in 
the calculations. The lines are given a finite half-width to produce 
optimum agreement with the low-temperature spectrum, and this 
is kept constant in simulating the higher temperature spectra; the 
consequences of this particular assumption are considered below. 
It was found that an identical basic half-width (full width at  
half-height of -270 cm-I), could be used for both polarizations. 
The electronic origin was chosen to reproduce the low-temperature 
spectrum in z polarization. 

The spectra a t  four temperatures between 10 and 295 K, sim- 
ulated by assuming the excited-state potential surfaces derived 
with the angular overlap model, are compared with those observed 
experimentally in Figure 6a,b. Here, the intensity due to the 
2Eg(~z,yz) +- 2B, , (~2  - y2) transition has been subtracted from 
the experimental spectra. Because of the relative weakness of the 
2A,g(z2) +- 2Bl,(x2 - y2) transition in xy polarization (Figure la), 
the subtraction procedure produced anomalous effects in the region 
between the two higher energy bands, so in this case the exper- 
imental spectra are represented by the best-fit Gaussian curves 
to the data. While the intensity variations are reproduced well, 
as these are decided by the ground-state potential surfaces, the 
pronounced deviation of the band position from that observed 
experimentally at high temperatures is readily apparent. It is also 
noteworthy that the vibrational fine structure is predicted to die 
away less rapidly with increasing temperature than is the case 
experimentally. The spectra simulated by using an excited state 
potential surface with double minima i~8.5~ from the saddle point, 
each with a depth of 1500 cm-I, are shown in Figure 7a,b. For 
the spectrum in z polarization agreement is satisfactory in all 
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Figure 6. 2A,,(z2) - 2 B , g ( ~ 2  - y 2 )  transition at, in order of increasing 
intensity, 10, 70, 140, and 265 K. Experimental points are shown as 
crosses and the full lines were calculated by using the excited-state po- 
tentials derived from the angular overlap model. The contributions to 
the intensity from the lower energy transitions have been subtracted from 
the experimental data; in the case of the spectrum in xy polarization the 
experimental points lie along the best-fit Gaussian curves to the exper- 
imental data. 

respects, while for the xy spectrum the only feature that is re- 
produced poorly is the bandwidth at  higher temperatures. 
However, this last discrepancy is not unexpected. The p2u mode 
is noninducing in xy polarization, and the fact that the excited-state 
surface differs dramatically from the ground state in this coor- 
dinate will cause the vibronic origins in the inducing eu vibration 
to develop a band structure similar to that discussed for the pZu 
mode in the following section. This structure will increase with 
the thermal population of higher levels of the p2,, vibration in the 
ground state and will hence give rise to a width for the individual 
lines built on the tu origins that increases with temperature. With 
the introduction of such a temperature-dependent fundamental 
line width, the high-temperature spectra in xy polarization could 
be fitted virtually perfectly. It must also be remembered that a 
small fraction of the intensity in this polarization (-6% at  low 
temperature) is due to coupling with a low energy (hv E 80 sm-I) 
lattice mode.5 This has been included in the present calculations 
by an arbitrary 6% reduction in the “effective” energy of the E,, 

vibration, and this approximation will also introduce inaccuracies 
in the calculated line shapes. 

Basic Cause of the *A1,(z2) - 2B1,(x2 - y 2 )  Band Maximum 
Shift 

Although the spectral line shape is caused predominantly by 
bands in the alg mode, the shifts in band maximum are due almost 
exclusively to changes in the vibronic origins, with either tem- 
perature or polarization. It is therefore instructive to look at the 
appearance of the spectrum in the absence of the aI8  band 
structure, and this is shown in Figure 8a for the transitions between 
the p2u levels in z polarization. Here, the ”vibronic origin” is seen 
to increase in both intensity and half-width and to shift to lower 
energy as the temperature rises. The basic cause of this may be 
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Figure 7. 2Al,(z2) - 2B, , (~Z - y 2 )  transition at, in order of increasing 
intensity, 10, 70, 140, and 265 K. Experimental points are shown as 
crosses and the full lines were calculated using the excited-state potentials 
derived using the angular overlap model except for that of the pIu po- 
tential, which is given by curve l of Figure 3. The contributions to the 
intensity from the lower energy transitions have been subtracted from the 
experimental data; in the case of the lowest energy spectrum in xy po- 
larization the experimental points lie along the best-fit Gaussian curve 
to the experimental data. 

seen in the plot shown in Figure 8b, where the fundamental width 
of the individual lines has been made very small. It can be seen 
that the simple selection rules of vibronic coupling, which are based 
upon identical ground- and excited-state vibrational potentials, 
and where all the intensity of a parity-forbidden transition is built 
upon the change of a single quantum of the inducing mode, break 
down. At low temperature, the single peak that serves as a 
“vibronic origin” for the alg  progression is seen to be composed 
of a band itself, formed by transitions from the zero level of the 
p2: mode in the ground state, to various levels of the double- 
minimum excited-state potential surface (Figure 3). As the 
temperature is increased, new bands arise due to excitations from 
the higher vibrational levels 04 the pZU mode in the ground state, 
leading to a very complicated basic pattern. However, the fun- 
damental cause of the red shift of the overall band maximum is 
the fact that these higher levels will have greatly improved overlap 
with the lower vibrational levels in the excited-state minima. 

The spectrum in xy polarization is expected to follow a basically 
similar pattern, except that here the “band structure” produced 
by the difference between the ground- and excited-state potential 
surfaces of the inducing tu mode will be far less pronounced. The 
basic cause of the large difference in the energy of the band 
maximum between z and xy polarization is the fact that in the 
former case, when the p2,, mode is inducing, maximum overlap 
between the p2,, potential surfaces occurs at a much lower energy 
than in the latter case. As already mentioned, a feature not 
included in the simulations is the fact that the large difference 
between the potential surfaces of the ground and excited states 
in the pZU coordinate will produce a “band structure” in the 
transitions between the cU levels, hence contributing to the basic 
line width of these transitions. 



Electronic Spectrum of CuCld2- Inorganic Chemistry, Vol. 26, No. 19, 1987 3213 

16 15 14 13 12 
Energy (~1000 cm-1) 

Figure 8. Calculated spectrum of the 2AI,(z2) - 2 B l , ( ~ Z  - y2) transition 
in z polarization at, in order of increasing intensity, 10, 70, 140, and 265 
K, ignoring the progressions in the a,, totally symmetric stretching mode: 
spectrum A, low resolution (full width at half-height = 270 cm-I); 
spectrum B, high resolution (full width at half-height = 25 cm-I). 

General Conclusions and Suggestions for Future Work 
From the temperature dependence of the intensity of the 

2A,,(z2) - 2Bl,(x2 - y 2 )  transition, it appears that the ground-state 
potential surface of the planar CuC14*- ion must be relatively 
unexceptional, except that the out-of-plane bending vibration of 
pZu symmetry is slightly anharmonic and of very low energy. This 
provides a useful constraint in considering the cause of the un- 
usually large red shift of the band maximum on warming from 
10 to 295 K. It would seem that this latter feature is quite 
incompatible with an excited-state potential surface which is 
similar to that in the ground state. It appears that good agreement 
between simulated spectra and those observed experimentally can 
be obtained only if the potential surface of the excited state is 
highly distorted in the p2,, normal coordinate, with a double 
minimum corresponding to an equilibrium nuclear geometry that 
is not planar, but distorted toward two equivalent pseudotetra- 
hedral ligand arrangements. The large red shifts observed for 
the other electronic transitions imply that a similar distortion 
occurs in these excited states also. 

The very similar trends in the temperature dependence of the 
electronic spectra of all compounds containing planar CuC14” ions 
suggest that a distortion in the excited electronic states of the above 
kind is a general feature of this complex. In considering why this 
particular species behaves in this anomalous manner (it must be 
remembered that, to first order, a distortion in nondegenerate 
excited states is allowed only in vibrations of a ,  symmetry), it is 
probably relevant that the energy barrier to a displacement along 
the normal coordinate which transforms the complex from a planar 
toward a tetrahedral ligand geometry i s  apparently very small. 
This is indicated by the fact that with different counterions the 
trans ClCuCl angle varies widely, covering the range 180 to - 129°.26 In fact, it has been suggested by Bacci2’ that in some 
four-coordinate copper(I1) complexes with pseudotetrahedral 
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Figure 9. Molecular axes and symmetry coordinates of CuCI,’. R is 
the equilibrium bond length. 

geometries the vibrational mode in question may not only be of 
very low energy but be highly anharmonic, so that the average 
root-mean-square angular displacement from planarity will be 
temperature dependent. It was proposed that dynamic behavior 
of this kind may be important in biologically active copper(I1) 
complexes, by providing low-energy reaction pathways (it is 
noteworthy that the spectral properties of CuCld2- have been 
proposed as a useful model of the “blue” copper(I1) p r o t e i n ~ ~ ~ ~ ~ ~ ) .  
It would be of interest to study the temperature dependence of 
the electronic spectra of compounds containing pseudotetrahedral 
ions, including those involving CuClt-, to see whether these exhibit 
band shifts similar to those discussed by BaccL2’ However, for 
these systems it might be hard to distinguish between a distorted 
geometry in the excited state, and an anharmonic ground-state 
potential surface, since variations in band intensity would give 
little information, as the transitions are parity allowed. 

The present model suggests that the fine structure observed at 
low temperature in the spectra of compounds containing planar 
CuC1:- is probably due to the superposition of many vibronic lines. 
The position of these fundamental components is expected to be 
quite sensitive to the shape of the distorted excited-state potential 
surface, which in turn is likely to be strongly influenced by the 
crystal lattice (it must be remembered that it is lattice forces such 
as hydrogen bonding that are thought to stabilize the planar 
geometry of the complex in the ground state). It has been noticed 
that although the geometries of the planar CUCI,~- ions in the 
three compounds currently known to contain this complex are 
virtually identical, the extent to which vibrational fine structure 
is resolved in their low-temperature optical spectra differs dra- 
matically, and it has been generally assumed that variations in 

(31) Solomon, E. I.; Penfield, K. W.; Wilcox, D. E. Srrucr. Bonding (Berlin) 
1983, 53, 1. 
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Table 11. Point Groups of the CuC1:- Ions Distorted along Different 
Symmetry Coordinates 

Riley and Hitchman 

instantaneous irreducible representations 

vibration point groups d,l dxz-,,l d,, d,, d,, 

u3 ( e 2 u )  c4, AI Bl B' E 
u4 ( P 2 g )  D2hn A, Bl, A, B2,, B3, 
u5 (02") D2da AI B2 Bl E 
u7 (%l(b)) 0, AI A I  BI Bz A2 

" A  "nonstandard" point group; the molecular axes are as defined in 
Figure 9. 

Table 111. Angular Overlap Matrix Elements for CuC12- Ions 
Distorted along Different Symmetry Coordinates" 

a2,, and P2" Type Distortions 
( z 2 1 ~ z 2 )  = 1/4(1 - 3 cos 26')*e, + (3 sin2 26')e, - 16(sin2 6' - 

(x2 - y21Vlx2 - y z )  = 0.75(1 + cos 26')2e, + (sin2 28)e, 
(xy lV lxy )  = 4(cos2 @)e,  
(XZ~V'XZ) = 1.5(sin2 26')e, + 2(sin2 6' + cos2 26')e, 
( y z l ~ y z )  = 1.5(sin2 26')e, + 2(sin2 8 + cos2 26')e, 

cos' 
6')2eds 

p2, Type Distortion 
(z21y]z2) = e, - 4eds 
( x 2  - y211/lx2 - y 2 )  = 3(sin2 a)e ,  + 4(cos2 a)e ,  
(xy l t+q~)  = 3(cos2 a)e ,  + 4(sin2 a)e ,  - 48(cos2 a)edS 
( x z l y x z )  = 2e, 
(yzll2Vz) = 2e, 
(xz lV lyz)  = (yz lP lxz)  =  C COS n)e,  
(z21Plxy) = (xy lV lz2)  = -31/2(cos a)e ,  

c,(b) Type Distortion 
(z21t lz2)  = e, - 4ed, 
(x2 - y 2 ) q x 2  - y 2 )  = 3/2(1 + cos2 2a)  e ,  + 2(sin2 2a)e, - 48(cos4 

(xy l t+~y)  = 3/2(sin2 2a)e, + 2(1 + cos2 h ) e ,  
(xz lv lxz )  = 2(1 + cos2 a ) e ,  
( y z l m z )  = 2(sin2 a)e,  
(z211/1x2 - y 2 )  = (x2 - y2)Vlz2)  = -3lI2/2(1 + cos 2a)e, 

a)eds 

ONote: The internal coordinates 6' and a are defined in Figure 9. 

Table IV. Coefficients Defining the Change in Energy of the Excited 
d States with Respect to the Symmetry Coordinates" 

vibration u3 V4 US V l  

symmetry a 2 u  P 2 g  P 2 u  
frequency, cm-' 159 18 1 60 165 

a2 0.5 0.5 0.5 0.5 
c2, cm-I deg-2 25.37 26.55 11.67 20.86 

c2, cm-I degW2 -13.148 2.020 -13.148 -7.408 
c4, cm-' deg-4 0.00392 0.01864 0.00392 -0.00258 

- d: transition 

a2 -0.2592 0.0380 -0.5632 -0.1776 
a4 0.00024 0.00120 0.00043 -0.00055' - 4, 
transitionb 
cI, cm-' deg-' 0.0 
c2, cm-I deg-2 -16.435 
cj, cm-l deg-3 0.0 
c4, cm-l deg-4 0.00484 
01 0.0 
a2 -0.324 
a3 0.0 
a4 0.00030 

31.416 0.0 0.0 
-3.701 -16.435 -6.859 (-7.956) 
-0.00159 0.0 0.0 
0.00037 0.00484 -0.00312 (-0.003) 
0.3204 0.0 0.0 
-0.069 -0.704 -0.164 (-0,191) 
-0.00006 0.0 0.0 
0.00002 0.0053 -0.00030 (-0.00029) - d, transition 

c2, cm-I deg-2 -7.397 8.809 -7.397 -14.807 
c4, cm-I deg-4 0.00181 -0.0197 0.00181 -0.00013 
a2 -0.1458 0.1659 -0.3169 -0.3549 
a4 0.0001 1 -0.00127 0.00020 -0.00001 

Only nonzero coefficients are given. A least-squares polynomial of 
degree 4 is fitted to 31 points in the range f15 ' .  bFor the - dYz 
transition change the sign of cI and c3 and use the parenthetical quan- 
tities for c2 and c4. CThis small negative quartic term would cause the 
potential to become unbound for a large distortion of the e, coordinate. 
In the variational calculations this was therefore set equal to zero. 

p2u N P E  DISTORTION 

2o / d I  

0 0 10 20 -20 
-lo@ (degrees) 

bg TYPE DISTORTION 

2o 

715M E 
v 1 0 1  

aZu TYPE DISTORTION 

2o 7' 

10 1 5 ~  

Eu(b) TYPE DISTORTION 

10 1 5 ~  

Figure 10. Energies of the excited d states relative to the ground state 
for distortions along the (A) PZu, (B) nZu. (C) Pig, or (D) cu symmetry 
coordinates. Ground-state vibrational potentials are also shown. The 
coordinates 6' and a are defined in Figure 9. 

the coupling between the lattice and ground-state metal-ligand 
vibrational modes are probably responsible for this d i f f e r e n ~ e . ~ ~ ~  
The present study suggests that differences in the excited-state 
potential surfaces of the complexes may perhaps also be important. 
Moreover, the previous interpretations of the vibrational fine 
structure, which have involved the consideration of metal-ligand 
vibrations within the framework of simple vibronic coupling theory, 
supplemented by coupling with lattice modes, may also need to 
be reconsidered in the light of the present conclusions. 
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Appendix A. Analytic Formulas in the Harmonic 
Approximation 

The derivation of the "coth" rules given in (1 3) and (14) has 
been reported by several workers.2as11 Similarly, the expressions 
for the mean energy and half-width of an electronic transition due 
to  noninducing modes in (1 5 )  and (16) have been reported pre- 
v i o ~ s l y . " ~ ~ ~  Here, the analogous expressions for inducing modes 
are derived. 

Assuming a linear dependence of the electronic transition 
moment on an inducing coordinate, from (1 1) the mean energy 
of a transition is 

E(T) = - ' I ) /C ('41) 
IJ IJ 

where E,, is shorthand for C,P,(T)C,l(il[~)12. If it  is assumed 
that the potential surfaces are harmonic and identical in the ground 
and excited states, the overlap ( i&) is nonzero only when j = 
i f 1. Relative to the electronic origin, the mean energy of the 
transition is 



Electronic Spectrum of CuC1:- 

E(T) = CPi(T)[hv(i + 1 )  - ihu]/(l + X)/(1 -X) 
i 

= hvCX(1 - X)'/(l + X) 
i 

= hv tanh Y 
(A2) 

Here X = exp(-hv/kT), Y = hv/2kT, and hv is the frequency 
of the inducing vibration. 

The expression for the half-width, again assuming identical 
harmonic potentials in the ground and excited states, from (12) 
is 

H(T) = 2(2(ln 2)h2)II2 ('43) 

where 
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by the ligand field. The ligand field matrix elements are given 
in Table 111. Note that those for distortions along the pZu and 
cy2,, coordinates are identical. Smith33 has pointed out that the 
totally symmetric basis functions may mix with the metal 4s 
orbital, and this is taken into account by using extra group overlap 
integrals and a bonding parameter eds.33*34 

With the expressions in eq A2, and the bonding parameters e,, 
= 5250 cm-I, e, = 900 cm-I, and ed, = 1500 cm-I, which reproduce 
the observed transition energies of planar CUCI,~-,~ the variation 
of the excited-state energies as a function of the four bending 
coordinates were calculated, and the results are shown in the 
Figure loa-d. The appropriately dimensioned ground-state 
potential is also included for comparison. These curves were fitted 
to a fourth-order polynomial by a least-squares procedure, and 
the results are presented in Table IV. 

Care must be taken when converting from the internal coor- 
dinates (e ,  a )  to symmetry coordinates (S in Figure 9) and di- 
mensionless coordinates (E), and to avoid confusion this is outlined 
in detail for the p2,, mode. In all the plots of the potential surfaces, 
the internal coordinates have been used. For the pZu mode this 
corresponds to the four equal displacements in 8 along the di- 
rections indicated by the symmetry coordinate in Figure 9. That 
is, 19 = 0" and 6 = 35.26' correspond to planar and tetrahedral 
geometries, respectively. The potentials can be defined as 

V(PZU) = co + cle + c,ez + ... 
V(E) = a. + alE + azE2 + ... 

( '45)  

(A61 
where the coefficients c, have the dimensions (cm-' deg-I) and the 
coefficients a, are dimensionless. These coefficients are related 
by 

hvai = (180/(2~Rx)) 'c ,  ('47) 

e = ( i s 0 / ( 2 ~ ~ x ) ) ~  ('48) 

The coordinates are related by 

Here R is the equilibrium bond length in picometers and x is a 
constant previously given in (18). 

For the other bending modes identical equations are obtained 
after the appropriate substitutions are made (a - 0, for example), 
except for the mass Mused in the constant x. This is the inverse 
of the appropriate element of the G matrix15 and will differ for 
each mode: 

p2": M = m(C1) 

azu: M = m(Cl)M(Cu)/[4m(Cl) + m(Cu)] 

=(hv)2CPi(T)[i(l + tanh n2 + (i + 1) X 
I 

(1 - tanh n 2 ] / ( 1  + X)/ (1 - X )  

=(hv sech Y)*(l - X)2~x ' ( i x ' -1  + (i + l)x'+I)/ 
i 

(1 + -4  
=(hv sech 

This then gives 

H(T) = 2(2(ln 2))'I2hv sech Y (-44) 

Appendix B. Estimation of Excited-State Potential Surfaces 
with the Angular Overlap Model 

Adiabatic potential surfaces may be found by solving an 
electronic Hamiltonian at fixed nuclear geometries of the molecule. 
Here, the energies of the ligand field electroilic states are calculated 
relative to the ground state along the symmetry coordinates of 
the complex, and for the particular excited d state of interest, this 
is added to the vibrational potential of the ground state to yield 
the required potential surface. It should be noted that this ap- 
proach neglects the influence of charge-transfer states on the form 
of the potential surface. These may well be important in the 
present case, since it is coupling with these states along the in- 
ducing symmetry coordinates that provides the observed intensity 
of the transitions. It is known that the effect of vibronic coupling 
can often be to produce a lower potential surface with a double 
minimum, such as that proposed for the present complex, this often 
being referred to as a pseudo-Jahn-Teller effect.32 

The molecular coordinate system and symmetry coordinates 
of planar C U C ~ , ~ -  are shown in Figure 9. In the following 
treatment, only bending vibrations are considered, as these are 
of lower energy than the stretching vibrations5 and therefore should 
be more important in the present problem. Moreover, simple 
arguments show that the potential surfaces of the stretching vi- 
brations cannot be responsible for the observed anomalous band 
shifts. The cylg mode cannot make a significant contribution, as 
its excited-state potential is known to be harmonic from the 
progressions seen in the electronic spectra. The remaining 
stretching modes, PI, and tU(s), both involve the approach of two 
ligands, while the other two move away (Figure 9), which will 
have little effect on the d-orbital energies. 

The angular overlap model (AOM) provides a convenient way 
to calculate the required potentials (though it should be noted that 
the expressions to be used depend only on the angular relationships 
between the ligands and the d orbitals and bonding parameters 
derived from the electronic spectrum of the planar complex and 
are hence independent of the extent to which the bonding is ionic 
or covalent). The instantaneous point groups of a complex "frozen" 
along each of the relevant symmetry coordinates are given in Table 
11. These determine which d-orbital basis functions will be mixed 

p2*: M = m(C1)/4 

t,,(b): M = m(Cl)m(Cu)/[4m(C1) + 2m(Cu)] (A9) 

The c,(b) mode is complicated by the fact that it is coupled to 
the stretching mode of the same symmetry; here it is assumed that 
such coupling is negligible. 

Discussion. As required by group theory (Table 11) the de- 
generacy of the d, and dyr orbitals is removed by distortions along 
the p2g and t,(b) symmetry coordinates. This is caused by linear 
and quadratic terms in the potentials, corresponding to a Jahn- 
Teller effect and a Renner-Teller effect, respectively. 

When the electronic potentials are added to the ground-state 
vibrational potentials, the effect is generally to create a near- 
harmonic excited state with a decreased force constant. The 
exception is the pzu mode, where the low energy of the ground-state 
potential is such that a double-minimum excited-state potential 
results, as shown in Figure 3. As discussed in the text, this 
potential is probably only qualitatively correct, and it seems likely 
that vibronic coupling with charge-transfer states acts to reinforce 
the double minimum of the potential. 

Registry No. CuC12-, 15489-36-8. 
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