Structural Characterization of $[Li(DME)PH_2]_{\infty}$ (DME = 1,2-Dimethoxyethane): Parent of the Lithium Diorganophosphides

Richard A. Jones,* Stefan U. Koschmieder, and Christine M. Nunn

Received May 27, 1987

The structure of $[\text{Li}(\text{DME})\text{PH}_2]_{\infty}$ in the solid state consists of an infinite polymer of alternating Li and P atoms. The vertices of the chain are four-coordinate, distorted-tetrahedral lithium atoms that are bonded to two P atoms and a 1,2-dimethoxyethane unit. The P atoms are located between each Li vertex such that the Li-P-Li angle is almost linear (176.9 (1)°): Li-P = 2.550 (8), 2.597 (8) Å; Li-O = 2.063 (7), 2.036 (7) Å. Crystal data: C₄H₁₂PO₂Li, M_r = 130.05, orthorhombic, P_{212121} , a = 6.956 (2) Å, b = 8.773 (1) Å, c = 13.455 (2) Å, V = 821.1 (5) Å³, $D_c = 1.052$ g cm⁻³, Z = 4, μ (Mo K α) = 2.524 cm⁻¹. Refinement of 451 reflections ($I > 3\sigma(I)$) out of 880 unique observed reflections ($3^{\circ} < 2\theta < 50^{\circ}$) gave R and R_w values of 0.0591 and 0.0645, respectively.

Structural details on a number of lithium diorganophosphides (LiPR₂) have recently been reported. Interest in these compounds stems from their importance as PR_2^- transfer agents^{1,2} and also from the properties and structures of lithium reagents in general.^{3,4}

Structures of the ionic $[\text{Li}(12\text{-crown-4})_2][PPh_2]$,⁵ dimeric $[\text{LiP}(CH(SiMe_3)_2)]_2$,⁶ and tetranuclear $[\text{Li}_2(\mu_3\text{-}t\text{-Bu}_2P)(\mu\text{-}t\text{-Bu}_2P)(THF)]_2$ ⁷ have been described as well as those of the polymeric species $[\text{Li}(\text{Et}_2O)PPh_2]_{\infty}$, $[\text{Li}(THF)_2PPh_2]_{\infty}$, and $[\text{Li}(THF)P(C_6H_{11})_2]_{\infty}$.⁸ We describe here the X-ray crystal structure of the parent lithium phosphide LiPH₂ as its 1,2-dimethoxyethane (DME) adduct $[\text{Li}(DME)PH_2]_{\infty}$ (1). 1 is also an infinite polymer in the solid state although there are some significant differences from the structures of the other polymeric phosphides described by Power and co-workers.⁸

Results and Discussion

LiPH₂ crystallizes from 1,2-dimethoxyethane (DME) as the solvate $[Li(DME)PH_2]_{\infty}^9$ in the orthorhombic space group $P2_12_12_1$ with four formula units per unit cell. The compound is an infinite chain of alternating Li and P atoms. The chain structure is propogated by a 2-fold screw along the *b* axis. a view of the repeat unit of the polymer is shown in Figure 1. In Figure 2, the atom-labeling scheme employed for the DME ligand is shown. Crystallographic data are presented in Table I, and bond lengths and angles are given in Tables II and III, respectively. Positional parameters are given in Table IV.

There is a significant difference between the structure of 1 and the infinite chains of Li-P-Li-P atoms found in $[Li(Et_2O)PPh_2]_{\infty}$, $[Li(THF)PPh_2]_{\infty}$, and $[Li(THF)P(C_6H_{11})_2]_{\infty}$.⁸ In 1, the vertices of the chain consist of four-coordinate, distorted-tetrahedral lithium

- Issleib, K.; Wenschuh, E. Chem. Ber. 1964, 97, 715. Jones, R. A.; Lasch, J. G.; Norman, N. C.; Whittlesey, B. R.; Wright, T. C. J. Am. Chem. Soc. 1983, 105, 6184. Baker, R. T.; Krusic, P. J.; Tulip, T. H.; Calabrese, J. C.; Wreford, S. S. J. Am. Chem. Soc. 1983, 105, 6763.
- Cnem. soc. 1953, 100, 0154. Baker, K. I.; Krusic, P. J.; 10111, T. H.; Calabrese, J. C.; Wreford, S. S. J. Am. Chem. Soc. 1983, 105, 6763.
 (2) Carty, A. J. Adv. Chem. Ser. 1982, No. 196, 163. Kreter, P. E.; Meek, D. W. Inorg. Chem. 1983, 22, 319. Breen, M. J.; Geoffroy, G. L. Organometallics 1982, 1, 1437. Mott, G. N.; Granby, R.; Mac-Laughlin, S. A.; Taylor, N. J.; Carty, A. J. Organometallics 1983, 2, 189. Roddick, D. M.; Santarsieno, B. D.; Bercaw, J. E. J. Am. Chem. Soc. 1985, 107, 4870.
- (3) Setzer, W. N.; Schleyer, P. v. R. Adv. Organomet. Chem. 1985, 24, 353.
 (4) Schleyer, P. v. R. Pure Appl. Chem. 1983, 55, 355. Wardell, J. L. In
- (4) Schnöfel, H. Y. R. Patter Appl. Chemistry; Wilkinson, G., Abel, E. W., Stone, F. G. A., Eds.; Pergamon: New York, 1982; Vol. 1, Chapter 2.
- (5) Hope, H.; Olmstead, M. M.; Xu, X.; Power, P. P. J. Am. Chem. Soc. 1984, 106, 819.
 (6) Hitchcock P. B.: Lappert M. F.: Power, P. P.: Smith, S. I. I. Chem.
- (6) Hitchcock, P. B.; Lappert, M. F.; Power, P. P.; Smith, S. J. J. Chem. Soc., Chem. Commun. 1984, 1669.
 (7) Jones P. A. Strutt, A. L. Wight, T. C. J. An. Chem. Soc. 1982, 105.
- (7) Jones, R. A.; Stuart, A. L.; Wright, T. C. J. Am. Chem. Soc. 1983, 105, 7459.
- (8) Bartlett, R. A.; Olmstead, M. M.; Power, P. P. Inorg. Chem. 1986, 25, 1243. The structures of PH₂Mes, PHMes₂, Li(THF)₃PHMes, and [Li(OEt₂)PMes₂] have recently been determined: Bartlett, R. A.; Olmstead, M. M.; Power, P. P., submitted for publication in Inorg. Chem.
- (9) Schäfer, V. H.; Fritz, G.; Hölderich, W. Z. Anorg. Chem. 1977, 428, 222.

Table	I.	Crystal	Structure	Parameters	for	1
LANIC		Cijstai	onacture	1 arameters	101	

color habit clear max cryst dimens, mm ³ clear prism $0.50 \times 0.20 \times 0.20$ orthorhombic space group $P_{2_12_12_1}$ (No. 19) unit cell params $2P_{2_12_12_1}$ (No. 19) no. of asymmetric units per unit cell 4 formula $C_4H_{12}PO_2Li$ fw 130.05 calcd density, g cm ⁻³ 1.052 $2P_{2_22_4}$ (No. 1073) scan technique $\theta/2\theta$ scan width, deg $0.8 + 0.35 \tan \theta$ range of indices h,k,l $+8,+7,+14$ 2θ range, deg $3.0-50.0$ no. of reflcns measd 880 std reflcns intensity $244,008$ orientation $327, 341$ decay of stds, $\%$ 1.5 min $\%$ transmission 98.0322 max $\%$ transmission 98.0322 max $\%$ transmission 98.0322 max $\%$ transmission 98.0233 av $\%$ transmission 98.0293 av $\%$ transmission 98.0293 av $\%$ transmission 98.0293 $P_{2}P_{2}$ (No. 19) no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. of reflicns used ($I > 3\sigma(I)$) 451 no. 005 est of an observi of unit wit 5.8593 R 0.0591 R_w 0.0645	Description of Crystal				
habit prism max cryst dimens, mm ³ 0.50 × 0.20 × 0.20 cryst system orthorhombic space group $P_{2_12_12_1}$ (No. 19) unit cell params a, Å 6.956 (2) b, Å 8.773 (1) c, Å 13.455 (2) V, Å ³ 821.1 (5) no. of asymmetric units per unit cell 4 formula $C_4H_{12}PO_2Li$ fw 130.05 calcd density, g cm ⁻³ 1.052 μ_{calcd} , cm ⁻¹ 2.524 Data Collection radiation (λ , Å) Mo K α (0.71073) scan technique $\theta/2\theta$ scan width, deg 0.8 + 0.35 tan θ range of indices h, k, l +8,+7,+14 2θ range, deg 3.0-50.0 no. of reflens measd 880 std reflens intensity 244, 008 orientation 327, 341 decay of stds, % 1.5 min % transmission 98.0322 max % transmission 98.9223 av % transmission 98.9223 av % transmission 98.9293 Structure Determination no of reflens used ($I > 3\sigma(I)$) 451 no. of refined params 73 data/parameter ratio 6.178 shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R 0.0591 R_w 0.0645	color	clear			
max cryst dimens, mm ³ 0.50 × 0.20 × 0.20 orthorhombic space group unit cell params a, Å b, Å c, Å b, Å c, Å construction per unit cell fw calcd density, g cm ⁻³ calcd density	habit	prism			
cryst system space group unit cell params a, Å b, Å c, Å c, Å c, Å v, Å ³ no. of asymmetric units per unit cell formula formula formula formula calcd density, g cm ⁻³ μ_{calcd} , cm ⁻¹ Data Collection radiation (λ , Å) scan technique scan width, deg no. of reflens measd std reflens intensity orientation no of reflens measd std reflens intensity 244, 008 orientation no of reflens measd std reflens intensity 244, 008 orientation 327, 341 decay of stds, % 1.5 min % transmission 98.9223 Structure Determination no of reflens used ($l > 3\sigma(l)$) 451 no. of reflens used ($l > 3\sigma(l)$) 451 no. of reflens used ($l > 3\sigma(l)$) 451 no. of reflens 73 data/parameter ratio 6.178 shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R 0.0591 R_w 0.0645	max cryst dimens, mm ³	$0.50 \times 0.20 \times 0.20$			
space group unit cell params a, Å b, Å c, Å b, Å c, Å unit cell params a, Å b, Å c, Å c, Å c, Å c, Å unit cell params b, Å c, Å c, Å unit cell params c, Å c, Å c, Å unit cell params c, Å v, Å ³ no. of asymmetric units per unit cell formula formula fw calcd density, g cm ⁻³ calcd density,	cryst system	orthorhombic			
unit cell params a, Å b, Å c, Å b, Å c, Å construct the set of the se	space group	$P2_12_12_1$ (No. 19)			
a, Å6.956 (2)b, Å8.773 (1)c, Å13.455 (2)V, ų821.1 (5)no. of asymmetric units per unit cell4formula $C_4H_{12}PO_2Li$ fw130.05calcd density, g cm ⁻³ 1.052 μ_{calcd} , cm ⁻¹ 2.524Data Collectionradiation ($\lambda, Å$)Mo K α (0.71073)scan technique $\theta/2\theta$ scan width, deg0.8 + 0.35 tan θ range of indices h,k,l +8,+7,+14 2θ range, deg3.0-50.0no. of reflcns measd880std reflcnsintensityintensity244, 008orientation327, 341decay of stds, %1.5min % transmission98.0322max % transmission98.9293Structure Determinationno of reflens used ($I > 3\sigma(I)$)451no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R_w 0.0645	unit cell params				
b, Å 8.773 (1) c, Å 13.455 (2) V, Å ³ 821.1 (5) no. of asymmetric units per unit cell 4 formula C ₄ H ₁₂ PO ₂ Li fw 130.05 calcd density, g cm ⁻³ 1.052 μ_{calcd} , cm ⁻¹ 2.524 Data Collection radiation (λ , Å) Mo K α (0.710 73) scan technique $\theta/2\theta$ scan width, deg 0.8 + 0.35 tan θ range of indices h,k,l + 8,+7,+14 2θ range, deg 3.0-50.0 no. of reflens measd 880 std reflens intensity 244, 008 orientation 327, 341 decay of stds, % 1.5 min % transmission 98.0322 max % transmission 98.9293 av % transmission 98.9293 Structure Determination no of reflens used ($I > 3\sigma(I)$) 451 no. of refined params 73 data/parameter ratio 6.178 shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R_w 0.0591 R_w 0.0645	a, Å	6.956 (2)			
c, Å V, Å ³ no. of asymmetric units per unit cell formula formula fw calcd density, g cm ⁻³ μ_{calcd} , cm ⁻¹ Calcollection radiation (λ , Å) scan technique scan width, deg scan width, deg name of indices h,k,l h,k	b, Å	8.773 (1)			
$V, Å^3$ 821.1 (5)no. of asymmetric units per unit cell4formula $C_4H_1_2PO_2Li$ fw130.05calcd density, g cm ⁻³ 1.052 μ_{calcd}, cm^{-1} 2.524Data Collectionradiation ($\lambda, Å$)Mo K α (0.71073)scan technique $\theta/2\theta$ scan width, deg0.8 + 0.35 tan θ range of indices h,k,l +8+7,+1420 range, deg3.0-50.0no. of reflons measdsk80std reflomsintensity244, 008orientationno of reflons measdstructure Determinationno of reflons used ($I > 3\sigma(I)$)451no. of reflined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593R0.0591R0.0591R0.0591R0.0591R0.0591	<i>c</i> , Å	13.455 (2)			
no. of asymmetric units per unit cell formula formula fw 130.05 calcd density, g cm ⁻³ μ_{calcd} , cm ⁻¹ Data Collection radiation (λ , Å) scan technique scan width, deg 0.8 + 0.35 tan θ range of indices h,k,l range, deg 3.0-50.0 no. of reflons measd 880 std reflons intensity 244, 008 orientation 327, 341 decay of stds, % 1.5 min % transmission 98.0322 max % transmission 98.0322 max % transmission 98.9293 Structure Determination no of reflons used ($l > 3\sigma(I)$) 451 no. of reflined params 73 data/parameter ratio 6.178 shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R_w 0.0591 R_w 0.0645	V, Å ³	821.1 (5)			
formula formula fw $C_4H_{12}PO_2Li$ 130.05 calcd density, g cm ⁻³ 1.052 μ_{calcd} , cm ⁻¹ 2.524 Data Collection radiation (λ , Å) Mo K α (0.71073) scan technique $\theta/2\theta$ scan width, deg 0.8 + 0.35 tan θ range of indices h,k,l +8,+7,+14 2θ range, deg 3.0-50.0 no. of reflcns measd 880 std reflcns intensity 244, 008 orientation 327, 341 decay of stds, % 1.5 min % transmission 98.0322 max % transmission 98.9293 Structure Determination no of reflcns used ($l > 3\sigma(I)$) 451 no. of refined params 73 data/parameter ratio 6.178 shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R_w 0.0591 R_w 0.0645	no. of asymmetric units per unit cell	4			
fw130.05calcd density, g cm ⁻³ 1.052 μ_{calcd} , cm ⁻¹ 2.524Data Collectionradiation (λ , Å)Mo K α (0.71073)scan technique $\theta/2\theta$ scan width, deg0.8 + 0.35 tan θ range of indices h,k,l +8,+7,+14 2θ range, deg3.0-50.0no. of reflons measd880std reflorsintensityorientation327, 341decay of stds, %1.5min % transmission98.0322max % transmission98.9293Structure Determinationno of reflons used ($I > 3\sigma(I)$)451no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R 0.0591 R_w 0.0645	formula	C ₄ H ₁₂ PO ₂ Li			
calcd density, g cm ⁻³ μ_{calcd} , cm ⁻¹ Data Collection radiation (λ , Å) scan technique scan width, deg range of indices h,k,l range of indices h,k,l range, deg no. of reflcns measd std reflcns intensity orientation $\chi^2 transmission$ $\chi^3 t$	fw	130.05			
μ_{calcd}, cm^{-1} 2.524Data Collectionradiation (λ, \hat{A})Mo K α (0.71073)scan technique $\theta/2\theta$ scan width, deg $0.8 + 0.35 \tan \theta$ range of indices h,k,l $+8,+7,+14$ 2θ range, deg $3.0-50.0$ no. of reflcns measd880std reflcns 1.5 intensity $244,008$ orientation $327, 341$ decay of stds, $\%$ 1.5 min $\%$ transmission 98.0322 max $\%$ transmission 98.9293 Structure Determinationno of reflens used ($I > 3\sigma(I)$) 451 no. of refined params 73 data/parameter ratio 6.178 shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R_w 0.0645	calcd density, g cm ⁻³	1.052			
Data Collectionradiation (λ , Å)Mo K α (0.71073)scan technique $\theta/2\theta$ scan width, deg $0.8 + 0.35 \tan \theta$ range of indices h,k,l $+8,+7,+14$ 2θ range, deg $3.0-50.0$ no. of reflcns measd880std reflcnsintensityorientation $327, 341$ decay of stds, % 1.5 min % transmission98.0322max % transmission98.9293Structure Determinationno of reflens used ($I > 3\sigma(I)$)451 0.005 esd of an observn of unit wt 5.8593 R 0.0591 R_w 0.0645	μ_{calcd}, cm^{-1}	2.524			
Para Conectionradiation (λ, \dot{A})Mo K α (0.71073)scan technique $\theta/2\theta$ scan width, deg $0.8 + 0.35 \tan \theta$ range of indices h,k,l $+8,+7,+14$ 2θ range, deg $3.0-50.0$ no. of reflcns measd880std reflcnsintensityorientation $327, 341$ decay of stds, $\%$ 1.5 min $\%$ transmission 98.0322 max $\%$ transmission 98.9293 Structure Determinationno of reflens used ($I > 3\sigma(I)$)451 0.005 esd of an observn of unit wt 5.8593 R 0.0591 R_w 0.0645	Data Collection				
Indiation (X, X)Into Ref (0.71575)scan technique $\theta/2\theta$ scan width, deg $0.8 + 0.35 \tan \theta$ range of indices h,k,l $+8,+7,+14$ 2θ range, deg $3.0-50.0$ no. of reflons measd 880 std reflons $astore are are are are are are are are are a$	radiation (λ, λ)	$M_{0}K_{\infty}(0.710.73)$			
scan width, deg $0/20$ scan width, deg $0.8 \pm 0.35 \tan \theta$ range of indices h,k,l $\pm 8,\pm 7,\pm 14$ 2θ range, deg $3.0-50.0$ no. of reflcns measd 880 std reflcns intensity $244,008$ orientation $327,341$ decay of stds, $\%$ 1.5 min $\%$ transmission 98.0322 max $\%$ transmission 98.0322 max $\%$ transmission 98.9293 av $\%$ transmission 98.9293 Structure Determination no of reflens used $(I > 3\sigma(I))$ 451 no. of refined params 73 data/parameter ratio 6.178 shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R w $0.0591R_w 0.0645$	scan technique	A/2A			
scale with, deg0.3 + 0.35 tail brange of indices h,k,l $+8,+7,+14$ 2θ range, deg $3.0-50.0$ no. of reflons measd 880 std reflonsintensityintensity $244,008$ orientation $327,341$ decay of stds, % 1.5 min % transmission 98.0322 max % transmission 98.923 av % transmission 98.9293 Structure Determinationno of reflons used $(I > 3\sigma(I))$ 451 0.005 esd of an observn of unit wt 5.8593 R_w 0.0645	scan width deg	0/20 08 + 0.35 tan A			
Indices10,17,114 2θ range, deg $3.0-50.0$ no. of reflons measd 880 std reflons 1.5 intensity 244 , 008orientation 327 , 341 decay of stds, % 1.5 min % transmission 98.0322 max % transmission 98.923 av % transmission 98.9293 Structure Determinationno of reflons used ($I > 3\sigma(I)$)4516.178shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R_w 0.0645	range of indices h k l	+8 +7 +14			
no. of reflcns measd std reflcns intensity 244,008 orientation 327,341 decay of stds, % 1.5 min % transmission 98.0322 max % transmission 99.8923 av % transmission 98.9293 Structure Determination no of reflcns used $(I > 3\sigma(I))$ 451 no. of refined params 73 data/parameter ratio 6.178 shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R 0.0591 R_w 0.0645	28 range deg	3 0-50 0			
std reflexs244,008orientation327,341decay of stds, $\%$ 1.5min $\%$ transmission98.0322max $\%$ transmission99.8923av $\%$ transmission98.9293Structure Determinationno of reflexs used ($I > 3\sigma(I)$)4516.178shift/error ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R_w 0.0645	no of reflers meased	880			
bit years244, 008intensity244, 008orientation327, 341decay of stds, %1.5min % transmission98.0322max % transmission99.8923av % transmission98.9293Structure Determinationno of reflens used $(I > 3\sigma(I))$ 451451no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R_w 0.0645	std reflens	000			
Initiality217, 341decay of stds, $\%$ 1.5min $\%$ transmission98.0322max $\%$ transmission99.8923av $\%$ transmission98.9293Structure Determinationno of reflens used ($I > 3\sigma(I)$)451451no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R_w 0.0645	intensity	244 008			
decay of stds, $\%$ 1.5min % transmission98.0322max % transmission99.8923av % transmission98.9293Structure Determinationno of reflens used ($I > 3\sigma(I)$)451451no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R_w 0.0645	orientation	327 341			
nin % transmission98.0322min % transmission99.8923av % transmission98.9293Structure Determinationno of reflens used $(I > 3\sigma(I))$ 45110.005ata/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R_w 0.0645	decay of stds %	1.5			
max % transmission99.8923av % transmission98.9293Structure Determinationno of reflens used $(I > 3\sigma(I))$ 45110.005no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R_w 0.0645	min % transmission	98.0322			
av % transmission98.9293Structure Determinationno of reflors used $(I > 3\sigma(I))$ 451no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R_w 0.0645	max % transmission	99.8923			
Structure Determinationno of reflens used $(I > 3\sigma(I))$ 451no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R 0.0591 R_w 0.0645	av % transmission	98.9293			
Structure Determinationno of reflens used $(I > 3\sigma(I))$ 451no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R 0.0591 R_w 0.0645					
no of reflens used $(1 > 3\sigma(1))$ 451no. of refined params73data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593 R 0.0591 R_w 0.0645	Structure Determinat	ion			
no. of refined params73 $data/parameter ratio6.178shift/error ratio0.005esd of an observn of unit wt5.8593R0.0591R_w0.0645$	no of reflects used $(1 > 3\sigma(1))$	451			
data/parameter ratio 6.178 shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R 0.0591 R_w 0.0645	no. of refined params	73			
shift/error ratio 0.005 esd of an observn of unit wt 5.8593 R $0.0591R_w 0.0645$	data/parameter ratio	6.178			
esd of an observe of unit wt 5.8593 R $0.0591R_w 0.0645$	shift/error ratio	0.005			
$R_{\rm w} = 0.0591$ $R_{\rm w} = 0.0645$	esd of an observe of unit wt	5.8593			
	ĸ	0.0591			
	K _w	0.0040			
T_{1} = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =					
Table II. Bond Lengths (A) for 1°	Table II. Bond Lengths (Å) for 1 ^a				

	• • •			
P-Li	2.550 (8)	O2-C3	1.462 (5)	
P–Li′	2.597 (8)	O2-C4	1.456 (6)	
01-C1	1.454 (6)	O2–Li	2.036 (7)	
O1-C2	1.448 (5)	C2-C3	1.498 (8)	
O1–Li	2.063 (7)			

^a In this and the following tables, numbers in parentheses are estimated standard deviations in the least significant digits.

atoms bonded to two P atoms and a DME. The P atoms are located between each Li vertex such that the Li-P-Li angle is almost linear (176.9 (1)°) (Figure 3). The LiDME groups alternate their positions above and below the chain. In the LiPPh₂ and LiPCy₂ chains described by Power and co-workers, the framework consists of alternating Li and P atoms at the vertices

Figure 1. ORTEP view of a short section of the polymeric chain of 1.

Figure 2. Detail of the asymmetric unit of 1 showing the atom-numbering scheme employed.

Table III. Bond Angles (deg) for 1

Li-P-Li'	176.9 (1)	O2-C3-C2	107.8 (4)	
C1O1C2	113.6 (4)	P-Li-P'	117.0 (2)	
C1O1Li	121.0 (3)	P-Li-O1	118.5 (4)	
C2O1Li	103.1 (4)	P-Li-O2	114.9 (4)	
C3-O2-C4	112.9 (1)	P-Li-O1'	105.1 (3)	
C3-O2-Li	109.9 (3)	P-Li-O2'	113.6 (4)	
C402Li	127.9 (4)	O1-Li-O2	82.7 (3)	
O1-C2-C3	107.1 (5)			

Table IV. Fractional Coordinates for 1^a

atom	x	у	Z	B, Å ²
Р	0.4923 (8)	0.7583 (3)	0.7537 (3)	5.33 (5)
O 1	0.8545 (9)	0.4844 (9)	0.8958 (4)	5.9 (2)
O 2	0.509 (1)	0.5014 (9)	0.9879 (4)	5.8 (1)
C1	1.009 (2)	0.427 (2)	0.8330 (8)	8.2 (4)
C2	0.826 (2)	0.396 (2)	0.9854 (8)	7.4 (3)
C3	0.682 (2)	0.480 (2)	1.0477 (7)	6.9 (3)
C4	0.361 (2)	0.588 (1)	1.0396 (8)	7.4 (3)
Li	0.579 (2)	0.510 (2)	0.841 (1)	4.7 (3)

^aAnisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $(4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)].$

such that the PPh₂ and Li (solvate) units occupy opposite sides of the chain throughout the structure (Figure 3). In these complexes, the Li-P-Li angles range from 126.0 (3) to 145.6 (3)°. It seems likely that the difference in structures is due to the minimal steric requirements imparted by the P-H units vs. alkyl or aryl substituents. This aspect has been discussed for aryl- and alkylphosphides by Power.⁸ Unfortunately, the P-H atoms could not be located in the X-ray structure so that the full geometry about P could not be determined. The other metric parameters for the structure appear to be fairly normal. Thus, the P-Li distances of 2.550 (8) and 2.597 (8) Å are similar to those found in [Li(THF)₂PPh₂]_{*} (2.63 (2), 2.63 (2) Å), in which the Li atoms

(1) (This work) Figure 3. Overall structures of 1 and other polymeric lithium phosphides.

also have four-coordinate, distorted-tetrahedral geometries. The Li–O distances of 2.063 (7) and 2.036 (7) Å are slightly longer than those observed in $[Li(THF)_2PPh_2]_{\infty}$ (1.94 (2), 1.99 (2) Å).

Experimental Section

The compound was prepared by the literature method⁹ and was recrystallized from hexane at -20 °C. Crystals of 1 were mounted under nitrogen in thin-walled glass capillaries. Data were collected on an Enraf-Nonius CAD-4 diffractometer at 23 \pm 2 °C using graphitemonochromated Mo K α radiation. All calculations were performed on a PDP 11/44 computer using the Enraf-Nonius software package SDP-PLUS.¹⁰ Unit cell parameters were obtained by carefully centering 25 reflections having 2θ values between 24 and 30°. The space group $P2_12_12_1$ was uniquely determined by systematic absences [h00 (h odd), 0k0 (k odd), 00l (l odd)]. Data were collected in the +h,+k,+l octant between 2θ values of 3 and 50°. The check reflections indicated a 1.5% decay of standards, and so no decay correction was applied. An empirical absorption correction (ψ scan) was applied (program EAC). The data were corrected for Lorentz and polarization effects and the structure solved by Patterson synthesis followed by successive cycles of difference Fourier maps and least-squares refinements. A non-Poisson contribution weighting scheme with an experimental instability factor $P = 0.04^{11}$ was used in the final stages of refinement. Only one of the hydrogen atoms of the DME group was located, and those of the PH_2 groups were not. Therefore, H atoms were omitted from the final refinement. Final R and $R_{\rm w}$ values were 0.0591 and 0.0645, respectively. The maximum peak in the final difference Fourier map had a height of 0.32 Å and was located 1.17 Å from C(4). Supplementary material is available.¹²

Acknowledgment. We thank the Robert A. Welch Foundation (Grant F-816), the National Science Foundation (Grant CHE-8517759), and the Texas Advanced Technology Research Program for support. R.A.J. thanks the Alfred P. Sloan Foundation for a fellowship (1985–1987). We also thank Professor P. P. Power (UC Davis) for discussion of results prior to publication.

Supplementary Material Available: A table of thermal parameters (1 page); a listing of observed and calculated structure factors (3 pages). Ordering information is given on any current masthead page.

^{(10) &}quot;SDP-PLUS", 4th ed.; B. A. Frenz and Associates: College Station, TX, 1981.

⁽¹¹⁾ *P* is used in the calculation of $\sigma(I)$ to downweight intense reflections in the least-squares refinement. The function minimized was $\sum w(|F_o| - |F_c|)^2$ where $w = 4(F_o)^2 / [\sum (F_o)^2]^2$, for which $[\sum (F_o)^2]^2 = [S^2(C + R^2B) + [P(F_o)^2]^2] / (L_p)^2$, where *S* is the scan rate, *C* is the total integrated peak count, *R* is the ratio of scan time to background counting time, *B* is the total background count and L_p is the Lorentz-polarization factor.

⁽¹²⁾ See paragraph at end of paper regarding supplementary material.