Articles

Kinetics and Mechanisms of the Base Decomposition of Nitrogen Trichloride in Aqueous Solution

Krishan Kumar, Roger **W.** Shinness, and *Dale W.* Margerum*

Received June 12, 1987

The rate expression for the base decomposition of nitrogen trichloride is $-d[NCl_3]/dt = 2(k_0 + k_1[OH^-] + k_{HB}[HB][OH^-] + k_2[OH^-]^2)[NCl_3]$, based on the stoichiometry $2NCl_3 + 6OH^- \rightarrow N_2 + 3OCl^- + 3Cl^- + 3H_2O$. Values of the rate constants (25 gives k_{HB} values $(M^{-2} s^{-1})$ of 2.1 \times 10³ for H₂PO₄⁻, 7.6 \times 10² for B(OH)₃, 65 for HCO₃⁻, and 128 for HPO₄²⁻. In the proposed mechanism Cl₂NClOH⁻ is a common reactive intermediate that can react with acids (H₃O⁺, HB, and H₂O with a Brønsted α value of 0.48) to form $HNCl_2$ and HOCl or it can react with an additional OH⁻ to release OCl⁻. The $HNCl_2$ so formed reacts rapidly with a second NCl₃ to give products. Kinetics data allow an equilibrium constant of 1.6×10^8 M⁻¹ (25.0 °C, $\mu = 0.5$) to be calculated for the reaction $NHCl_2 + HOCl \rightleftharpoons NCl_3 + H_2O$.

Introduction

When excess chlorine is added to potable and waste water, monochloramine, dichloramine, and trichloramine (nitrogen trichloride) are formed.¹ The formation of $NH₂Cl$ and $NHCl₂$ from the reaction of ammonia with chlorine or HOCl is quantitative, while the formation of NCl_3 from the reaction of $\dot{NHC}l_2$ with HOCl is not.^{2,3} There is a loss of active chlorine in the latter reaction due to the formation of N_2 and Cl⁻. The overall process, in which ammonia is oxidized and the active chlorine concentration reaches a minimum level, is referred to as breakpoint chlorination? This behavior is very important in water chlorination processes, but the dynamics of the reactions are not well understood. The kinetics of formation^{4,5} of $NH₂Cl$ and $NHCl₂$, as well as their disproportionation in acid, 3,4 have been studied previously.

Trichloramine was first prepared by Dulong6 in 181 **1** by the action of chlorine with a solution of an ammonium salt. He was seriously injured by its violent explosion.⁶ Pure trichloramine is an oily yellow liquid, 7 which is sensitive to heat or shock and will undergo spontaneous explosions $8,9$ when it is not in solution. Trichloramine has a powerful irritating odor and limited solubility in water.¹⁰ It is very volatile (its vapor pressure is 150 mmHg at room temperature)¹¹ and is easily lost from aqueous solution. The ultraviolet spectrum of trichloramine in aqueous solution has absorption peaks at 336 and 220 nm. 12 There is wide disagreement in the values of the molar absorptivities of trichloramine due to a lack of accurate methods for its determination. Although

- (1) Palin, A. T. *Water Water Eng.* **1950**, 54, 151-159, 189-200, 248-256.
(2) Wei, I. W.; Morris, J. C. In *Dynamics of Breakpoint Chlorination*; Rubin, A. J., Ed.; Ann Arbor Science: Ann Arbor, MI, 1975; Chapter
- 13. Hand, V. C.; Margerum, D. **W.** *Inorg. Chem.* **1983,** *22,* 1449-1456. Margerum, D. W.; Gray, E. T.; Huffman, R. P. **In** *Organometals and*
- Organometalloids, Occurrence and Fate in the Environment; ACS
Symposium Series 82; Brinkman, F. E., Bellana, J. M., Eds.; American
Chemical Society: Washington, DC, 1978; pp 278–291.
Morris, J. C.; Isaac, R. A. In Water Ch
- *Impact and Health Effects;* Jolley, R. L., Brungs, W. A,, Cotruro, J. A., Cummings, R. B., Matrise, J. *S.,* Jacobs, **V. A,,** Eds.; Ann Arbor Science: Ann Arbor, MI 1983; **Vol.** 4, **p** 49. Work of P. L. Dulong, reported by: Thenard, L. J.; Berthollet C. L.
- *Ann. Chim. (Paris)* **1813,** *86,* 37-43.
-
- Noyes, W. A.; Haw, A. B. J. Am. Chem. Soc. 1920, 42, 2167–2173.
Mellor, J. W. A. Comprehensive Treatise in Inorganic and Theoretical
Chemistry; Longmans Green: New York, 1928; p 598.
Kovacic, P.; Lowery, M. K.; Field, K. W 639-665.
- Jander, J.; Englehardt, U. In *Developments in Inorganic Nitrogen Chemistry;* Colburn, C. *B.,* Ed.; Elsevier: New York, 1973; Vol. 11, pp 70-227.
- *The Merck Index,* 9th ed.; Windholz, M., Ed.; Merck: Rahway, NJ, 1976; p 858. Metcalf, W. *S. J. Chem. Soc.* **1942,** 148-150.
-

iodometry has been used to determine the concentration of trichloramine, it does not produce quantitative amounts of iodine.¹³ The reported ϵ values vary from 180 to 272 M⁻¹ cm⁻¹ at 336 $nm^{3,12,14-18}$ Dilute solutions of NCl₃ in aqueous acid are moderately stable.^{9,10} Trichloramine solutions prepared from the reaction of ammonia with a 3-fold excess of hypochlorous acid always have less than the theoretical amount of $NCl₃$ and low levels of residual hypochlorous acid.

Studies of the formation and decomposition of $NCI₃$ are very important because these processes occur during breakpoint chlorination. Saguinsin and Morris¹⁹ studied the kinetics of decomposition of NCl₃ at 20 °C and pH 7-9 in a buffered medium. They observed that the reaction was first order in NCl_3 , with a hydroxide-independent path $(3.2 \times 10^{-5} \text{ s}^{-1})$ and a path that was first order in \dot{OH}^- (18.8 M^{-1} s⁻¹). They proposed that the decomposition of NC13 in base produced dichloramine *(eq* l), which then decomposed in accord with *eq* 2. Spectral scans during the dependent path (3.2 × 10⁻⁵ s⁻¹) and a p
lependent path (3.2 × 10⁻⁵ s⁻¹) and a p
OH⁻ (18.8 M⁻¹ s⁻¹). They proposed
f NCl₃ in base produced dichloramine
sed in accord with eq 2. Spectral sca:
NCl₃ + H₂O

$$
NCl_3 + H_2O \xrightarrow{OH^-} NHCl_2 + HOCl
$$
 (1)
2NHCl₂ + H₂O \rightarrow N₂ + HOCl + 3H⁺ + 3Cl⁻ (2)

$$
2NHCl_2 + H_2O \rightarrow N_2 + HOCl + 3H^+ + 3Cl^-
$$
 (2)

reaction gave no evidence of NHCl₂. Therefore, the reaction in *eq* 2 was assumed to be fast relative to the reaction in *eq* 1. Their rate constants were based on a 1:l stoichiometry, because it was assumed that only one $NCl₃$ was lost each time it reacted with base. No buffer dependence was reported. These authors also reported a rate constant of 3.4 M^{-1} s⁻¹ (20 °C) for the formation of NCl, (reverse of eq **1).** We find significantly different rate constants and different mechanisms.

In a recent study from this laboratory, Hand and Margerum³ reported kinetics for the reactions of dichloramine. The decomposition of $NHCl₂$ is autocatalytic and speeds up as $NCl₃$ and HOCl are formed. The reaction between $NHCl₂$ and HOCl (eq 3) is general-base (B) catalyzed and produces NCl₃. The trichloramine formed in eq 3 reacts with NHC1_2 to produce N₂, Cl⁻, and additional HOCl (eq 4). Thus, NCl₃ is lost in the destruction

$$
NHCl_2 + HOCl + B \xrightarrow[k_{HB}]{k_B} NCl_3 + BH^+ + OH^- \quad (3)
$$

 $NHCl₂ + NCl₃ + 3OH^- \rightarrow N₂ + 2HOCl + 3Cl^- + H₂O$ (4)

- (13) Dowell, C. T.; Bray, W. C. *J. Am. Chem. SOC.* **1917,** *39,* 896-905. (14) Galal-Gorchev, H.; Morris, J. C. *Inorg. Chem.* **1965,** *4,* 899-905.
- (15) Sample, W. R. Ph.D. Dissertation, Harvard University, 1959.
- (16) Burden, R. P. Ph.D. Dissertation, Harvard University, 1948.
- (17) Huffman, R. P. M.S. Thesis, Purdue University, 1976.
-
- (18) Gray, E. T., Jr. Ph.D. Dissertation, Purdue University, 1977. (19) Saguinsin, J. L. *S.;* Morris, J. C. In *Disinfection Water and Wasfe Water;* Johnson, *J.* D., Ed.; Ann Arbor Science: Ann Arbor, MI, 1975; pp 277-299.

0020- 1669/87/ 1326-3430\$01.50/0 *0* 1987 American Chemical Society

Table I. Absorption Spectral Characteristics of Halogen Species

species	Λ_{max} , nm	ϵ , M ⁻¹ cm ⁻¹	ref	
OCI^-	292	350	а	
NCI,	336	195		
	220	\sim 5000		
NHCl ₂	294	272		
	203	2120		
I_3^-	353	26400	е	
Br ₂	390	175		

^aGray, E. T. Ph.D. Dissertation, Purdue University, 1977. ^bReference 3. ^cReference 21. ^dHand, V. C. Ph.D. Dissertation, Purdue University, 1982. ^e Awtrey, A. D.; Connick, R. E. J. Am. Chem. **SOC. 1951, 73,** 1842-1843. /Soulard, M.; Block, F.; Hatterer, A. *J. Chem.* **SOC.,** *Dalton Trans.* **1981,** 2300-2310.

of NHCl₂. The proposed mechanism for the formation of trichloramine (eq 3) involves a nucleophilic attack of the dichloramine nitrogen on the chlorine of hypochlorous acid with a simultaneous general-base-assisted removal of a proton from di $chloramine³$

In the present study, we examine the kinetics of decomposition of NCl, in neutral and basic solutions in the presence of several different buffers and in the presence of excess hydroxide ion (up to 0.25 M). All the reactions are first order in NCl, concentration, but we find rate terms that are zero order, first order, and second order in OH- concentration as well as terms with significant rate contributions from buffers. We propose that the reverse reaction in eq 3, coupled to a rapid reaction in eq **4,** accounts for the hydroxide- and buffer-catalyzed paths. This means that two NCl, molecules are consumed in the reaction rather than the previously assumed stoichiometry.¹⁹ Under high base concentrations a second OH- **can** react with C1,NClOH- (a reactive intermediate) to **speed** the reaction. For the overall reaction, our studies show that the products in dilute base retain 50% of the initial active chlorine.

Experimental Section

Reagents. A 5% (Baker) or 10% (Mallinckrodt) solution of sodium hypochlorite is used as the source of active chlorine. Stock solutions of hypochlorite were standardized by either the absorbance measurement of OCI⁻ at 292 nm (Table I) or the formation of I_3^- after the addition of excess iodide in acidic medium. Ammonia solutions were prepared by dilution of reagent grade ammonium hydroxide and were titrated with standard acid with the use of bromocresol green indicator. Sodium hydroxide was standardized against potassium hydrogen phthalate. Stock solutions were prepared in carbonate-free water and were protected from atmospheric carbon dioxide. Trichloramine solutions were prepared by mixing ammonia solutions with a 3.0-fold excess of HOC1 at pH 3-4 in unbuffered medium 24 h before use. The $NCl₃$ solutions are relatively stable in dilute acid when protected from light and volatilization. The amount of NCl₃ formed is always less than the initial ammonia concentration due to N_2 formation.³

Sodium perchlorate was used to maintain the ionic strength $(\mu = 0.5)$ of the solutions. Reagent grade acids, bases, and buffers were used. Distilled deionized water was used for the preparation of solutions.

Methods. Spectrophotometric measurements were made with a Perkin-Elmer Model 320 instrument interfaced to a Perkin-Elmer 3600 data station. The spectral characteristics of various species are given in Table I. Solution pH values were measured with a Corning combination glass electrode and an Orion Model 601 pH meter. All pH values were corrected to the corresponding hydrogen ion concentrations at 25.0 °C and μ = 0.5 M (NaClO₄), based on electrode calibration titrations with standard solutions of NaOH and HClO₄. Gran plots²⁰ were used in the calibration **of** the electrodes.

Although reactions of iodide with HOCl, NH₂Cl, and NHCl₂ produce quantitative amounts of I_2 , the reaction of NCl₃ with iodide produces only 80% of the theoretical iodine based on the estimated NCl, concentration.²¹ Early studies¹³ of the reaction of NCl₃ (dissolved in CCl₄) with aqueous KI showed that about 18% of the nitrogen was converted to N_2 . There is always some loss of N_2 in the preparation of NCl_3 because mixtures of NCl₃ and NHCl₂ are not stable (eq 4). Only 60-65% of the active chlorine taken initially to make $NCI₃$ is recovered as $I₂$.²¹ Other intermediates that may be present in freshly prepared NCl₃ solutions are

Table 11. Oxidizing Power Retained by the Products of Trichloramine Decomposition in Base"

$[OH-], M$	% oxidizing power retained	$[OH^{-1}, M]$	% oxidizing power retained
0.00497	51.7	0.100	47.8
0.00994	50.7	0.150	47.8
0.0249	51.7	0.200	49.4
0.0497	54.5	0.250	47.8
0.050	49.9	0.300	49.9
0.0994	56.4		51 ± 3 (av)

^a Equal Volumes of $\sim 0.65 \times 10^{-3}$ M NCl, and NaOH are mixed. The hydroxide ion concentrations given are after mixing.

avoided by aging the solution for 24 h. The resulting solutions have small amounts of HOCl, usually about 5% of the NCl, concentration. Stopped-flow studies of the reaction of Br⁻ with these solutions can be used to distinguish HOCl $(k^{\text{HOC}})_{\text{Br}} = 1.55 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ at 25.0 °C)²² from NCl₃ (k^{NCl_3} _{Br} = 8.05 M⁻¹ s⁻¹ at 25.0 °C).²³ The initial absorbance jump at 390 nm (due to the formation of $Br_3^- + Br_2$) in the stopped-flow reaction corresponds to the HOCl content, while the rest of the absorbance change corresponds to the NCl₃ reaction with Br⁻. On the basis of a 1:1 stoichiometry for the latter reaction (one Br_3^- per NCl₃), the iodine yield with NCl₃ is only 80% of the theoretical amount (i.e. 2.4 I_3) rather than 3.0 I_3 ⁻ per NCl₃). The yield of iodine is determined by measuring the absorbance of I_3^- at 353 nm (Table I). An equilibrium constant of 740 M⁻¹ for I_3 ⁻ formation $(I_2 + I^- \rightleftharpoons I_3^-)$ is used to calculate total iodine formed in solution.24

In order to determine the stoichiometry of the base decomposition of NCl₃, the initial NCl₃ concentration was calculated from the I_3^- yield, (after reaction with excess I^-) with correction for 5% HOCl and for an 80% reaction efficiency. After the base decomposition, the OCI⁻ yield was also determined by the formation of I_3 . Equal volumes of 0.65 mM NCl₃ and NaOH were mixed. An aliquot (1 mL) of this solution was then added to buffered iodide (50 mL) to give $[OAc]_T = 0.16-0.2$ M, pH 4.0-4.4, and $[I^-] = 0.2 M$. Precautions were taken to minimize the loss of trichloramine (due to its volatility) by the use of stoppered containers with minimal head space, and solutions of NCl, were stored in a syringe during the experiments.

All reaction rate studies were performed under pseudo-first-order conditions with hydroxide or buffer in large excess. Rates of the reaction were monitored by the disappearance of NCl₃ at 336 nm. In neutral solutions with phosphate buffer the reactions were followed for about 2 half-lives; other reactions were followed for at least 4 half-lives. In all *cases* 250 data points were collected for a least-squares regression analysis of $\ln (A_i - A_n)$ vs time, where A_n and A_i are the final absorbance and absorbance at time *t,* respectively. The slopes of these plots give a value of $2k_{\text{obsd}}$. Under more basic conditions, the rates of disappearance of NCl₃ were monitored with a Durrum stopped-flow spectrophotometer interfaced to a Hewlett-Packard computer (HP 2108 or 2100).²⁵ Five or more runs were performed under each set of conditions and the first-order rate constants were also evaluated on the basis of eq 5. In

$$
-d[NCl3]/dt = 2kobsd[NCl3]
$$
 (5)

buffered medium, the reproducibility of the rate constant depends primarily on the care taken with the measurement of the hydrogen ion concentration.

Results and Discussion

Decomposition Stoichiometry. The reaction of ammonia with excess hypochlorite in base gives dinitrogen almost quantitatively.²⁶ It has been observed¹⁹ that as $NCl₃$ decomposes in base, the absorbance of OC1- at 292 nm increases, but there is **no** spectral evidence for the formation of NH₂Cl or NHCl₂. We determined the ratio of OCl⁻ produced to NCl₃ decomposed in a series of experiments, where the OH⁻ concentration was varied from 0.005 to 0.30 M and the trichloramine concentration was held constant at 0.65 mM. The concentrations of initial $NCI₃$ and of OCl⁻ produced were determined before and after base decomposition,

- **1972,** *94,* 1554-1559.
- (25) Willis, B. G.; Bittikoefer, J. **A,;** Pardue, H. L.; Margerum, D. **W.** *Anal. Chem.* **1970,** *42,* 1340-1349.
- (26) Bray, W. C.; Dowell, C. T. *J. Am. Chem.* **SOC. 1917,** *39,* 905-913.

⁽²⁰⁾ Rossotti, F. J. C.; Rossotti, H. *J. Chem. Educ.* **1965,** *42,* 375-378. (21) Kumar, K.; Day, R. **A.;** Margerum, D. **W.** *Inorg. Chem.* **1986,** *25,* 4344-4350.

⁽²²⁾ Kumar, K.; Margerum, D. W. *Inorg. Chem.* 1987, 26, 2706–2711.
(23) Kumar, K.; Margerum, D. W., to be submitted for publication.
(24) Turner, D. H.; Flynn, G. W.; Sutin, N.; Beitz, J. V. J. Am. Chem. Soc.

Figure 1. Base decomposition of NCI,. Plot of *eq* 10 where the intercept $(8 + 3 \text{ M}^{-1} \text{ s}^{-1})$ corresponds to k_1 and the slope $(890 \pm 30 \text{ M}^{-1} \text{ s}^{-1})$ corresponds to k_2 .

and the results in Table I1 show that there is only 50% of the oxidizing power left after decomposition of $NCl₃$. This corresponds to the overall reaction in eq 6 where 2 mol of NCl₃ produce 3 mol of hypochlorite. (Any other redox decomposition products of nitrogen are minor species and are neglected.) Equation 6 is a combination of eq 7 and 8 , where $NHC1₂$ is an intermediate that reacts rapidly with NCl₃ to produce N₂ and OCl⁻ (eq 8).
 $2NCl_3 + 6OH^- \rightarrow N_2 + 3OCl^- + 3Cl^- + 3H_2O$ (6)

$$
2NCl_1 + 6OH^- \rightarrow N_2 + 3OCl^- + 3Cl^- + 3H_2O \qquad (6)
$$

+ 6OH⁻
$$
\rightarrow
$$
 N₂ + 3OCl⁻ + 3Cl⁻ + 3H₂O (6)
NCI₃ + OH⁻ \rightarrow NHCl₂ + OCl⁻ (7)

 $NCI₃ + NHCI₂ + 5OH⁻ \rightarrow N₂ + 2OCl⁻ + 3Cl⁻ + 3H₂O$ (8)

The overall stoichiometry is the same as that reported earlier,¹⁹ but we **know** from studies of the kinetics of dichloramine reactions in neutral solutions and in dilute base that $NCI₃$ accelerates the decomposition of $NHCl₂$.³ Hence, reaction 8 rather than reaction 2 reflects the decomposition pathway. *As* a consequence two NCl, molecules are lost every time one reacts with OH-, and this gives the reaction rate stoichiometry specified in eq **5.**

Kinetics. Decomposition of Trichloramine in Sodium **Hydroxide** Solutions. The rate of decomposition of trichloramine was studied in 0.01-0.25 **M** NaOH solutions by the use of stopped-flow methods under pseudo-first-order conditions $(NCI₃$ is the limiting reagent) at constant ionic strength (μ = 0.5) and 25.0 °C. Excellent first-order plots were obtained, and the k_{obsd} values (Table **111)** have first-order and second-order dependences on the hydroxide ion concentration (eq 9). A plot of *eq* 10 is shown in

$$
k_{\text{obsd}} = k_1[\text{OH}^-] + k_2[\text{OH}^-]^2 \tag{9}
$$

$$
k_{\text{obsd}}[\text{OH}^-]^{-1} = k_1 + k_2[\text{OH}^-] \tag{10}
$$

Figure 1, and the third-order rate constant (k_2) calculated from the slope is 890 \pm 30 M⁻² s⁻¹, while the intercept (k_1) is 8 \pm 3 M^{-1} s⁻¹.

Decomposition of NCI₃ in Buffered Medium. Table III gives the rate constants for the decomposition of $NCl₃$ in the presence of buffers with OH⁻ concentrations from $10^{-7.3}$ to $10^{-2.8}$. The k_{obsd} values increase with increase in buffer concentration at constant OH⁻ concentration. The dependence can be expressed by eq 11,

$$
k_{\text{obsd}} = k_0 + k_1[\text{OH}^-] + k_2[\text{OH}^-]^2 \tag{11}
$$

where B is the basic form of the buffer and k_0 is a hydroxideindependent term. Figure 2 shows the dependence when B is $HPO₄²$, where eq 12 is plotted, and the previously determined

$$
k_{\text{obsd}} - k_1[\text{OH}^-] - k_2[\text{OH}^-]^2 = k_0 + k_\text{B}[\text{B}] \tag{12}
$$

 k_1 and k_2 values are used. The k_0 value from the intercept is (1.6) f_{H} and h_f values f_{H} which is 20 times smaller than the previously determined value.¹⁹ The main reason for this disagreement is that corrections were not made previously for buffer effects. In addition, a factor of **2** occurs because of the difference in the definition of k_{obsd} in eq 5.

Table 111. Pseudo-First-Order Rate Constants for the Base Decomposition of Trichloramine"

		-log	
acid/base	$[HB]$ _T , M	$[OH^-]$	$k_{\rm obsd}$, c s ⁻¹
$H_2PO_4^-/HPO_4^2^-$	0.025	7.26	$(0.410 \pm 0.004) \times 10^{-5}$
	0.025	6.64	$(0.73 \pm 0.02) \times 10^{-5}$
	0.025	6.51	$(1.00 \pm 0.005) \times 10^{-5}$
	0.030	6.75	$(0.54 \pm 0.02) \times 10^{-5}$
	0.040	6.78	$(0.65 \pm 0.02) \times 10^{-5}$
	0.050	6.73	$(0.75 \pm 0.02) \times 10^{-5}$
	0.060	6.88	$(0.73 \pm 0.02) \times 10^{-5}$
	0.090	6.83	$(1.01 \pm 0.02) \times 10^{-5}$
$B(OH)_{3}/B(OH)_{4}^{-}$	0.025	5.41	$(0.770 \pm 0.005) \times 10^{-4}$
	0.025	5.05	$(2.23 \pm 0.03) \times 10^{-4}$
	0.025	4.62	$(3.77 \pm 0.01) \times 10^{-4}$
	0.025	4.07	$(1.32 \pm 0.03) \times 10^{-3}$
	0.0052	4.61	$(2.19 \pm 0.01) \times 10^{-4}$
	0.0104	4.61	$(2.470 \pm 0.005) \times 10^{-4}$
	0.0156	4.63	$(2.81 \pm 0.01) \times 10^{-4}$
	0.0208	4.62	$(3.16 \pm 0.02) \times 10^{-4}$
HCO_1^-/CO_1^{2-}	0.020	3.59	$(2.58 \pm 0.03) \times 10^{-3}$
	0.050	3.62	$(2.65 \pm 0.03) \times 10^{-3}$
	0.100	3.61	$(2.87 \pm 0.03) \times 10^{-3}$
	0.120	3.61	$(3.09 \pm 0.04) \times 10^{-3}$
	0.150	3.61	$(3.16 \pm 0.03) \times 10^{-3}$
$HPO42–/PO43–$	0.020	2.79	0.020 ± 0.001
	0.030	2.78	0.022 ± 0.001
	0.040	2.78	0.0235 ± 0.0015
$H2O/OH-$	0.010	2.00	0.140 ± 0.005
	0.020	1.70	0.44 ± 0.01
	0.030	1.52	0.87 ± 0.03
	0.040	1.40	2.1 ± 0.2
	0.050	1.30	2.38 ± 0.06
	0.080	1.10	7.0 ± 1.3
	0.100	1.00	10.1 ± 0.2
	0.120	0.92	14.4 ± 0.5
	0.150	0.82	21.0 ± 0.6
	0.180	0.74	29.3 ± 1.5
	0.200	0.70	35.0 ± 0.9
	0.250	0.60	59 ± 5

"Conditions: $[NCI_3] = (0.25-0.3) \times 10^{-3}$ M, $\mu = 0.5$ M (NaClO₄), 25.0 °C, 336 nm. ^b With buffers, calculated from -log [H⁺] and pK_w $=$ 13.72 at μ = 0.5. ^cStandard deviations of individual runs on the Perkin-Elmer spectrophotometer for rate constants less than 3.2×10^{-3} s^{-1} . Standard deviations for five or more runs on the stopped-flow instrument are given for larger rate constants. *y*^{**l**} With buffers, calculated from $-\log[H^+]$

0.5. Cstandard deviations of individual run

ectrophotometer for rate constants less than 3

eviations for five or more runs on the stopped

en for larger rate constants.

Figure 2. Dependence of the observed first-order rate constant (corrected for contributions from $k_1[OH^-]$ and $k_2[OH^-]^2$) for the decomposition of $NC1₃$ on the $HPO₄²⁻$ concentration.

A general-base-catalyzed reaction (the $k_B[B]$ term) usually cannot be distinguished from the product of a specific-base- and general-acid-catalyzed reaction (i.e. a $k_{HB} [HB^+] [OH^-]$ term).²⁷ **In** the present case there is good reason to consider a rate expression equal to $k_{\text{HB}}[\text{HB}^+][\text{NC1}_3][\text{OH}^-]$, because it corresponds

⁽²⁷⁾ Jencks, **W.** P. *Catalysis in Chemistry and Enzymology* McGraw Hill: **New** York, 1969; **pp 163-242.**

Scheme **I**

process 1 (rate-determining steps)

process **2** (fast) NCI_3 + $NHCI_2$ + $5OH^-$ - N_2 + 20CI⁻ + 3CI⁻ + 3H₂O

Table **IV. General-Acid/Specific-Base-Catalyzed** Decomposition Rate Constants for Trichloramine^a

HB	pK,	p/q	$k_{\rm HB}$, M ⁻² s ⁻¹
H ₂ O	15.46^{b}	2/3	0.14 ± 0.05
HPO ₄ ²	11.34c	2/3	128 ± 1
HCO ₁	9.8^{d}	1/3	65 ± 6
B(OH)	8.87 ^e	1/4	$(7.6 \pm 0.5) \times 10^{2}$
$H_2PO_4^-$	6.45'	2/3	$(2.1 \pm 0.1) \times 10^3$
H_3O^+	-1.72	3/2	$(8.4 \pm 1.1) \times 10^{7}$

^a Conditions: 25.0 °C, $\mu = 0.5$. ^b Sweeton, F. H.; Mesmer, R. E.; Baes, C. F. *J. Solurion Chem.* **1974,** *3,* 191-214. The *K,* value is calculated by dividing K_w by 55.5 for the water molarity. ^eNozaki, T.; Mise T.; Torii, K. *Nippon Kagaku Kaishi* **1973**, 2030. ^d Butler, J. N.; Huston, R. J. Phys. Chem. 1970, 74, 2976-2983. eCalculated from: Owen, B. B.; King, E. J. *J. Am. Chem. SOC.* **1943,** *65,* 1612-1620. fMesmer, R. E.; **Baes,** C. F. *J. Solution Chem.* **1974, 3,** 307-321. ⁸Reference 30, p 200.

to the dependence required for the reverse reaction in *eq* **3.3** The combination of general-acid and OH^- reaction with $NCl₃$ also fits a broader mechanism and a transition state (structure **I)** consistent

$$
B^{--}H^{+-}\cdots C^{1}_{C^{1}}C^{1}
$$

$$
\vdots
$$

 <math display="block</math>

with other chloramine reactions where H^+ transfer and Cl^+ transfer occur simultaneously.^{21,22} The value of k_{HB} for $H_2PO_4^$ is $(2.1 \pm 0.1) \times 10^3$ M⁻² s⁻¹. Other buffers also accelerate the decomposition of NCl₃, and the resulting k_{HB} values are given in Table IV for $B(OH)_3$, HCO_3^- , and HPO_4^{2-} . Since the latter studies are all at higher $[OH^-]$, the k_0 term makes only a small contribution and is best evaluated from the results in $H_2PO_4^-$ / $HPO₄²⁻ buffer.$

Figure 3 shows the dependence of k_{obsd} on the OH⁻ concentration *(eq* **13)** when no buffers are present (or the buffer concentration is extrapolated to zero). The values used to generate

$$
k_{\text{obsd}} = k_0 + k_1 \text{[OH^-]} + k_2 \text{[OH^-]}^2 \tag{13}
$$

the curve are 1.6 \times 10⁻⁶ s⁻¹, 8 M⁻¹ s⁻¹, and 890 M⁻² s⁻¹ for k_0 , k_1 , and k_2 , respectively. A simplex program^{28,29} also can be used to fit the entire set of data and gives values that are in good agreement with these constants.

Proposed Mechanism. The decomposition of NCl₃ can be divided into two processes as shown in Scheme **I,** where process

Figure **3.** Effect of hydroxide ion concentration on the first-order rate constant for the decomposition of NCI, (without buffer catalysis).

1 is rate determining in base. It is proposed that attack of OHon the chlorine of NCl_3 gives a common reactive intermediate, Cl2NC1OH-, for all the reaction pathways. Process **1** produces NHCl₂, which reacts rapidly with another NCl₃ in process 2 to give products. A steady-state approximation in regard to Cl_2N -ClOH⁻ gives the expression for k_{obsd} in eq 14. For high hydroxide

$$
k_{\text{obsd}} = \frac{k_3[\text{OH}^-](k_4[\text{H}^+] + k_5[\text{HB}^+] + k_6 + k_7[\text{OH}^-])}{k_{-3} + k_4[\text{H}^+] + k_5[\text{HB}^+] + k_6 + k_7[\text{OH}^-]} \tag{14}
$$

ion concentrations and in the absence of buffers, the $H⁺$ term and HB+ terms can be eliminated to give *eq* **15.** The observed kinetics

$$
k_{\text{obsd}} = \frac{k_3[\text{OH}^-](k_6 + k_7[\text{OH}^-])}{k_{-3} + k_6 + k_7[\text{OH}^-]}\tag{15}
$$

has a [OH⁻]² dependence for high base concentrations, so it follows that under all conditions $k_{-3} + k_6 \gg k_7[\text{OH}^-]$. Since $k_2 \gg k_1$, it also follows that $k_7 \gg k_6$ and hence $k_{-3} \gg k_6$. The k_1 rate constant with a $[OH^-]$ term corresponds to eq 16 and the k_2 rate constant with a [OH-I2 term corresponds to *eq* **17. In** the buffered

$$
k_1[OH^-] = (k_3k_6/k_{-3})[OH^-]
$$
 (16)

$$
k_2[OH^-]^2 = (k_3k_7/k_{-3})[OH^-]^2
$$
 (17)

solutions, there is no evidence that the rate reaches a limit at high buffer concentrations, so it must also follow that $k_{-3} \gg k_4[H^+]$ $+ k₅[HB⁺]$. Hence, eq 18 and 19 give the composite rate constants

$$
k_0 = k_3 k_4 \text{[OH^-][H^+]}/k_{-3} = k_3 k_4 K_w / k_{-3} \tag{18}
$$

$$
k_{\rm HB}[OH^-][HB^+] = k_3 k_5[OH^-][HB^+] / k_{-3}
$$
 (19)

⁽²⁸⁾ Caceci, M. **S.;** Catheris, **W.** P. Byte **1984,** 9, 340-362.

⁽²⁹⁾ **Yarboro,** L. A.; Deming, S. N. *Anal. Chim. Acta* **1974, 73,** 391-398.

Figure 4. Brønsted plot for the reaction $HB^+ + NCl_3 + OH^-$, where k_{HB} is the third-order rate constant and K_a is the acid dissociation constant of HB⁺. Slope = α = 0.48 ± 0.04.

for k_0 and k_{HB} . Thus, $\text{Cl}_2\text{NClOH}^-$ can be assumed to be a very reactive intermediate that needs to add a proton to the nitrogen as ClOH is eliminated. The intermediate can accept the proton from H_3O^+ , H_2O , or HB⁺ and gives $HNCI_2$. For high concentrations of base another decay path occurs in which a second proton is removed from the $Cl₂NCIOH⁻$ intermediate to give an even less stable $Cl₂NCIO²⁻ species that rapidly dissociates and reacts with$ water to give OCl⁻ and $HNCl₂$.

An alternate mechanism was considered where NCl₃ is hydrated to give $Cl₂NCIOH₂$, which then reacts by proton-transfer reactions with H_2O , B, or OH^- as rate-determining steps to give Cl_2N -CIOH-. However, this type of mechanism will not fit the observed $[OH^-]$ ² dependence, nor is it consistent with the previously established kinetics for the forward reaction in eq 3.

Brønsted Relationship. The rates for the buffer-catalyzed base decomposition of trichloramine increase with the acid strength of general acids that are present in solution. The rate constants (Table **IV**) show a Brønsted relationship³⁰ (eq 20), where p is the

$$
\log (k_{\rm HB}/p) = \log G_{\rm A} + \alpha \log (K_a q/p) \tag{20}
$$

number of equivalent acidic protons in HB', *q* is the number of equivalent basic sites in **B**, K_a is the acid dissociation constant of HB⁺, G_A is the proportionality constant and α is the Brønsted coefficient. The plot in Figure **4** includes values for H,O and H_3O^+ as well as for four buffers and gives a linear relationship with a slope of 0.48 ± 0.04 that corresponds to the α value. Since the reaction is the reverse of eq 3, we would predict an α value equal to $1 - \beta$, where β is the general-base-catalysis coefficient for the forward reaction.³ The β value (when corrected for p and *q*) equals 0.56, and the $1 - \beta$ value of 0.44 is within experimental error of the α value determined in the present study. The fact that the combined general-acid and specific-base data follow the Brønsted relationship over a wide range of acid strength supports the proposed mechanism. **A** close examination of the results suggests that the k_{HB} constant for HPO_4^{2-} is slightly larger than expected from the Bransted relation in Figure **4.** It may be that $PO₄³⁻$ also contributes to the decomposition rate of $Cl₂NCIOH$ in a path that is analogous to the $k_7[OH^-]$ path, where $\overline{PO_4}^3$ helps to remove a proton and gives a k_7 [[] $PO₄³⁻$] term.

Equilibrium Constant for the Formation of Trichloramine from Dichloramine and Hypochlorous Acid. The rate constants for the decomposition of NCl₃ determined in this work are of special interest because the forward rate constants in eq 3 are known³

Table V. Stability Constants for Trichloramine Calculated from Rate Constants^{a,}

B/HB	$k_{\rm B}$, M ⁻² s ⁻¹	$k_{\rm HB}$, M ⁻² s ⁻¹	$10^{-8}K_{\text{NC1}}$, M ⁻¹
OH^-/H_2O	$(3.3 \pm 0.1) \times 10^9$ 0.14 ± 0.05		4.1 ± 1.6
$CO32$ /HCO ₃	$(6 \pm 2) \times 10^6$	65 ± 6	7.7 ± 2.7
HPO ₄ ^{2–} /	$(1.59 \pm 0.09) \times$	$(2.1 \pm 0.1) \times 1.41 \pm 0.07$	
H ₂ PO ₄	10 ⁴	10 ³	
			1.6 ± 1.1 (av) ^c

^{*a*} Conditions: 25.0 °C, $\mu = 0.50$. *b* $K_{\text{NC1}_2} = [\text{NC1}_3]/([\text{NHC1}_2]$. $[HOC]$) = $(k_B/k_{HB})(K_a/K_w)$. Statistically weighted average. The unweighted average of the equilibrium constants is $(4 \pm 3) \times 10^8$ M⁻¹. However the $HPO₄²⁻/H₂PO₄⁻$ data have much greater precision in the k_B and k_{HB} values. Relative errors are used to give the statistically weighted average and error.³¹

for several general bases (OH⁻, CO₃²⁻, and HPO₄²⁻). Hence, the rate constants determined for the reverse reaction in eq 3 can be used to calculate the equilibrium constant for the reaction in *eq 2* 1. It is not possible to determine this constant under equilibrium

$$
NHCl_2 + HOCl \rightleftarrows NCl_3 + H_2O \tag{21}
$$

conditions, because reaction 3 is coupled with reaction **4.** Even in acidic solutions $NCl₃$ and $NHCl₂$ cannot reach equilibrium because of their reaction to form N_2 . Hence, the equilibrium constant must be determined by the ratio of forward and reverse rate constants. The equilibrium stability constant, K_{NC1} , is calculated (eq 22) from the k_{HB} values in this work and from k_B

$$
K_{\rm NCl_3} = \frac{[NCl_3]}{[NHCl_2][HOCl]} = \frac{k_B}{k_{\rm H}k_{\rm w}} \frac{K_{\rm a}}{K_{\rm w}}
$$
 (22)

values in earlier work³ for OH⁻, CO₃²⁻, and HPO₄²⁻. Table V summarizes the results. The $HPO₄⁻/H₂PO₄²⁻ data have much$ greater precision for both the k_B and k_{HB} values. Hence, the statistically weighted³¹ value for $K_{\text{NCl}_3} = (1.6 \pm 1.1) \times 10^8 \text{ M}^{-1}$ is dominated by these data. However, all three pairs of rate constants in Table V give a stability constant greater than 10⁸ M^{-1} . Morris and Isaac⁵ used the data of Saguinsin and Morris¹⁹ to calculate a value of 4.8×10^4 M⁻¹ for this equilibrium constant. Our data gives a value nearly **4** orders of magnitude larger.

Conclusions. The thermodynamic stability of NCl, in aqueous solution is substantially greater than was previously thought, as indicated by the stability constant of 1.6×10^8 M⁻¹ for its formation from $NHC1₂$ and HOCl. Trichloramine appears to be much less thermodynamically stable than is the case, because of its kinetic reactivity with $NHCl₂$ in neutral and basic solutions. We propose that the base decomposition of $NCl₃$ goes through a common reactive intermediate, CI,NClOH-, which can react with buffer acids to add a proton to the nitrogen and release HOQ or can react with an additional OH^- to release OCI⁻. The $NHCl₂$ formed in both cases reacts rapidly with another $NCl₃$ to give $N₂$, OCI⁻, and CI⁻. The coupled reactions in Scheme I are very important in breakpoint chlorination. Part of these data have been used to give "a unified chlorine-ammonia speciation and fate model" for the breakpoint process.³² At present, we know little about the detailed mechanism by which N_2 is formed. In view of the importance of buffer and base catalysis in process 1, it is very likely that process **2** (Scheme **I)** will also be subject to buffer-assisted and base-assisted rates.

Acknowledgment. This work was supported by National Science Foundation Grants CHE-8319935 and CHE-8616666.

Registry No. NCl₃, 10025-85-1; H₂O, 7732-18-5.

⁽³⁰⁾ Bell, R, P. *The Proron in Chemistry,* **2nd** ed.; Cornell University Press: Ithaca, NY, 1973; p 198.

⁽³¹⁾ Bevington, P. R. *Data Reduction and Error Analysis For Physical Science;* McGraw-Hill: New York, 1969; p 73.

⁽³²⁾ Jafvert, C. T., Ph.D. Dissertation, University of Iowa, 1985.