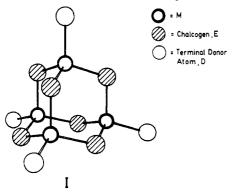
New Adamantane-like Mercury-Chalcogen Cages. Synthetic and Multinuclear (³¹P, ⁷⁷Se, ¹⁹⁹Hg) NMR Study of $[(\mu-ER)_6(HgL)_4]^{2+}$ (E = S or Se; L = Tertiary Phosphine or Arsine) and Related Species with Mixed Ligands¹


Philip A. W. Dean,* Jagadese J. Vittal, and Marion H. Trattner

Received March 12, 1987

Reaction between HgL₂(ClO₄)₂, Hg(ER)₂, and L in a 1:3:2 ratio produces the isolable salts $[(\mu-ER)_6(HgL)_4](ClO_4)_2$ (L = PPh₃, ER = SePh, SPh, SMe, or SEt; L = AsPh₃, ER = SPh; L = PEt₃, ER = SePh or SPh). Multinuclear (³¹P, ⁷⁷Se, ¹⁹⁹Hg) NMR was used to demonstrate the adamantanoid structure of the cations in these salts as well as in those with $L = PPh_3$ and ER =S-n-Pr, S-n-Bu, or S-n-C₅H₁₁, which were studied in situ. To confirm that the new cations contain the hitherto unobserved $(\mu$ -ER)₆Hg₄ core, several series of clusters with mixed ligands were investigated (as ClO₄⁻ salts) by the multinuclear NMR technique also. The systems $[(\mu$ -ER)₆(HgL)₄]²⁺- $[(\mu$ -ER)₆(HgL)'₄]²⁺ (ER = SePh, L = PPh₃, L' = PEt₃; ER = SPh, L = PPh₃, L' = PEt₃ or AsPh₃) give the series $[(\mu$ -ER)₆(HgL)_{4-n}(HgL')₄]²⁺ (n = 0-4). The related species $[(\mu$ -SPh)₆(HgPPh₃)_{4-n}(HgSDPh₃)_n]²⁺ (n = 0-2 and possibly 3) were produced from Hg(PPh₃)₂(ClO₄)₂, Hg(SPh₂, and SbPh₃. From the notably rich ³¹P and ¹⁹⁹Hg NMR spectra of the system $[(\mu$ -SPh)₆(HgPh₃)₄]²⁺- $[(\mu$ -SePh)₆(HgPh₃)₄]²⁺ it was possible to demonstrate the existence of every possible mixed-chalcogen core in the series $[(\mu$ -SPh)₆- $(\mu$ -SePh)₆(HgPh₃)₄]²⁺ (m = 0-6). The new $(\mu$ -SR)₆Hg₄ cages are possible models for the proposed $Hg_4(Cys)_{11}$ cluster in Hg_7 -metallothionein.

Introduction

Recently, it was shown that Hg(II) displaces Zn and Cd from Zn,Cd-metallothionein II (Zn,Cd-MT), producing the Hg₇-MT protein.² As earlier optical spectroscopic studies^{3,4} indicated that Hg-substituted MT contains Hg in cysteinyl binding sites, it was suggested² that Hg₇-MT contains thiolate-bridged $M_4(Cys)_{11}$ and $M_3(Cys)_9$ clusters similar to those that are known⁵⁻⁷ to occur in Zn,Cd-MT. Simple models for the metal-binding sites of MT are highly desirable, and adamantanoid anions $[(\mu-SPh)_6 (MSPh)_4]^{2-}$ (M = Zn, Cd), which are possible models for the four-atom sites⁸ of Zn,Cd-MT, have been well-established,⁹⁻¹² as have the selenium analogues.^{11b,13,14} The anions have the skeleton I, with E and D = S or Se. 9,10,14 However, despite extensive interest

- Dedicated to Professor R. J. Gillespie on the occasion of his retirement. (1)Nielson, K. B.; Atkin, C. L.; Winge, D. R. J. Biol. Chem. 1985, 260, (2) 5342
- Vásák, M.; Kägi, J. H. R.; Hill, H. A. O. Biochemistry 1981, 20, 2852. Stillman, M. J.; Law, A. Y. C.; Szymanska, J. A. In Chemical Toxi-
- (4) cology and Clinical Chemistry of Metals; Brown, S. S., Savory, J., Eds.; Academic: London, 1983; p 275. (5) Dalgarno, D. C.; Olafson, R. W.; Armitage, I. M. Inorg. Chem. 1985,
- 24, 3439 and references therein.
- Frey, M. H.; Wagner, G.; Văsāk, M.; Sørenson, O. W.; Neuhaus, D.; Wörgötter, E.; Kägi, J. H. R.; Ernst, R. W.; Würthrich, K. J. Am. Chem. Soc. 1985, 107, 6847 and references therein.
- (7) Furey, W. F.; Robbins, A. H.; Clancy, L. L.; Winge, D. R.; Wang, B. C.; Stout, C. D. Science (Washington, D.C.) 1986, 231, 704.
- To date no models for the three-atom cluster of Zn,Cd-MT have been fully characterized; see, however: Dance, I. G. Inorg. Chim. Acta 1985, 108. 227
- (9) Hagen, K. S.; Holm, R. H. Inorg. Chem. 1983, 22, 3171.
 (10) Hencher, J. L.; Khan, M.; Said, F. F.; Tuck, D. G. Polyhedron 1985, **4. 126**1.
- (1) (a) Dean, P. A. W.; Vittal, J. J. J. Am. Chem. Soc. 1984, 106, 6436.
 (b) Dean, P. A. W.; Vittal, J. J. Inorg. Chem. 1986, 25, 514.
 (12) Dance, I. G.; Saunders, J. K. Inorg. Chim. Acta 1985, 96, L71. Dance, I. G. Aust. J. Chem. 1985, 38, 1745.
 (13) Dean, P. A. W.; Vittal, J. J. Inorg. Chem. 1987, 26, 278.
 (14) Dean, P. A. W.; Vittal, J. J.; Payne, N. C., unpublished results.

in mercury thiolate chemistry,¹⁵⁻²⁰ no species containing the model $(\mu$ -SR)₆Hg₄ core have yet been reported; attempts to prepare $[(\mu-SPh)_6(HgSPh)_4]^{2-}$ specifically have been unsuccessful to date.^{19,21} Similarly, there has been no literature report of the $(\mu$ -SeR)₆Hg₄ core. These absences are somewhat surprising since chalcogen bridging is a feature of many Hg(II)-chalcogenate species (e.g. ref 15-18, 20, and 22).

In this paper we describe the isolation of several new compounds of the general formula $[Hg_4(ER)_6L_4](ClO_4)_2$ (E = S or Se; L = tertiary phosphine or arsine), as well as the synthesis in solution of various related complexes, some of which have mixed chalcogenates or mixed neutral ligands. This series contains a range of attractive probe nuclei, including ⁷⁷Se and ¹⁹⁹Hg in addition to the more common ¹H, ¹³C, and ³¹P, making the new species interesting candidates for multinuclear NMR spectroscopy.²³ Application of this technique has allowed us to demonstrate unambiguously that the tetranuclear cations are of adamantanoid structure and contain cages of the hitherto-unknown type (μ -ER)₆Hg₄.

Experimental Section

Materials and General Procedures. Literature syntheses without significant variation were followed for $Hg(O_2CCF_3)_2$,²⁵ $Hg(PPh_3)_2$. $(ClO_4)_2$,^{26,27} Hg(AsPh₃)₂(ClO₄)₂,²⁸ and mercury(II) thiolates^{29,30} and

- (15) Levason, W.; McAuliffe, C. A. In The Chemistry of Mercury; McAuliffe, C. A., Ed.; Macmillan: London, 1977; Chapter 15. Canty, A. J. ACS Symp. Ser. 1978, No. 32, 327. Carty, A. J.; Malone, S. F. In The Biogeochemistry of Mercury in the
- (16)
- (17)Environment; Nriagu, J. O., Ed.; Elsevier: Amsterdam, 1979; Chapter
- (18) Bowmaker, G. A.; Dance, I. G.; Dobson, B. C.; Rogers, D. A. Aust. J. Chem. 1984, 37, 1607 and references therein.
- (19) Christou, G.; Folting, K.; Huffman, J. C. Polyhedron 1984, 3, 1247 and references therein.
- Dance, I. G. Polyhedron 1986, 5, 1037 and references therein.
- Dean, P. A. W.; Vittal, J. J., unpublished observations. Canty, A. J.; Raston, C. L.; White, A. H. Aust. J. Chem. 1979, 32, 311. (22) Arnold, A. P.; Canty, A. J.; Skelton, B. W.; White, A. H. J. Chem. Soc.,
- *Dalton Trans.* **1982**, 607. ⁷⁷Se: spin $I = \frac{1}{2}$, 7.58% natural abundance, D^{C} (receptivity relative to ¹³C) = 3.01.²⁴ ¹⁹⁹Hg: spin $I = \frac{1}{2}$, 16.84% natural abundance, $D^{C} = 5.57.^{24}$ (23)
- (24) Harris, R. K. Nuclear Magnetic Resonance Spectroscopy; Pitman: London, 1983; p 230 ff. (25) Shearer, D. A.; Wright, G. F. Can. J. Chem. 1955, 33, 1002.

- (26) Allman, T.; Goel, R. G. *Can. J. Chem.* **1984**, *62*, 621. (27) For a saturated solution of Hg(PPh₃)₂(ClO₄)₂ in CH₂Cl₂ at 296 K, $\delta_P = 49.5$ and ${}^{1}J({}^{199}\text{Hg}{-}^{31}\text{P}) = 5084 \pm 2$ Hz. (28) (a) Naikar, S. B.; Nanje Gowda, N. M.; Reddy, G. K. N. *Indian J.*
- Chem., Sect. A 1981, 20A, 436. (b) Davis, A. R.; Murphy, C. J; Plane, R. A. Inorg. Chem. 1970, 9, 423
- (29)Wertheim, E. J. Am. Chem. Soc. 1929, 51, 3661. Canty, A. J.; Kishimoto, R.; Deacon, G. B.; Farquharson, G. J. Inorg. Chim. Acta 1976, 20, 161.

benzeneselenolate.^{30,31} The preparation of Hg(PEt₃)₂(ClO₄)₂ from HgCl₂(PEt₃)₂^{32a} and AgClO₄ was carried out in the same way as the synthesis of Hg(PPh₃)₂(ClO₄)₂:²⁶ the purity and authenticity were confirmed by ³¹P NMR. (For a 0.05 M solution in MeCN at 296 K, $\delta_P = 54.5$ and ¹J(¹⁹⁹Hg⁻³¹P) = 4539 ± 2 Hz (lit.^{32b} ¹J(¹⁹⁹Hg⁻³¹P) = 4457 Hz for Hg(PEt₃)₂(BF₄)₂ in Me₂CO)). Triphenylphosphine (Baker), -arsine (Aldrich), and -stibine (Eastman) were recrystallized from ethanol. All other chemicals were from commercial sources and were used as received.

Solvents were dried over 3A molecular sieves. Solvents used in synthesis or in preparation of NMR samples were thoroughly deoxygenated with Ar before use.

Synthesis. The following syntheses were performed under an argon atmosphere. Once isolated, the solid compounds were not particularly air sensitive and showed no obvious deterioration on standing in air for 1 or 2 days at 23 °C. According to ³¹P NMR measurements, the compounds $[Hg_4(ER)_6L_4](ClO_4)_2$ were better than 95% pure when generated in situ in CHCl₃ or CH₂Cl₂. However, isolation of the individual compounds as pure solids required specific combinations of solvents and conditions, as described below.

[Hg₄(SePh)₆(PPh₃)₄](ClO₄)₂ (1). Solid PPh₃ (0.12 g, 0.46 mmol) was added to a solution containing 0.21 g (0.23 mmol) of Hg(PPh₃)₂(ClO₄)₂ in 10 mL of acetone precooled to 0 °C. The solid dissolved to give a clear solution. Into this was stirred 0.35 g (0.67 mmol) of Hg(SePh)₂ to produce, within a few minutes, a clear yellow solution. Cyclohexane was added carefully to form a layer. After the solution was kept at 5 °C for 24 h, the yellow flaky crystalline product was collected by filtration, washed with cyclohexane, and dried in vacuo; 0.59 g (90%) of pure product was obtained. Anal. Calcd for $C_{108}H_{90}Cl_2Hg_4O_8P_4Se_6$ (mol wt 2986.84): C, 43.43; H, 3.04. Found: C, 43.20; H, 3.14. ¹H NMR (CDCl₃): δ_H 6.7–7.8 (phenyl H).

 $[Hg_4(SPh)_6(PPh_3)_4](ClO_4)_2$ ·1.5CHCl₃ (2). To a solution of Hg-(PPh₃)₂(ClO₄)₂ (0.28 g, 0.30 mmol) in 10 mL of CHCl₃ was added 0.16 g (0.60 mmol) of solid PPh₃, producing a clear solution. Into this was stirred 0.38 g (0.90 mmol) of solid Hg(SPh)₂ to give a yellow solution with traces of a suspended fine solid. The mixture was stirred for 10 min and then filtered. The filtrate was covered with a layer of diethyl ether and left undisturbed at 0–5 °C overnight. The resulting light yellow needlelike crystals were separated by decantation of the mother liquor, washed with diethyl ether, and dried in vacuo to yield 0.74 g (85%) of product. Anal. Calcd for C₁₀₈H₉₀Cl₂Hg₄O₃P₄S₆·1.5CHCl₃ (mol wt 2884.53): C, 45.60; H, 3.19; Cl, 7.99. Found: C, 45.34 and 45.48; H, 3.17 and 3.07; Cl, 7.70. ¹H NMR (CD₂Cl₂): δ_H 7.32 (CHCl₃), 6.7–7.62 (phenyl H).

[Hg₂(SMe)₆(PPh₃)₄](ClO₄)₂ (3). A slurry of 0.27 g (0.90 mmol) of Hg(SMe)₂ in 10 mL of CHCl₃ was added with stirring to a solid mixture containing 0.28 g (0.30 mmol) of Hg(PPh₃)₂(ClO₄)₂ and 0.17 g (0.65 mmol) of PPh₃. After 10 min, most of the solids had dissolved to give a colorless solution. This was filtered and left to crystallize at 5 °C. The colorless transparent crystals obtained in ca. 12 h were separated by decantation, washed with diethyl ether, and dried in vacuo to obtain 0.49 g (69%) of the product. Anal. Calcd for C₇₈H₇₈Cl₂Hg₄O₈P₄S₆ (mol wt 2333.032): C, 40.16; H, 3.37. Found: C, 39.90; H, 3.67. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 1.85 (s, $-CH_3$), 7.24–7.57 (phenyl H).

[Hg₄(SEt)₆(PPh₃)₄](ClO₄)₂·CH₂Cl₂ (4). A solution of 0.48 g (1.5 mmol) of Hg(SEt)₂ in 5 mL of CH₂Cl₂ was added to a solution containing 0.46 g (0.50 mmol) of Hg(PPh₃)₂(ClO₄)₂ and 0.26 g (1.0 mmol) of PPh₃ in 10 mL of CH₂Cl₂. The mixture was stirred for 10 min and then filtered, saturated with diethyl ether, and left for crystallization at 5 °C. The white crystals were collected by filtration, washed with ether, and dried in vacuo to give 0.88 g (70%). Anal. Calcd for C₈₄H₉₀Cl₂-Hg₄O₈P₄S₆·CH₂Cl₂ (mol wt 2502.13): C, 40.80; H, 3.71. Found: C, 40.64 and 40.83; H, 3.89 and 3.93. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.8 (t, -CH₃, ³J(H-H) = 7.3 Hz), 2.48 (q, -CH₂, ³J(H-H) = 7.3 Hz), 5.3 (CH₂Cl₂), 7.35-7.58 (phenyl H).

 $[Hg_4(SPh)_6(AsPh_3)_4](ClO_4)_2$.1.5CHCl₃ (5). This compound was prepared by a procedure analogous to that for 2; yield 0.60 g (65%). Anal. Calcd for $C_{108}H_{90}As_4Cl_2Hg_4O_8S_6$.1.5CHCl₃ (mol wt 3060.32): C,

(30) The pure compounds Hg(SR)₂ give sharp ¹⁹⁹Hg NMR signals: $\Delta \nu \leq 10$ Hz. As solutions in CHCl₃ at 294 ± 1 K with concentration 0.1 mol/L of solvent (or saturated, as noted, for the less soluble compounds), $\delta_{\text{Hg}} = -871, -805, -807, -795, -801, -793, -801, -772, -889, and -1065$ for R = Me (saturated), Et, *n*-Pr, *i*-Pr, *n*-Bu, *i*-Bu (saturated), *n*-C₃H₁₁, c-C₆H₁₂, CH₂Ph, and Ph (saturated) respectively. For a saturated solution of Hg(SePh)₂ in CHCl₃ at 294 K, the ⁷⁷Se and ¹⁹⁹Hg NMR parameters are $\delta_{\text{Hg}} = -1512$ ($\Delta \nu_{1/2} \approx 23$ Hz) and $\delta_{\text{Se}} = 248.3$ ($\Delta \nu_{1/2} \approx 13$ Hz).

42.98; H, 3.01. Found: C, 42.54 and 42.76; H, 3.14 and 2.94. ¹H NMR (CD₂Cl₂): δ_H 7.23 (CHCl₃), 6.75–7.51 (phenyl H).

[Hg₄(SPh)₆(PEt₃)₄](ClO₄)₂ (6). A 0.63-g (1.5-mmol) portion of solid Hg(SPh)₂ was stirred into a mixture of 0.32 g (0.50 mmol) of Hg-(PEt₃)₂(ClO₄)₂ and 0.12 g (1.0 mmol) of PEt₃ in 10 mL of acetone, producing a clear colorless solution. This was saturated with diethyl ether and cooled to 5 °C for crystallization. The colorless crystals were separated by decantation, washed with cyclohexane, and dried in vacuo (0.84 g, 83%). Anal. Calcd for C₆₀H₉₀Cl₂Hg₄O₈P₄S₆ (mol wt 2128.93): C, 33.85; H, 4.26. Found: C, 33.66; H, 4.24. ¹H NMR ((CD₃)₂CO): $\delta_{\rm H}$ 0.85 (d of t, $-CH_3$, ³J(H-H) = 7.5 Hz, ³J(P-H) = 19.8 Hz), 1.6 (t, $-CH_2$, ³J(H-H) = 7.3 Hz), 7.23-7.80 (phenyl H).

[Hg₄(SePh)₆(PEt₃)₄](ClO₄)₂ (7). To a solution of Hg(PEt₃)₂(ClO₄)₂ (0.19 g, 0.30 mmol) and PEt₃ (0.071 g, 0.62 mmol) in 5 mL of CHCl₃ was added 0.46 g (0.90 mmol) of solid Hg(SePh)₂ with stirring. A clear yellow solution was obtained, from which the product separated as a thick yellow oil at the bottom. After 10 min the solvent was removed under a flow of argon gas. The viscous yellow product was dissolved in 5 mL of acctone. The acctone solution was filtered and cooled at 0 °C before addition of 10 mL of diethyl ether to form a layer over the top. The mixture was left overnight at 0 °C for crystallization to occur. The yellow crystalline solid product was separated by decantation of the mother liquor, washed with diethyl ether, and dried in vacuo to get 85% yield (0.62 g). Anal. Calcd for C₆₀H₉₀Cl₂Hg₄O₈P₄Se₆ (mol wt 2410.303): C, 29.90; H, 3.76. Found: C, 29.50; H, 3.52. ¹H NMR ((CD₃)₂CO: $\delta_{\rm H}$ 0.84 (d of t, $-CH_3$, ³J(H-H) = 7.6 Hz, ³J(P-H) = 19.4 Hz), 1.63 (br s, CH₂), 7.30-7.86 (phenyl H).

The 13 C NMR spectra of all the new compounds are consistent with the formulations given.³³

NMR Spectra. All NMR samples were prepared under Ar with concentrations on a mass of solute/volume of solvent basis. Proton and ¹³C NMR spectra were obtained with Varian XL-200 and XL-300 spectrometer systems, respectively. Either spectrometer was used to obtain ^{31}P , ^{77}Se , and ^{199}Hg NMR spectra, the operating frequencies then being respectively 80.98 or 121.42, 38.15 or 57.20, and 35.75 or 53.60 MHz. Broad-band ¹H decoupling was used in collection of the ¹³C, ³¹P, and ¹⁹⁹Hg NMR data. The tube size was 5 mm o.d. for ¹H, ¹³C, and most of the ³¹P NMR spectroscopy, and in these cases the deuteriated solvent was the ²D field/frequency lock substance. For the ⁷⁷Se, ¹⁹⁹Hg, and some of the ³¹P NMR spectroscopy, the tubes were 10 mm o.d. With the samples of larger volume, protiated solvents were used and there was no field/frequency lock (field drift $\ll 1 \text{ Hz/day}$). The reference signals were those of the solvent for ¹H and ¹³C, external 85% H₃PO₄ for ³¹P, external neat Me₂Se for ⁷⁷Se, and external 0.1 M Hg(ClO₄)₂ in 5% v/v $HClO_4$ solution for ¹⁹⁹Hg. No corrections for diamagnetic susceptibility difference were made. The conversion of the ¹⁹⁹Hg chemical shifts to the more common HgMe₂ reference is $\delta_{Hg}(HgMe_2,ext) = \delta_{Hg}(Hg-(ClO_4)_2,ext) - 2253 \text{ ppm.}^{34}$ Probe temperatures were measured by means of a thermocouple probe in a stationary dummy sample of the appropriate solvent.

Simulation of NMR Spectra. Spectra were simulated by using a version of LAOCOON3³⁵ adapted locally³⁶ to run on a Victor 9000 computer. It was possible to simulate the appropriately weighted sum of all isotopomers with seven spins or less; these comprise 98% of the isotopomers present for a single complex.

Elemental Microanalyses. All C and H microanalyses were performed by Guelph Chemical Laboratories Ltd.

Results and Discussion

Synthesis. The compounds $[Hg_4(ER)_6L_4](ClO_4)_2$ (L = PPh₃, ER = SePh, SPh, SMe, SEt, S-*n*-Pr, S-*n*-Bu, or S-*n*-C₅H₁₁; L = AsPh₃, ER = SPh; L = PEt₃, ER = SePh or SPh) are produced quantitatively in solution (see the following section) from the appropriate mixture of HgL₂(ClO₄)₂,³⁷ Hg(ER)₂, and L in the molar ratio 1:3:2, according to eq 1. The same type of compounds

 $HgL_{2}(ClO_{4})_{2} + 3Hg(ER)_{2} + 2L \rightarrow [Hg_{4}(ER)_{6}L_{4}](ClO_{4})_{2}$

(1)

- (33) Supplementary material.
- (34) Kild, R. G.; Goodfellow, R. J. In NMR and the Periodic Table; Harris, R. K., Mann, B. E., Eds.; Academic: London, 1978; Chapter 8, Table 8.31.
- (35) Bothner-By, A. A.; Castellano, S. M. "LAOCOON3"; The Mellon Institute: Pittsburgh, PA. This program is described in: Castellano, S. M.; Bothner-By, A. A. J. Chem. Phys. 1964, 41, 3863.
- (36) We thank Dr. R. H. Hill, previously of this department, for providing a copy of his adaptation.
- (37) Use of Hg(ClO₄)₂ directly as a precursor leads to extensive formation of elemental Hg, as has been noted for formation of mononuclear phosphine complexes also.²⁶

⁽³¹⁾ Okamoto, Y.; Yano, T. J. Organomet. Chem. 1971, 29, 99.

 ⁽³²⁾ Bell, N. A.; Dee, T. D.; Goggin, P. L.; Goldstein, M.; Goodfellow, R. J.; Jones, T.; Kessler, K.; McEwan, D. M.; Nowell, I. M.: (a) J. Chem. Res., Miniprint 1981, 201; (b) J. Chem. Res., Synop. 1981, 2.

New Adamantane-like Mercury-Chalcogen Cages

appear to form when $L = PPh_3$ and $ER = SCH_2Ph$ or S-c-C₆H₁₁ also. In all cases complete dissolution occurs in less than 5 min under the conditions used (room temperature, $[M_4]_{total} \approx (5-60)$ $\times 10^{-3}$ M). The products were isolated in good to high yields for the following representative cases: $L = PPh_3$, ER = SePh (1), SPh (2), SMe (3), or SEt (4); $L = AsPh_3$, ER = SPh (5); L =PEt₃, ER = SPh (6) or SePh (7).

Before we turned to the potentially hazardous perchlorate salts, several preliminary experiments were carried out with $Hg(O_2C$ - $(CF_3)_2$ (Hg(TFA)₂) to form the clusters with PPh₃ as in eq 2.

$$Hg(TFA)_{2} + 3Hg(ER)_{2} + 4PPh_{3} \rightarrow [Hg_{4}(ER)_{6}(PPh_{3})_{4}](TFA)_{2} (2)$$

Study by ³¹P and ¹⁹⁹Hg NMR studies confirms the existence of the indicated products at low temperatures for ER = SEt or S-n-Pr. However, ¹³C NMR studies at ambient probe temperature show that the cations undergo partial dissociation to free $Hg(SR)_2$ under these conditions, so use of the TFA⁻ salts was discontinued. In contrast, the clusters as ClO₄⁻ salts do not appear to be dissociated at ambient probe temperature (see below). The difference in behavior is probably linked to the different coordination tendencies of the counteranions. The TFA⁻ anion is known^{38,39} to compete with PPh_3 for sites on Hg(II), in contrast to ClO_4 , which does not.26,38

NMR Studies. (i) $[Hg_4(ER)_6L_4](CIO_4)_2$. With ¹⁹⁹Hg in natural abundance,²³ an Hg₄ cluster exists in isotopomeric forms, $(^{199}Hg)_x(^{0}Hg)_{4-x}$. The expected⁴⁰ statistical fractional populations are 0.4783, 0.3874, 0.1177, 1.589 × 10⁻², and 8.042 × 10⁻⁴ for x = 0-4, respectively. In 1 and 7, magnetically active ⁷⁷Se occurs also,²³ leading to isotopomeric chalcogen cores, $(^{77}Se)_{\nu}(^{0}Se)_{6-\nu}$, as well. The statistical⁴⁰ fractional populations of $(^{77}Se)_y(^{0}Se)_{6-y}$ are 0.623, 0.307, 6.29 \times 10⁻², 6.88 \times 10⁻³, 4.23 \times 10⁻⁴, 1.39 \times 10^{-5} , and 1.90×10^{-7} for y = 0-6, respectively. At reduced temperature, the ³¹P{¹H}, ¹⁹⁹Hg{¹H}, and (where applicable) ⁷⁷Se NMR spectra of the various complexes $[Hg_4(ER)_6L_4]^{2+}$ are the expected composite. For example, the ³¹P and ¹⁹⁹Hg NMR spectra of 1, as a freshly prepared⁴¹ 0.05 mol/L solution in CHCl₃ at 213 K, are shown in parts a and b, respectively, of Figure 1.

The ³¹P NMR spectrum of 1 (Figure 1a) has features that taken together show the cation to have structure I, with E = Se (of SePh) and D = P (of PPh₃). First there is a singlet center band due to the $({}^{0}Hg)_{4}$ isotopomer. Symmetrically displaced about this are the spectra of the isotopomers (199Hg)(0Hg)₃ and (199Hg)₂(0Hg)₂. The isotopomer $(^{199}\text{Hg})(^{0}\text{Hg})_{3}$ gives rise to an A₃A'X (A = ^{31}P , $X = {}^{199}Hg$) spin system, with one PPh₃ bound directly to ${}^{199}Hg$ and three PPh₃ ligands magnetically inequivalent to the first separated from ¹⁹⁹Hg by three bonds. The magnitudes of the coupling constants are in the order ¹ $J(^{199}Hg^{-31}P) \gg {}^{3}J(^{199}Hg^{-31}P)$ > ${}^{4}J({}^{31}P-{}^{31}P)$. Therefore, as shown in Figure 1a, the ${}^{31}P$ NMR spectrum of this isotopomer consists of parts: two quartets (relative intensity 1; partly overlapping the spectrum of the (¹⁹⁹Hg)₂(⁰Hg)₂ isotopomer (see below)) separated by the large ${}^{1}J({}^{199}Hg-{}^{31}P)$ and two doublets (relative intensity 3) adjacent to the center band separated by the smaller ${}^{3}J({}^{199}Hg-{}^{31}P)$. The splitting within the quartets and the smaller splitting in the double doublet are both ${}^{4}J({}^{31}P-{}^{31}P)$. Various other weak lines in Figure 1a arise from the isotopomer $(^{199}Hg)_2(^{0}Hg)_2$. The spectrum of this isotopomer is particularly obvious in the region of, and partly overlapping with, the quartets from the (199Hg)(0Hg)₃ isotopomer. A spectral simulation based on the expected $A_2A'A''XX'$ (A = ³¹P, X = ¹⁹⁹Hg) spin system indicates that the spread of the weaker spectrum around each quartet of the $A_3A'X$ spectrum is ²J-(¹⁹⁹Hg-¹⁹⁹Hg), as shown in Figure 1a.

The ¹⁹⁹Hg NMR spectrum of 1 (Figure 1b) is also of the form expected for structure I and is consistent with the interpretation

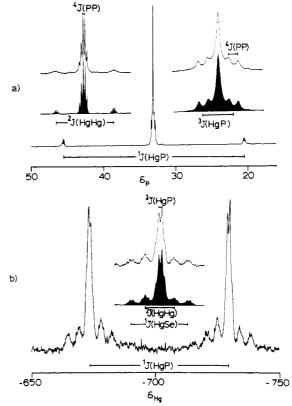


Figure 1. NMR spectra of $[(\mu-SePh)_6(HgPPh_3)_4](ClO_4)_2$ in CHCl₃ at 213 K: (a) 121.42-MHz ³¹P¹H NMR spectrum (left inset, 750 Hz wide expansion of the high-frequency satellite region with (below) a simulation; right inset, 150 Hz wide expansion of the center band with (below) a simulation); (b) 53.65-MHz ¹⁹⁹Hg¹H} NMR spectrum (inset, 1500-Hz expansion of the low-frequency half of the spectrum with (below) a simulation).

of the ³¹P NMR spectrum. The strongest feature of the ¹⁹⁹Hg NMR spectrum is a doublet of quartets, in which the large doublet splitting is ${}^{1}J({}^{199}Hg-{}^{31}P)$ and the quartet splitting is ${}^{3}J({}^{199}Hg-{}^{31}P)$, as indicated in the figure. This is the X part of the $A_3A'X$ spectrum of the isotopomer (199Hg)(0Hg)3. Each quartet has two further satellite spectra. That with the larger separation is a result of one-bond coupling to ⁷⁷Se, as confirmed by the presence of the same 940-Hz coupling in the ⁷⁷Se NMR spectrum. The other, with the smaller 480-Hz coupling, is a result of ${}^{2}J({}^{199}Hg-{}^{199}Hg)$ in the X part of the $A_2A'A''XX'$ spectrum of the isotopomer (¹⁹⁹Hg)₂(⁰Hg)₂; the same coupling appears in the ³¹P NMR spectrum (see above). Both these additional couplings are shown in Figure 1b. A spectral simulation using the parameters given in Table I and including statistical⁴⁰ contributions from the various isotopomers ${}^{31}P_4({}^{199}Hg)_x({}^{0}Hg)_{4-x}({}^{77}Se)_y({}^{0}Se)_{6-y}$ satisfactorily reproduce the ${}^{31}P$ and ${}^{199}Hg$ NMR spectra (Figure 1, insets).

In the ⁷⁷Se NMR spectrum of 1 (not shown), the intensity ratio (¹⁹⁹Hg satellites/center band) is ca. 0.18. This is close to the value 0.192 that can be calculated for structure I on statistical grounds by using the populations of the various isotopomers and the possible relative positions of ⁷⁷Se and ¹⁹⁹Hg. At 213 K, no additional fine structure is observed in the ⁷⁷Se NMR spectrum of 1. However, at 237 K, the center band of the ⁷⁷Se NMR spectrum is a "filled in" triplet, as expected for the X part of the $A_2A'_2X$ spectrum of the ${}^{31}P_4({}^{0}Hg)_4({}^{77}Se)({}^{0}Se)_5$ core. The splitting of the components, $({}^4J({}^{31}P-{}^{77}Se) + {}^2J({}^{31}P-{}^{77}Se))_{av}$, is 28 Hz. It seems likely that the four-bond coupling will be near zero, so ${}^{2}J({}^{31}P-{}^{77}Se) \approx$ 28 Hz.

Overall, the ³¹P, ¹⁹⁹Hg, and ⁷⁷Se NMR spectra of 1 are consistent only with the skeleton $(\mu$ -Se)₆(HgP)₄, having structure I on a time average. Thus 1 must be formulated as $[(\mu-SePh)_{6} (HgPPh_3)_4](ClO_4)_2.$

Table I also includes NMR data for all the other species $[Hg_4(ER)_6L_4]^{2+}$ that were obtained cleanly. The reduced-tem-

Colton, R.; Dakternieks, D. Aust. J. Chem. 1981, 34, 323. Allman, T.; Goel, R. G.; Pilon, P. Can. J. Chem. 1979, 57, 91 (38)

⁽³⁹⁾ Calingaert, G.; Beatty, H. A. J. Am. Chem. Soc. 1939, 61, 2748.

⁽⁴¹⁾ For all the complexes described here, samples that have been allowed

to stand give NMR spectra that are less well-resolved than those of fresh samples

Table I. NMR Spectral Parameters of $[(\mu-\text{ER})_6(\text{HgL})_4](\text{ClO}_4)_2$ in CHCl₃^a

ER	L	$\delta_{\mathbf{P}}^{b}$	δ _{Hg} ć	${}^{1}J({}^{199}\text{Hg}{-}{}^{31}\text{P})$	$^{3}J(^{199}\text{Hg}-^{31}\text{P})$	${}^{4}J({}^{31}P-{}^{31}P)$	² J(¹⁹⁹ Hg- ¹⁹⁹ Hg)
SePh ^d	PPh ₃	32.9	-702	3025 ± 2	50 ± 2	15 ± 1	480 ± 25
SPhe	PPh ₃	38.5	-443	4160 ± 2	33 ± 1	11 ± 1	445 ± 5°
SMe⁄	PPh	30.0	$\sim -327^{g,h}$	3015 ± 3	48 ± 2	15 ± 1	500 ± 20
SEt	PPh ₃	28.9	-329	2898 ± 2	48 ± 2	15 ± 2	505 ± 25
S-n-Pr ^h	PPh ₃	26.3	-325	2982 ± 2	50 ± 2	15 ± 1	500 ± 20
S-n-Bu ^h	PPh ₃	26.3	-326	2867 ± 2	51 ± 1	14 ± 1	500 ± 10
SPe ^{h,i}	PPh.	26.7	-324	2840 ± 2	51 ± 1	14 ± 1	497 ± 3
SePh ^{j-1}	PEt	42.8	-638	3674 ± 3	24 ± 1	12 ± 1	443 ± 5
SPh ^{j,l}	PEt,	49.2	-392	4550 ± 2	16 ± 1	9 ± 1	392 ± 5
SPh∕	AsPh		-476				

"At 213 K for solutions with concentration 0.05 mol/L of CHCl₃ at room temperature, except where noted otherwise. All J values are in hertz. ¹ At 215 K for solutions with concentration 0.05 mol/ L0 CHCl₃ at from temperature, except where noted other wise. An 5 values are in here, because the second wise in the external HgMe₂; measured relative to 0.1 M Hg(ClO₄)₂(aq) at 296 K as external reference and converted by using $\delta_{Hg}(HgMe_2) = \delta_{Hg}(Hg(ClO_4)_2(aq)) - 2253.^{34}$ Estimated error ±1 ppm. ^{d1}J(¹⁹Hg-⁷⁷Se) = 940 ± 25 Hz. δ_{Se} (relative to external pure Me₂Se at 298 K) = 6.6 ± 0.2. At 237 K for a 0.05 mol/L solution in CHCl₃, ¹J(¹⁹Hg-⁷⁷Se) = 940 ± 20 Hz, $\delta_{Se} = 10.7$, and $(^{4}J(^{31}P-^{77}Se) + ^{2}J(^{31}P-^{77}Se))_{uv} = 28 \pm 1$ Hz $\approx ^{2}J(^{31}P-^{77}Se)$. ^cAt 296 K, $\delta_{P} = 39.4$, $\delta_{Hg} = -473$, ¹J(¹⁹⁹Hg-³¹P) = 4109 ± 5 Hz, and ²J(¹⁹⁹Hg-¹⁹⁹Hg) = 454 ± 5 Hz; neither ³J(¹⁹⁹Hg-³¹P) nor ⁴J(³¹P-³¹P) is observed at this temperature. ^JSaturated solution in CHCl₃. ^gAt ca. 233 K as the same was cooling; insufficiently soluble in CHCl₃ to obtain a ¹⁹⁹Hg NMR spectrum after thermal equilibration. ^h Prepared in situ. ⁱ Pe = $n - C_5 H_{11}$. ¹At 237 K. ^k δ_{Se} (relative to external pure Me₂Se at 298 K) = 13.9 ± 0.1; neither ¹J(¹⁹⁹Hg-⁷⁷Se) nor (²J(³¹P-⁷⁷Se) + ⁴J(³¹P-⁷⁷Se))_{av} was observed. ¹For a solution with concentration 0.005 mol/L of CHCl₃ at room temperature.

perature ³¹P NMR spectra of all of the other phosphine complexes show the same feature as the ³¹P NMR spectrum of 1 and can be interpreted in a parallel manner. Apart from an absence of ⁷⁷Se-¹⁹⁹Hg coupling, the reduced-temperature ¹⁹⁹Hg NMR spectra for these species also resemble the corresponding spectrum of 1. Evidently all these compounds contain cations having the adamantanoid structure $[(\mu-ER)_6(HgPR_3)_4]^{2+}$. We have no good explanation for the absence of ${}^{31}P^{-77}Se$ and ${}^{77}Se^{-199}Hg$ couplings in the ⁷⁷Se and ¹⁹⁹Hg NMR spectra, respectively, of 7.

The ¹⁹⁹Hg NMR spectrum of 5 consists of a single line (Table I) and does not in itself prove that the cation in this compound is the adamantanoid $[(\mu-SPh)_6(HgAsPh_3)_4]^{2+}$. However, the spectra of all the other members of the series $[(\mu-SPh)_{6} (HgPPh_3)_{4-n}(HgAsPh_3)_n]^{2+}$ are consistent with such a structure (see below), and therefore it appears safe to assign 5 the same structure. We were unable to obtain any evidence for [Hg₄- $(SPh)_6(SbPh_3)_4](ClO_4)_2$, but the adamantanoid species [(μ - $SPh_{6}(HgPPh_{3})_{4-n}(HgSbPh_{3})_{n}]^{2+}$ (n = 0-2 and perhaps 3) were characterized in equilibrium mixtures (see below). The parent (SbPh₃)₄ complex is probably capable of existence once a suitable preparative route is found.

Limiting slow-exchange spectra could not be obtained for $[Hg_4(S-c-C_6H_{11})_6(PPh_3)_4](ClO_4)_2$, which was prepared in situ. However, at 213 K, the ³¹P and ¹⁹⁹Hg NMR spectra of a 0.05 mol/L solution in CHCl₃ gave sufficient detail ($\delta_P = 28.8 \ (\Delta \nu_{1/2} \approx 100 \text{ Hz}), {}^{1}J({}^{199}\text{Hg}-{}^{31}\text{P}) = 2805 \pm 20 \text{ Hz}, {}^{2}J({}^{199}\text{Hg}-{}^{199}\text{Hg}) \approx$ 500 Hz, $\delta_{Hg} = -387$) to show the formation of the expected adamantanoid cation in this case.

Firm evidence was obtained for $[(\mu-SCH_2Ph)_6(HgPPh_3)_4]^{2+}$. This cation is produced in the appropriate mixture of Hg-(PPh₃)₂(ClO₄)₂, Hg(SCH₂Ph)₂, and PPh₃ in CHCl₃, but in several attempts we found that this in situ reaction does not proceed cleanly. Nevertheless, the benzyl complex is a major product (the other products remain unidentified). The complex could be characterized on the basis of the expected NMR patterns. At 213 K in a solution of the correct composition to give $[Hg_4]_{total}$ = 0.05 mol/L of CHCl₃, δ_P = 30.3, δ_{Hg} = -404, ${}^{1}J({}^{199}Hg{}^{-31}P)$ = 3686 ± 6 Hz, ${}^{3}J({}^{199}Hg{}^{-31}P)$ = 41 ± 2 Hz, and ${}^{4}J({}^{31}P{}^{-31}P)$ = 12 ± 1 Hz.

In contrast to the foregoing, we could obtain no evidence for PPh₃ complexes in which the S-*i*-Pr or S-*t*-Bu was the bridging ligand. The apparent absence of these two complexes is probably due to the steric bulk of the alkyl groups.

At ambient probe temperature, all fine structure is lost in the spectra of the alkane thiolate clusters: a single line with no ¹⁹⁹Hg satellites is found in the ³¹P NMR spectrum and a very broad single line in the ¹⁹⁹Hg NMR spectrum. In the spectra of 1, 6, and 7, ${}^{1}J({}^{199}Hg-{}^{31}P)$ remains evident but other smaller couplings are lost in the general broadening. In the spectra of 2 the only noticeable losses are those of the two smallest couplings, ${}^{4}J({}^{31}P-$ ³¹P) and ${}^{3}J({}^{199}Hg-{}^{31}P)$. The complexes 1, 6, and 7 are evidently long-lived on the time scale of ${}^{1}J({}^{199}Hg-{}^{31}P)$ but not on the time scale of smaller couplings, i.e. 3×10^{-4} s $\lesssim \tau \lesssim 3 \times 10^{-3}$ s. The complex 2 is more long-lived with a lifetime long on the time scale of ${}^{2}J({}^{199}\text{Hg}-{}^{199}\text{Hg})$, i.e. $\tau \lesssim 2 \times 10^{-3}$ s.

It is interesting to note that the relative values of δ_{Hg} found for the phosphine clusters are in the order predicted for the (R_3P) - $Hg(ER)_3$ coordination sphere on the basis of additive substituent effects and the values of δ_{Hg} for Hg(PR₃)₄²⁺ and Hg(ER)₄²⁻. We find $\delta_{Hg} = -580$ for Hg(PPh₃)₄²⁺ in CHCl₃ at 233 K. In com-bination with the values $\delta_{Hg} = -978, -585, \text{ and } -302$ in Hg(ER)₄²⁻ for ER = SePh, SPh, and SEt, respectively, at 297 K in D₂O- H_2O ,⁴² the order of δ_{Hg} then predicted is 1 < 2 < 4, as is found. The predicted values themselves are not very close to those found: δ_{Hg} predicted for 1, 2, and 4 = -879, -584, and -373; δ_{Hg} found = -702, -443, and -329. These differences, for 1 and 2 at least, seem larger than could be expected³⁴ from the differences in solvent and temperature used to obtain the data for the Hg₄ clusters $Hg(PPh_3)_4^{2+}$ and $Hg(ER)_4^{2-}$. We conclude tentatively that the "local environment" effect⁴³ is only a first approximation for Hg(II), i.e. that δ_{Hg} is affected by more than just the atoms in the first coordination sphere. NMR data for $[Hg(ER)_3(PR_3)]^$ would be useful for comparison with those for the Hg₄ clusters.

The data in Table I also show that all other things being equal the couplings ${}^{2}J({}^{199}\text{Hg}-{}^{199}\text{Hg})$, ${}^{3}J({}^{199}\text{Hg}-{}^{31}\text{P})$, and ${}^{4}J({}^{31}\text{P}-{}^{31}\text{P})$ are all larger in magnitudes when E = Se rather than $S, L = PPh_3$ rather than PEt_3 , or R in RS = alkyl rather than Ph. The values of ${}^{1}J({}^{31}P-{}^{199}Hg)$ show the inverse correlations. These relationships can be rationalized in terms of the "s" character of the hybrid orbitals of Hg. It has been suggested⁴⁴ that the Fermi contact mechanism makes the dominant contribution to ${}^{1}J({}^{31}P-{}^{199}Hg)$ (which is known⁴⁵ to have an absolute positive sign). If so, a larger one-bond coupling can be attributed to a larger "s" character in the hybrid orbital of Hg that is involved in the Hg-P bond. The corresponding reduction in "s" character of the other bonds to Hg, those to the bridging chalcogen, would alone lead to reduction to couplings through the chalcogen atom if these are dominated by the Fermi contact mechanism as well. Similarly, changes at the chalcogen atom that promote an increase in the "s" character of the hybrid orbital of Hg that is used in the Hg-E bond should cause an increase in couplings through the chalcogen bridge. The Hg-P bond should show a complementary reduction in both Hg "s" character and ${}^{1}J({}^{199}\text{Hg}-{}^{31}\dot{\mathbf{P}})$.

The values obtained for ${}^{2}J({}^{199}Hg-E-{}^{199}Hg)$ in $[(\mu-ER)_{6}-$ (HgPR'3)4]2+, 392-505 Hz for 2J(199Hg-S-199Hg) and 438-480

- (42) Carson, G. K.; Dean, P. A. W. Inorg. Chim. Acta 1982, 66, 157.
 (43) Seitz, L. M.; Brown, T. L. J. Am. Chem. Soc. 1966, 88, 2174.
 (44) Buergi, H. B.; Kunz, R. W.; Pregosin, P. S. Inorg. Chem. 1980, 19, 199. 3707
- (45) Goggin, P. L.; Goodfellow, R. J.; McEwan, D. M.; Griffiths, A. J.; Kessler, K. J. Chem. Res. Synop. 1979, 194; J. Chem. Res. Miniprint 1979, 2315.

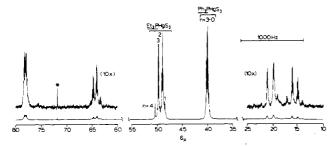


Figure 2. 80.98-MHz ³¹P{¹H} NMR spectrum of a 1:3:2 Hg(PEt₃)₂-(ClO₄)₂-Hg(SPh)₂-PPh₃ mixture in CHCl₃ at 237 K, showing the formation of $[(\mu$ -SPh)₆(HgPPh₃)_{4-n}(HgPEt₃)_n]²⁺. The ¹⁹⁹Hg satellites shown inset have the vertical scale expanded 10× (* = impurity).

Hz for ${}^{2}J({}^{199}\text{Hg}-\text{Se}-{}^{199}\text{Hg})$ (Table I), can be compared with the 2435-2959 Hz found⁴⁶ for ${}^{2}J({}^{199}\text{Hg}-\text{P}-{}^{199}\text{Hg})$ in anions containing eight-membered $(-\text{Hg}-\text{P}(\text{c-C}_{6}\text{H}_{11})_{2}-)_{4}$ rings. (ii) $[(\mu-\text{ER})_{6}(\text{HgL})_{4-n}(\text{HgL'})_{n}]^{2+}$. To confirm the tetrameric

(ii) $[(\mu-ER)_6(HgL)_{4-n}(HgL')_n]^{2+}$. To confirm the tetrameric nature of the Hg₄ clusters and to learn more about them, NMR studies were made of several representative complexes with mixed terminal ligands (as the ClO₄⁻ salts). Two methods are available to prepare equilibrium mixtures of complexes. The first is the straightforward ligand redistribution reaction of $[(\mu-ER)_6-(HgL)_4]^{2+}$ (eq 3). This method requires

$$[(\mu-\text{ER})_6(\text{HgL})_4]^{2+} + [(\mu-\text{ER})_6(\text{HgL}')_4]^{2+} \rightleftharpoons [(\mu-\text{ER})_6(\text{HgL})_{4-n}(\text{HgL}')_n]^{2+} (3)$$

equilibrium mixture

that the two parent complexes be either isolable, the preferable situation, or, failing that, preparable in situ. A second method is to generate the mixed-ligand complexes in situ from $HgL_2^{2+,37}$ $Hg(ER)_2$, and L' (eq 4). This is the only method that can be

$$HgL_{2}^{2+} + 3Hg(ER)_{2} + 2L' \rightleftharpoons [(\mu-ER)_{6}(HgL)_{4-n}(HgL')_{n}]^{2+}$$

equilibrium mixture
(4)

used to produce the desired species if one of the parent complexes cannot be prepared, as is the case for $L' = SbPh_3$ (see above). By this method, complete coverage of the L-rich part of the series can be obtained by substituting L'-L mixtures for L' or by adding $[(\mu-ER)_6(HgL)_4]^{2+}$ to the HgL₂²⁺-L'-Hg(ER)₂ mixture; however, the L'-rich part of the series is inaccessible.

(a) $[(\mu-EPh)_6(HgPPh_3)_{4-n}(HgPEt_3)_n]^{2+}$ (E = S or Se). Equilibrium mixtures containing these complexes (as the ClO₄salts) can be obtained according to either eq 3 or eq 4. For both benzenechalcogenates, the parent tetranuclear complexes and the complexes Hg(PR_3)_2^{2+} are available for both phosphines.

Figure 2 shows the slow-exchange ³¹P NMR spectrum of a mixture of average composition $[(\mu$ -SPh)₆(HgPPh₃)₂(HgPEt₃)₂]²⁺ in CHCl₃⁴⁷ at 237 K. At ambient probe temperature the spectrum is collapsed to two broad signals, each with ¹⁹⁹Hg satellites. The sample in this case was prepared according to eq 4, but identical results are obtained from a mixture in which **2**:6 = 1:1, as expected from eq 3.

In Figure 2 the center-band resonances fall into two regions. By comparison with the ³¹P NMR spectra of 2 and 6 (Table I), the less shielded region can be assigned to PEt₃ on Hg and the more shielded to PPh₃ on Hg. Within the PEt₃-on-Hg region the center bands that can be seen are a singlet, a doublet, a triplet, and a quartet. These can be assigned straightforwardly to PEt₃ in $[(\mu$ -SPh)₆(HgPPh₃)_{4-n}(HgPEt₃)_n]²⁺ with n = 4, 3, 2, and 1, respectively. The splitting of the multiplets is due to four-bond ³¹P-³¹P coupling over the pathway Ph₃³¹P-Hg-S-Hg-³¹PEt₃, and the maximum observed multiplicity of four confirms the tetranuclear nature of the clusters. In the PPh₃-on-Hg region there occur the corresponding quartet, triplet, doublet, and singlet from the mixed-ligand clusters with n = 3, 2, 1, and 0, respectively. There is considerable signal overlap in this region, but the separate components can be identified by increasing the frequency of measurement from 80.98 to 121.42 MHz, from the centroids of the ¹⁹⁹Hg satellite spectra (see below), and from the spectra of mixtures with different PPh₃:PEt₃ ratios. In the last case, confirmation of all the assignments is also obtained.

Every center band in Figure 2 has a ¹⁹⁹Hg satellite spectrum. The satellite spectra of 2 and 6 have been discussed in (i) above. When n = 1-3, each complex has two isotopomers containing one ¹⁹⁹Hg: one with ¹⁹⁹Hg bound to PPh₃, the other with ¹⁹⁹Hg bound to PEt₃. The isotopomers $[(\mu$ -SPh)₆(¹⁹⁹HgPPh₃)(⁰HgPPh₃)_{3-n}-(⁰HgPEt₃)_n]²⁺ give rise to A_{3-n}A'M_nX spectra (A, M = ³¹P; X = ¹⁹⁹Hg) that are of first-order appearance because ¹J(¹⁹⁹Hg-³¹P) $\gg {}^{3}J({}^{199}Hg-{}^{31}P), {}^{4}J({}^{31}P-{}^{31}P)$ and so can be analyzed straightforwardly. Similarly, the isotopomers $[(\mu$ -SPh)₆(⁰HgPPh₃)_{4-n}-(¹⁹⁹HgPEt₃)({}^{0}HgPEt_3)_{n-1}]^{2+} produce A_{4-n}M_{n-1}M'X spectra that can be analyzed readily. In all cases the satellite spectra appear as pairs of quartets. This quartet fine structure is further confirmation of the tetranuclear nature of the cations with mixed ligands.

Evidence for isotopomers containing two ¹⁹⁹Hg nuclei was observed in the PPh₃-on-Hg region of the complex with n = 1 and in the PEt₃-on-Hg region of the complex with n = 3. In these cases the quartet satellites due to the (¹⁹⁹Hg)(⁰Hg)₃ isotopomer are flanked by additional weaker signals. The value of ^{2}J -(¹⁹⁹Hg-¹⁹⁹Hg) is obtained from the separation of these minor signals as described in (i) above. In the complex with n = 1, the $[(\mu-SPh)_6(^{199}HgPPh_3)_2$ probability of forming $({}^{0}HgPPh_{3})({}^{0}HgPEt_{3})]^{2+}$ is twice that of forming $[(\mu-SPh)_{6-}({}^{199}HgPPh_{3})({}^{0}HgPPh_{3})_{2}({}^{199}HgPEt_{3})]^{2+}$. Therefore, the two-bond coupling observed in the PPh₃-on-¹⁹⁹Hg region of the complex with n = 1 is probably ²J(Ph₃P¹⁹⁹Hg-S-¹⁹⁹HgPPh₃) rather than ²J-(Ph₃P¹⁹⁹Hg-S-¹⁹⁹HgPEt₃). An analogous argument suggests that the two-bond coupling observed in the PEt₃-on-¹⁹⁹Hg region of the species with n = 3 is ${}^{2}J(\text{Et}_{3}\text{P}^{199}\text{Hg}-\text{S}-{}^{199}\text{Hg}\text{PEt}_{3})$ rather than $^{2}J(Et_{3}P^{199}Hg-S-^{199}HgPPh_{3})$. As expected, the values of ^{2}J are of the same magnitude as the corresponding couplings in the parent complexes.

Details of the ³¹P NMR spectra of $[(\mu-SPh)_6(HgPPh_3)_{4-n}$ - $(HgPEt_3)_n]^{2+}$ are given in Table II. From these data it can be seen that each individual complex can be characterized by its value(s) of ${}^{1}J({}^{199}Hg-{}^{31}P)$. This feature makes analysis of the ${}^{199}Hg$ NMR spectra of the complexes straightforward, since the spectra consist of doublets, with splitting ${}^{1}J({}^{199}Hg-{}^{31}P)$ (some with additional fine structure due to ${}^{3}J({}^{199}Hg-{}^{31}P)$). Table II contains the ${}^{199}Hg$ NMR chemical shifts found by using this correlation between the ${}^{31}P$ and ${}^{199}Hg$ NMR spectra.

The complexes $[(\mu\text{-SePh})_6(\text{HgPPh}_3)_{4-n}(\text{HgPEt}_3)_n]^{2+}$ give reduced-temperature ³¹P NMR spectra that are very similar to those of the sulfur analogues and can be assigned and analyzed in an identical manner. Again the values of ${}^{1}J({}^{199}\text{Hg}-{}^{31}\text{P})$ allow a correlation of the ${}^{199}\text{Hg}$ and ${}^{31}\text{P}$ NMR spectra. Most of the ${}^{199}\text{Hg}$ NMR signals for the complexes with mixed terminal ligands showed ${}^{77}\text{Se}$ satellites, like the spectrum of 1 but unlike that of 7 (see above). In the ${}^{77}\text{Se}$ NMR spectra of this series, a total of nine lines is expected if δ_{Se} is sensitive to the nature of all the terminal ligands.¹³ Seven or possibly eight signals are observed, in the region $\delta_{\text{Se}} = -1.5$ to $+20.7.{}^{33}$ We conclude that δ_{Se} is sensitive to the nature of all ligands present but that some signal overlap occurs. Full details of the ${}^{31}\text{P}$, ${}^{199}\text{Hg}$, and ${}^{77}\text{Se}$ NMR spectra of $[(\mu\text{-SePh})_6(\text{HgPPh}_3)_{4-n}(\text{HgPEt}_3)_n]^{2+}$ have been deposited as supplementary material.

For the two series with mixed terminal phosphines we find the following changes as *n* increases: (a) both $\delta_P(PPh_3)$ and $\delta_P(PEt_3)$ show slight monotonic increases; (b) $\delta_{Hg}(^{199}Hg \text{ on PPh}_3)$ changes irregularly and $\delta_{Hg}(^{199}Hg \text{ on PEt}_3)$ decreases monotonically; (c) both $^1J(^{199}Hg-^{31}PPh_3)$ and $^1J(^{199}Hg-^{31}PEt_3)$ decrease. We also note again (see above) that for comparable complexes the values of $^1J(^{199}Hg-^{31}P)$ are smaller in the SePh complexes than in the SPh complexes, while those of $^3J(^{199}Hg-^{31}P)$ and $^4J(^{31}P-^{31}P)$ are

⁽⁴⁶⁾ Eichbichler, J.; Peringer, P. Chem. Ber. 1984, 117, 1215.

⁽⁴⁷⁾ Similar but less well-resolved spectra are observed when Me₂CO is used as solvent.

	PPh ₃		PEt ₃ Chemical S		113	PPh ₁		PEt ₃	
n	$\delta_{\mathbf{P}}^{b}$	δ _{Hg} ^c	δ_{P}^{b}	δ_{Hg}^{c}	n	δ_{P}^{b}	δ _{Hg} ^c	δ _P ^b	δ _{Hg} ^c
0 ^d	38.5	-450 ^e		· · · · · · · · · · · · · · · · ·	3	39.1	-434	48.5	-390
1	38.7	-455°	47.3	-365	48			49.2	-392
2	38.9	-452 ^f	47.7	-378					
		PPh		r Spin-Spin Coupling	g Constant Et ₃	s (Hz)		<i></i>	
n	$\frac{1}{J(^{199}\text{Hg}-^{31}\text{P})^{h}}$		13 $^{3}J(^{199}\text{Hg}-^{31}\text{P})^{h}$			(g- ³¹ P) ⁱ	⁴ J(³¹ P- ³¹ P) ⁱ	$^{2}J(^{199}\text{Hg}-^{199}\text{Hg})$	
0 ^d	4147		33 ^{ej}			·····	11	450 ± 10^{e}	
1	4027		31 ^{ej}	4763			10	$410 \pm 10^{e,l}$	
2	388	3	m	4713	15 ^k		10		
3	374	1	m	4638		15°	10	$\sim 420^{f,n}$	
48				4550	160		9	392 ± 5	

^a As an equilibrium mixture of ClO₄⁻ salts in a solution where [Hg₄]_{total} = 0.05 mol/L of solvent, and PEt₃:PPh₃ = 1:1 unless noted otherwise. ^b Relative to external 85% H₃PO₄; estimated error ±0.1 ppm. ^cRelative to external pure HgMe₂; measured relative to external 0.1 M Hg(ClO₄)₂(aq) and converted to HgMe₂ as reference by using δ_{Hg} (HgMe₂) = δ_{Hg} (0.1 M Hg(ClO₄)₂(aq)) - 2253.³⁴ Estimated error ±1 ppm. ^dIn a solution of [Hg₄(SPh)₆(PPh₃)₄](ClO₄)₂ where [Hg₄] = 0.05 mol/L of solvent, δ_{P} = 38.4, δ_{Hg} = -450, ¹J(¹⁹⁹Hg⁻³¹P) = 4138 ± 2 Hz, ⁴J(³¹P⁻³¹P) = 11 ± 1 Hz, ²J(¹⁹⁹Hg⁻¹⁹⁹Hg) = 448 ± 2 Hz, and ³J(¹⁹⁹Hg⁻³¹P) = 35 ± 1 Hz. ^cIn a solution where [Hg₄]_{total} = 0.05 mol/L of solvent and PEt₃:PPh₃ = 1:3. ^fIn the supernatant of a saturated mixture ([Hg₄]_{total} < 0.02 mol/L of CHCl₃) where PEt₃:PPh₃ = 31. ^gIn a solution of [Hg₄(SPh)₆(PEt₃)₄](ClO₄)₂ where [Hg₄]_{total} = 0.005 mol/L of solvent. ^h Estimated error ±3 Hz. ⁱEstimated error ±1 Hz. ^JIn the quartet fine structure of the ¹⁹⁹Hg NMR spectrum. ^k Ph₃P¹⁹⁹Hg⁻S-Hg³¹PEt₃ coupling, observed in ³¹P NMR spectrum (PEt₃ region). ^IIn the ¹⁹⁹Hg satellites of the PPh₃ region of the ³¹P NMR spectrum. ^mCould not be observed with certainty. ⁿIn the ¹⁹⁹Hg satellites of the PEt₃ region of the ³¹P NMR spectrum. ^oEt₃P¹⁹⁹Hg^{-S}-Hg³¹PEt₃ coupling, observed in the ³¹P NMR spectrum (PEt₃ region).

larger. An interesting observation for the SePh complexes is that ${}^{3}J(Ph_{3}P^{199}Hg-Se-Hg-{}^{31}PEt_{3})$ (44-49 Hz³³) and ${}^{3}J(Ph_{3}P^{199}Hg-Se-Hg-{}^{31}PPh_{3})$ (50 Hz, Table I) are about twice as large as ${}^{3}J(Et_{3}P^{199}Hg-Se-Hg-{}^{31}PEt_{3})$ (23-24 Hz, Table I and supplementary material).

(b) $[(\mu$ -SPh)₆(HgPPh₃)_{4-n}(HgL')_n]²⁺ (L' = AsPh₃ or SbPh₃). For L' = AsPh₃, equilibrium mixtures of these mixed-ligand complexes were made according to either eq 3 or eq 4. Analysis of the ³¹P and ¹⁹⁹Hg NMR spectra³³ of this system as described above allowed characterization of the full series $[(\mu$ -SPh)₆-(HgPPh₃)_{4-n}(HgAsPh₃)_n]²⁺.

Solutions of the SbPh₃-containing clusters were prepared as in eq 4 only. The reduced-temperature ³¹P NMR spectra³³ of $[(\mu$ -SPh)₆(HgPPh₃)_{4-n}(SbPh₃)_n]²⁺ are very similar to those of the AsPh₃ analogues for n = 1 and 2 and can be analyzed in the same way. These two complexes were also characterized by ¹⁹⁹Hg NMR.³³ However, we have no good explanation for the appearance in the ³¹P NMR spectra of two approximately equally intense signals, both with ¹⁹⁹Hg satellites, at the position expected for the complex with n = 3. Unfortunately, the lack of $[(\mu$ -SPh)₆(HgSbPh₃)₄]²⁺ precludes a detailed study of the SbPh₃-rich part of this series by either ³¹P or ¹⁹⁹Hg NMR.

At ambient probe temperature much of the fine structure found in the reduced-temperature ³¹P and ¹⁹⁹Hg NMR spectra of mixtures of $[(\mu$ -SPh)₆(HgPh₃)_{4-n}(HgL')_n]²⁺ (L' = AsPh₃ or SbPh₃) is lost. Exchange averaging of the ³¹P NMR spectra of the species with n = 1-3 produces a center band that is a single line, but this has ¹⁹⁹Hg satellites. Thus the ¹⁹⁹Hg³¹PPh₃ fragment is long-lived on the time scale of ¹J under conditions where averaging of its environment is rapid on the ³¹P NMR chemical shift time scale, i.e. 2×10^{-4} s $\lesssim \tau \lesssim 4 \times 10^{-3}$ s. A separate but broadened ³¹P NMR spectrum is found for 2, when present. Evidently 2 is longer lived as a cluster than the complexes with mixed terminal ligands.

Considering all the series $[(\mu$ -SPh)₆(HgPPh₃)_{4-n}(HgL)_n]²⁺ (L = PEt₃, PPh₃, AsPh₃ or SbPh₃), the increases in δ_P (PPh₃) caused by remote terminal substitution, i.e. by an increase in *n*, are in the order PPh₃ < PEt₃ < AsPh₃ < SbPh₃. The corresponding increases in δ_{Hg} (HgPPh₃) are in the order PPh₃ < AsPh₃ < SbPh₃. (In the series $[(\mu$ -EPh)₆(HgPPh₃)_{4-n}(HgPEt₃)_n]²⁺ δ_{Hg} (HgPPh₃) varies irregularly (Tables II and (supplementary material) S2).)

(iii) $[(\mu-SPh)_{6-m}(\mu-SePh)_m(HgPPh_3)_4]^{2+}$. Mixtures of 1 and 2 give very complicated reduced-temperature ³¹P and ¹⁹⁹Hg NMR spectra, as exemplified by parts a and b and part c of Figure 3, respectively. The spectra can be understood in terms of redis-

tribution to form adamantanoid complexes with mixed-chalcogen cores according to eq 5.

+ 2
$$\rightleftharpoons$$
 [(μ -SPh)_{6-m}(μ -SePh)_m(HgPPh₃)₄]²⁺ (5)

In the ³¹P NMR spectrum shown in Figure 3a,b, the center bands fall into four regions. The most shielded region includes the signal due to 1 while the least shielded region includes the signal of 2. Therefore, it seems that from high to low frequency the four regions should be associated with the four possible combinations of geminal atoms S₃, S₂Se, SSe₂, and Se₃, respectively.⁴⁸ The additional complexity observed within each region has two sources: sensitivity of δ_P to the nature of the chalcogens four bonds away from phosphorus and non-zero four-bond ³¹P-³¹P coupling in those clusters containing more than one environment for ³¹P.

It is straightforward to show that a total of 20 different environments can occur for ³¹P and ¹⁹⁹Hg in the full series [(μ - $SPh)_{6-m}(\mu-SePh)_m(HgPPh_3)_4]^{2+}$ and to deduce the relative populations of the different environments in each complex.³³ Also, it is known (Table I) that ${}^{4}J({}^{31}P-Hg-Se-Hg-{}^{31}P) > {}^{4}J({}^{31}P-Hg-Se-Hg-{}^{31}P) > {}^$ Hg-S-Hg-³¹P). Then proceeding as discussed above, using the signal multiplicities and intensity changes as the 1:2 ratio is changed, it is possible to assign the ³¹P NMR spectra of the series $[(\mu-SPh)_{6-m}(\hat{S}ePh)_m(HgPPh_3)_4]^{2+}$ completely. Detailed assignments have been deposited as supplementary material. It was helpful to find that $\delta_{\rm P}$ increases according to the nature of the distant chalcogen atoms in the same order as for the geminal chalcogen atoms, $S_3 > S_2Se > SSe_2 > Se_3$. The change caused by the change of a distant atom is around 1 order of magnitude smaller than the result of a geminal change, however. A second useful generalization also evolves. There is only a small range of values of ${}^{1}J({}^{199}Hg-{}^{31}P)$ associated with a given combination of geminal chalcogen atoms: \sim 4160 to 4180 Hz for S₃, \sim 3720 to 3780 Hz for S₂Se, 3356 to \sim 3480 Hz for SSe₂, and \sim 2990 to ~ 3040 Hz for Se₃.³³

All the $S_{6-m}Se_m$ cores that are possible for tetranuclear clusters are found to occur, including isomeric forms when m = 2-4. Thus the nuclearity and integrity of the clusters are confirmed.

In the ¹⁹⁹Hg NMR spectra, there are apparently five groups of signals, as shown in Figure 3c. However, each chemically different ¹⁹⁹Hg³¹PPh₃ grouping should give rise to a *doublet*, as a result of ${}^{1}J({}^{199}\text{Hg}{}^{-31}\text{P})$. As confirmed by the ¹⁹⁹Hg NMR

⁽⁴⁸⁾ The alternative possibility that δ_P is most sensitive to the chalcogens four bonds distant does not seem plausible and so has been disregarded.

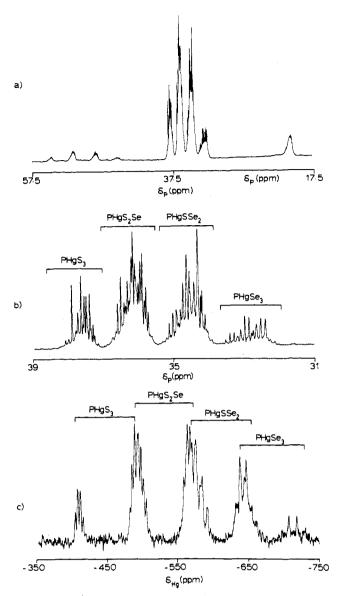


Figure 3. NMR spectra of a 1.1:1 $[(\mu-SPh)_6(HgPPh_3)_4](ClO_4)_2-[(\mu-SePh)_6(HgPPh_3)_4](ClO_4)_2$ mixture in CHCl₃ at 213 K, showing the formation of $[(\mu-SPh)_{6-m}(\mu-SePh)_m(HgPPh_3)_4]^{2+}$: (a) 121.42-MHz ³¹P{¹H} NMR spectrum; (b) expansion of the center band region of the ³¹P NMR spectrum (with resolution enhancement); (c) 53.65-MHz ¹⁹⁹Hg{¹H} NMR spectrum. In (b) and (c) the regions associated with the four different coordination kernels of mercury are indicated.

spectrum at 35.75 MHz, the spectrum results from four overlapping groups of doublets. The lowest frequency group contains the spectrum of 1 and the highest frequency group that of 2. Accordingly the groups can be assigned to the kernels $Ph_3^{31}P^{199}HgSe_3$, $Ph_3^{31}P^{199}HgSe_2S$, $Ph_3^{31}P^{199}HgSe_2$, and $Ph_3^{31}P^{199}HgS_3$ from low to high frequency. These assignments are confirmed by the values of ${}^{1}J({}^{199}Hg{}^{-31}P)$ within the groups, which decrease with increasing Se substitution as found in the ${}^{31}P$ NMR spectra (see above).

It is evident that the δ_{Hg} is influenced mainly by the atoms bound directly to ¹⁹⁹Hg. The complexity of each grouping in the ¹⁹⁹Hg NMR spectrum shows that there is, in addition, an effect of the chalcogens three bonds distant. Again, a consideration of the number and relative intensities of the doublets (from ¹J-(¹⁹⁹Hg-³¹P)) that can be expected for each possible $S_{6-m}Se_m$ core allows satisfactory assignment.³³ The effect on δ_{Hg} of changing distant chalcogens is a shielding for each Se-for-S substitution. This effect is in the same direction as, and approximately 4-13 % of, the effect of changing geminal chalcogen atoms. As a whole, the ¹⁹⁹Hg NMR results lead to the same overall conclusion as the ³¹P NMR data.

In contrast to the well-resolved ³¹P and ¹⁹⁹Hg NMR spectra obtained for mixtures of 1 and 2 at 213 K, the corresponding ⁷⁷Se NMR spectra (at 57.20 MHz) were poorly resolved with relatively small chemical shift dispersion. In addition to the signal from 1 at $\delta_{Se} = 6.7$, a broad resonance was found with $\delta_{Se} \simeq 9.1 (\Delta \nu_{1/2} \approx 100 \text{ Hz})$ and an incompletely resolved group of signals in the region $\delta_{Se} \approx 12-15$, with the signals of higher chemical shift occurring at higher S:Se ratios. All the new signals have ¹⁹⁹Hg satellites, with ¹J(¹⁹⁹Hg-³¹P) $\approx 850-900$ Hz. Following ref 13, we tentatively attribute the different signal positions to different combinations of the four chalcogen atoms geminal to ⁷⁷Se. It seems that replacement of a geminal Se by S causes a deshielding of ⁷⁷Se, which is opposite to the effect found¹³ for $[(\mu-SPh)_{6-m}$ - $(\mu-SPh)_m(ZnI)_4]^{2^-}$.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support. We thank Professor M. J. Stillman of this department for helpful discussions, Professor I. G. Dance (University of New South Wales) for making copies of his work available to us prior to publication, and S. Wilson and V. M. Richardson, both of this department, for technical assistance in obtaining some of the NMR spectra. This report is based in part on the Honours Chemistry Research Project of M.H.T., 1985–1986.

Registry No. 1, 110903-73-6; 2, 110903-75-8; 3, 110903-77-0; 4, 110903-79-2; 5, 110934-43-5; 6, 110903-81-6; 7, 110903-83-8; [(μ-S-n-Pr)₆(HgPPh₃)₄](ClO₄)₂, 110934-45-7; [(µ-S-n-Bu)₆(HgPPh₃)₄](ClO₄)₂, 110903-85-0; [(µ-SPe)₆(HgPPh₃)₄](ClO₄)₂, 110903-87-2; [(µ-SPh)₆- $(HgPPh_3)_3(HgPEt_3)](ClO_4)_2, 110903-89-4; [(\mu-SPh)_6(HgPPh_3)_2-(HgPEt_3)_2](ClO_4)_2, 110903-91-8; [(\mu-SPh)_6(HgPPh_3)(HgPEt_3)_3] (ClO_4)_2$, 110903-93-0; $[(\mu-SePh)_6(HgPPh_3)_3(HgPEt_3)](ClO_4)_2$, 110903-95-2; $[(\mu-\text{SePh})_6(\text{HgPPh}_3)_2(\text{HgPEt}_3)_2](\text{ClO}_4)_2$, 110903-97-4; $[(\mu-\text{SePh})_6(\text{HgPPh}_3)(\text{HgPEt}_3)_3](\text{ClO}_4)_2, 110903-99-6; [(\mu-\text{SPh})_6-6](\mu-\text{SPh})_6-6](\mu-\text{SePh})_6$ $(HgPPh_3)_3(HgAsPh_3)](ClO_4)_2$, 110904-01-3; $[(\mu-SPh)_6(HgPPh_3)_2 (HgAsPh_3)_2](ClO_4)_2, 110904-03-5; [(\mu-SPh)_6(HgPPh_3)(HgAsPh_3)_3]-(ClO_4)_2, 110904-05-7; [(\mu-SPh)_6(HgPPh_3)_3(HgSbPh_3)](ClO_4)_2,$ 110904-07-9; $[(\mu-SPh)_6(HgPPh_3)_2(HgSbPh_3)_2](ClO_4)_2$, 110904-09-1; $[(\mu-SPh)_6(HgPPh_3)(HgSbPh_3)_3](ClO_4)_2, 110904-11-5; [(\mu-SPh)_6(\mu-SePh)(HgPPh_3)_4](ClO_4)_2, 110904-13-7; cis-[(\mu-SPh)_4(\mu-SePh)_2-10904-13-7; cis-[(\mu-SP$ $(HgPPh_3)_4](ClO_4)_2$, 110904-15-9; trans- $[(\mu-SPh)_4(\mu-SePh)_2 (HgPPh_3)_4](ClO_4)_2$, 110904-17-1; $fac(1)-[(\mu-SPh)_3(\mu-SePh)_3-$ 110904-19-3; mer-[(µ-SPh)₃(µ-SePh)₃- $(HgPPh_3)_4](ClO_4)_2,$ $\begin{array}{l} (HgPPh_{3})_{4}](ClO_{4})_{2}, \quad 110904-21-7; \quad fac(2)\cdot[(\mu\text{-SPh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{4}(\mu\text{-SPh})_{3}(\mu\text{-SePh})_{4}(\mu\text{-SPh})_{3}(\mu\text{-SePh})_{4}(\mu\text{-SPh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{4}(\mu\text{-SPh})_{3}(\mu\text{-SePh})_{4}(\mu\text{-SPh})_{3}(\mu\text{-SePh})_{4}(\mu\text{-SPh})_{3}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{4}(\mu\text{-SPh})_{3}(\mu\text{-SePh})_{4}(\mu\text{-SePh})_{3}(\mu\text{-SePh})_{4}(\mu\text{-SePh})$ $(ClO_4)_2$, 110904-27-3; $[(\mu-SPh)(\mu-SePh)_5(HgPPh_3)_4](ClO_4)_2$, 110904-29-5; Hg(AsPh₃)₂(ClO₄)₂, 21393-75-9; Hg(PEt₃)₂(ClO₄)₂, 110904-30-8; Hg(SMe)₂, 21094-80-4; Hg(SEt)₂, 811-50-7; Hg(S-n-Pr)₂, 4080-28-8; $Hg(S-i-Pr)_2$, 54760-87-1; $Hg(S-n-Bu)_2$, 23601-34-5; $Hg(S-t-Bu)_2$, $\begin{array}{l} \text{Hg}(\text{S-H1})_{2}, \text{ 5-Ho}(\text{S-H1})_{2}, \text{ 4080-30-2}; \text{ Hg}(\text{S-c-C}_{6}\text{H}_{1})_{2}, 110904-31-9; \\ \text{Hg}(\text{SCH}_{2}\text{Ph})_{2}, 110874-75-4; \text{ Hg}(\text{SPh})_{2}, 21514-24-9; \text{ Hg}(\text{SePh})_{2}, \\ 21514-25-0; \ ^{77}\text{Se}, 14681-72-2; \ ^{199}\text{Hg}, 14191-87-8; \text{ Hg}(\text{PPh}_{3})_{2}(\text{ClO}_{4})_{2}, \end{array}$ 21393-72-6.

Supplementary Material Available: Tables of assigned ¹³C NMR data for $[(\mu-\text{ER})_6(\text{HgL})_4]^{2+}$, assigned ³¹P, ¹⁹⁹Hg, and ⁷⁷Se NMR data for $[(\mu-\text{SePh})_6(\text{HgPPh}_3)_{4-n}(\text{HgPEt}_3)_n]^{2+}$, assigned ³¹P and ¹⁹⁹Hg NMR data for $[(\mu-\text{SePh})_6(\text{HgPPh}_3)_{4-n}(\text{HgL}')_n]^{2+}$ (L = AsPh₃, SbPh₃) and $[(\mu-\text{SPh})_{6-m}(\mu-\text{SePh})_m(\text{HgPPh}_3)_4]^{2+}$, and the different environments possible in $[(\mu-\text{SPh})_{6-m}(\mu-\text{SePh})_m(^{169}\text{HgPPh}_3)(^0\text{HgPPh}_3)_3]^{2+}$ (8 pages). Ordering information is given on any current masthead page.