hot toluene. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.5–7.3 (br, m). IR (KBr): 3040 w, 1585 m, 1485 s, 1450 m, 1380 vs, 1305 w, 1260 m, 1150 w, 1070 w, 1045 s, 1020 w, 1000 m, 910 s, 885 s, 870 s, 825 w, 795 s, 730 m, 690 s, 645 s, 610 m, 515 w, 485 w, 460 w, 415 w, 355 m cm<sup>-1</sup>.

Li[S<sub>2</sub>CNC(CH<sub>3</sub>)<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>C(CH<sub>3</sub>)<sub>2</sub>]. A 2.0-g (0.014 mol, dried over 4A sieves and deoxygenated) sample of tetramethylpiperidine and 20 mL of heptane were placed in a 100-mL Schlenk flask. The solution was cooled to 0 °C and 8.7 mL of BuLi (1.55 M in hexanes, 0.013 mol) was added dropwise. Approximately halfway through the addition a colorless precipitate was observed. After the addition the reaction was warmed to room temperature and stirred for 1 h. Next, a solution of 0.85 mL (1.08 g, 0.014 mol) of CS<sub>2</sub> in 10 mL of heptane was added over a 20-min period; the solution turned orange. After the solution was allowed to stand at room temperature, yellow crystals were deposited, which were filtered, washed with heptane, and dried under vacuum. Yield: 1.8 g, 60%.

 $MoO_{2}[S_{2}CNC(CH_{3})_{2}(CH_{2})_{3}C(CH_{3})_{2}]_{2}$ . A 1.0-g (4.5-mmol) sample of Li[S2CNC(CH3)2(CH2)3C(CH3)2] was placed in a 50-mL flask fitted with a pressure-equalizing addition funnel containing 0.30 g (1.5 mmol) MoO<sub>2</sub>Cl<sub>2</sub>. To both the flask and the funnel were added 20 mL of ether, dissolving both reagents. The flask was cooled to 0 °C, and the MoO<sub>2</sub>Cl<sub>2</sub> solution was added dropwise, with stirring. A purple solid precipitated during the addition and was isolated by filtration. This product was identified as Mo<sub>2</sub>O<sub>3</sub>(R<sub>2</sub>dtc)<sub>4</sub> by its color and Mo-O absorption in the infrared spectrum at 940 cm<sup>-1</sup>. Yield: 88%. This product was placed in 10 mL of toluene, and to it was added 0.06 g (6.0 mmol) of pyridine N-oxide in 10 mL of toluene. After the mixture was stirred overnight, the orange product was isolated by filtration and recrystallized from hot toluene. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  1.76 (s, 12 H), 1.55–1.95 (m, 6 H). IR (KBr): 2960 vs, 2760 m, 1587 m, 1460 m, 1380 vs, 1350 s, 1281 m, 1254 m, 1161 s, 1124 m, 1024 m, 986 m, 973 w, 904 s, 872 s, 803 m, 762 w, 601 w, 538 w.

**Cyclic Voltammetry.** Acetonitrile was purified by stirring over activated alumina, distilling first from a mixture of  $KMnO_4$  (1 g/100 mL) and  $Li_2CO_3$  (1 g/100 mL), and then twice from CaH<sub>2</sub>. It was stored under nitrogen in a glass bulb fitted with a high-vacuum Teflon stopcock. Tetrabutylammonium hexafluorophosphate was recrystallized from hot

 $H_2O/EtOH$  and then dried under vacuum overnight at 120 °C. Measurements were made with a Princeton Applied Research Model 173 potentiostat/galvanostat equipped with a Model 176 current to voltage converter. The voltammograms were recorded on a Houston Omnigraphic Series 2000 X-Y recorder.

All measurements were made in a nitrogen-filled glovebox. In a typical procedure, the voltammetry cell was fit with a freshly polished glassy-carbon working electrode, and a platinum-wire counter electrode. The reference electrode consisted of a silver wire immersed in a solution of solvent and electrolyte, and was separated from the voltammetry cell by a porous glass disk. The cell was then charged with 15 mL of 0.1 M n-Bu<sub>4</sub>NPF<sub>6</sub> in acetonitrile. Enough of the molybdenum complex under investigation was added to make a 1 mM solution. The cyclic voltammogram was then recorded. Next, a solution of ferrocene in acetonitrile was added such that the ferrocene concentration was 0.5 mM. The potential and electrochemical reversibility of the ferrocene/ferrocenium redox couple was recorded and used as an internal standard.<sup>25</sup>

The molybdenum complexes described in this report exhibit irreversible redox behavior. Thus, no detectable oxidation wave is observed during reverse anodic scans. This is a general observation for *cis*-dioxomolybdenum(VI) complexes.<sup>17</sup> As a result, we are able to report only the potential at the maximum cathodic current,  $E_{pc}$ . Topich<sup>17</sup> has shown that these values may be used to relate relative oxidizing strengths in place of the true Mo(VI)/Mo(V) potentials if the voltammograms are recorded under identical conditions.<sup>26</sup> All measurements were made at room temperature, and the scan rate was held constant at 100 mV/s.

Acknowledgment. The laboratory expertise and enthusiasm of Teresa Fortin is sincerely appreciated. Discussions with members of the Union Carbide Catalysis Skill Center and Professors B. L. Shaw, G. L. Geoffroy, F. A. Cotton, and T. J. Marks proved invaluable. I also thank Union Carbide Corp. for permission to publish these results.

(26) For an explanation see: Hershberger, J. W.; Klingler, R. J.; Kochi, J. K. J. Am. Chem. Soc. 1982, 104, 3034-3043.

Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011

# Phosphine Basicities As Determined by Enthalpies of Protonation

# Russell C. Bush and Robert J. Angelici\*

#### Received August 6, 1987

Enthalpies of protonation  $(\Delta H_{\rm HP}$ 's) have been determined for 12 tertiary alkyl-, aryl-, and mixed alkylarylphosphines from the heats of the reactions  $R_3P + CF_3SO_3H \rightarrow R_3PH^+CF_3SO_3^-$ , in 1,2 dichloroethane, by use of titration calorimetry. The  $\Delta H_{\rm HP}$ 's range from -17.9 kcal mol<sup>-1</sup> for  $(p\text{-}CIC_6H_4)_3P$  to -36.6 kcal mol<sup>-1</sup> for  $(t\text{-}Bu)_3P$ . An excellent correlation of the  $\Delta H_{\rm HP}$  values with reported  $pK_a$ 's is observed. Comparisons with other basicity measures and correlations with Hammett  $\sigma_{\rm para}$ , Taft  $\sigma^*$ , and Kabachnik  $\sigma^{\rm ph}$  substituent parameters are also discussed.

# Introduction

A casual examination of the current literature of transitionmetal complexes is all that is required to gauge the importance of phosphines as ligands in organometallic and coordination chemistry. The ability of phosphines to bind to transition metals is usually described in terms of steric and electronic properties. Quantitative determination of these binding characteristics has been the aim of a number of studies,<sup>1</sup> leading to parameters such as Tolman's cone angles ( $\theta$ ) and  $\nu$ (CO) values (for the A<sub>1</sub> vibration in Ni(CO)<sub>3</sub>PR<sub>3</sub>) for describing steric and electronic effects, respectively, of phosphorus ligands. These parameters have often been employed to understand reactions involving phosphines.<sup>1c,d,2</sup> Attempts to further dissect electronic effects have led to the development of a method for quantitatively analyzing reactions in terms of the  $\sigma$ -bonding,  $\pi$ -bonding, and steric properties of phosphines.<sup>3</sup> Application of this method to data for ligand-dependent substitutions and reactions of phosphine-containing complexes has shown that, although  $\pi$ -bonding is important in some cases,<sup>3b</sup> most of the data can be explained in terms of steric

<sup>(25)</sup> Gagné, R. R.; Koval, C. A.; Lisensky, G. C. Inorg. Chem. 1980, 19, 2855-2857.

 <sup>(</sup>a) Strohmeier, W.; Müller, F.-J. Chem. Ber. 1967, 100, 2812. (b) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2953. (c) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956. (d) Tolman, C. A. Chem. Rev. 1977, 77, 313.

<sup>(2) (</sup>a) Burke, N. E.; Singhal, A.; Hintz, M. J.; Leg, J. A.; Hui, H.; Smith, L. R.; Blake, D. M. J. Am. Chem. Soc. 1979, 101, 74. (b) Schenkluhn, H.; Scheidt, W.; Weimann, B.; Zähres, M. Angew. Chem., Int. Ed. Engl. 1979, 18, 401. (c) Nolan, S. P.; Hoff, C. D. J. Organomet. Chem. 1985, 290, 365. (d) See references cited in ref 3a.

 <sup>(</sup>a) Golovin, M. N.; Rahman, Md. M.; Belmonte, J. E.; Giering, W. P. Organometallics 1985, 4, 1981.
 (b) Rahman, Md. M.; Hong, Y. L.; Prock, A.; Giering, W. P. Organometallics 1987, 6, 650.

properties and  $\sigma$ -bonding alone.<sup>3a</sup>

In view of the importance of phosphine  $\sigma$ -bonding in determining reactivity, a reliable measure of  $\sigma$ -bonding ability is critical to the interpretation of reactivity data. Values of  $\Delta G$  or  $\Delta H$  for reactions of phosphines with protonic or Lewis acids are the most obvious choices for such a measure. Free energies and enthalpies of phosphine adduct formation with group 13 Lewis acids  $(BH_3,$ BF<sub>3</sub>, BMe<sub>3</sub>, and GaMe<sub>3</sub>, among others) have been measured,<sup>4</sup> as have reaction enthalpies (and some free energies) with mercury dihalides<sup>5</sup> and silver salts.<sup>6</sup> Gas-phase proton affinities have also been determined for a few phosphines;<sup>7</sup> the results in some cases contrast sharply with what is observed in solution studies.<sup>7d</sup>

The basicities of phosphines toward protonic acids in solution are the most commonly encountered measures of  $\sigma$ -bonding ability in metal complexes. A few  $pK_a$ 's have been evaluated for phosphines in aqueous EtOH,<sup>8</sup> but the most systematic investigation was that reported by Streuli for potentiometric measurements in polar aprotic media.<sup>9</sup> The  $pK_a$ 's (referenced to aqueous solution) were estimated from the potential, measured with a glass electrode, at half-neutralization in titrations of the phosphines in  $CH_3NO_2$ with 0.1 N HCl. The basicities determined in this manner are consistent with the expectations for substituent effects from organic chemistry, i.e., higher  $pK_a$ 's for phosphines with more electrondonating alkyl groups than with aryl groups, and a correlation was noted between the pK<sub>a</sub>'s and Taft's  $\sigma^*$  substituent parameters<sup>10</sup> (designed to gauge electronic effects of substituents bound to carbon). These  $pK_a$ 's, and others similarly determined,<sup>11</sup> are the basis for many mechanistic proposals in organo-transition-metal chemistry.

Our particular interest in measures of phosphine basicity stems from a desire to study how phosphines contribute to the basicities of transition metals in complexes. Numerous phosphine complexes are known to undergo protonation at the metal center;<sup>12,13</sup> one would expect the basicity in a series of  $M'PR_3$  (M' = a particular metal-ligands fragment;  $PR_3$  = various phosphines) complexes to vary linearly with the basicity of  $PR_3$ . In order to make correlations of phosphine basicity with metal-phosphine complex basicity as direct as possible, a system for measuring the basicities of phosphines in a reliable way, which would also be suitable for metal complexes, was desired. The development of such a system and its application to phosphine basicity measurement are the subject of the present study.

The basicity measure employed is the protonation enthalpy  $(\Delta H_{\rm HP})$  of a phosphine, as determined by calorimetric titration with  $CF_3SO_3H$  in 1,2-dichloroethane (eq 1). This acid/solvent

$$\mathbf{R}_{3}\mathbf{P} + \mathbf{C}\mathbf{F}_{3}\mathbf{S}\mathbf{O}_{3}\mathbf{H} \xrightarrow[\mathsf{DCE}]{} [\mathbf{R}_{3}\mathbf{P}\mathbf{H}^{+}\mathbf{C}\mathbf{F}_{3}\mathbf{S}\mathbf{O}_{3}^{-}]; \quad \Delta \mathbf{H}_{\mathrm{HP}} \quad (1)$$

- (a) Stone, F. G. A. Chem. Rev. 1958, 58, 101. (b) Graham, W. A. G.; (4) Stone, F. G. A. J. Inorg. Nucl. Chem. 1956, 3, 164
- (a) Farhangi, Y.; Graddon, D. P. Aust. J. Chem. 1973, 26, 983. (b) Gallagher, M. J.; Graddon, D. P.; Sheikh, A. R. Aust. J. Chem. 1976,
- (6) Hulten, F.; Persson, I. Inorg. Chim. Acta 1987, 128, 43.
  (7) (a) Holtz, D.; Beauchamp, J. L.; Euler, J. R. J. Am. Chem. Soc. 1970, 92, 7045. (b) McDaniel, D. H.; Coffman, N. B.; Strong, J. M. J. Am. Chem. Soc. 1970, 92, 6697. (c) Staley, R. H.; Beauchamp, J. L. J. Am. Chem. Soc. 1974, 96, 6252. (d) Ikuta, S.; Kebarle, P.; Bancroft, G. M.; Chan, T.; Puddephatt, R. J. J. Am. Chem. Soc. 1982, 104, 5899. (e) Ikuta, S.; Kebarle, P. Can. J. Chem. 1983, 61, 97. (a) Davies, W. C.; Addis, H. W. J. Chem. Soc. 1937, 1622. (b) Goetz,
- (8)(a) Birdu, A. Justus Liebigs Ann. Chem. 1965, 682, 71.
  (b) Streuli, C. A. Anal. Chem. 1960, 32, 985.
  (10) Henderson, W. A.; Streuli, C. A. J. Am. Chem. Soc. 1960, 82, 5791.

- Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60, 716. (a) Shriver, D. F. Acc. Chem. Res. 1970, 3, 231. (b) Pearson, R. G. (11)
- (12)Chem. Rev. 1985, 85, 41. (c) Werner, H. Angew. Chem., Int. Ed. Engl. 1983, 22, 927
- 1983, 22, 927.
  For a few examples, see: (a) Davison, A.; McFarlane, W.; Pratt, L.;
  Wilkinson, G. J. Chem. Soc. 1962, 3653. (b) Laing, K. R.; Roper, W.
  R. J. Chem. Soc., A 1969, 1889. (c) Collman, J. P.; Vastine, F. D.;
  Roper, W. R. J. Am. Chem. Soc. 1968, 90, 2282. (d) Oliver, A. J.;
  Graham, W. A. G. Inorg. Chem. 1970, 9, 2653. (e) Arabi, M. S.;
  Mathieu, R.; Poilblanc, R. J. Organomet. Chem. 1976, 104, 323. (f) (13)Werner, R.; Werner, H. Chem. Ber. 1982, 115, 3781. (g) Werner, H.; Gotzig, J. Organometallics 1986, 5, 1337. (h) Hommeltoft, S. I.; Baird, M. C. Organometallics 1986, 5, 190.

system gives rapid and complete protonation even of weakly basic phosphines. The  $\Delta H_{\rm HP}$  values for 12 tertiary phosphines are reported, and comparisons of the results with other measures of basicity are discussed.

#### **Experimental Section**

Purification of Reagents. Inert gases employed in this study were dried by using the following procedures. Argon used in solvent distillation was dried by passage through a 45-cm column of CaSO<sub>4</sub>, while Ar used to maintain an inert atmosphere in the calorimeter reaction vessel was dried with a 20-cm column of 4A molecular sieves and a -78 °C trap; both the CaSO<sub>4</sub> and molecular sieves were dried at 350 °C for 12 h under vacuum. Nitrogen was passed through a 40-cm column of activated  $CaSO_4$  and then through a liquid- $N_2$  trap.

The solvent 1,2-dichloroethane (DCE) was purified by the procedure outlined by Perrin, Armarego, and Perrin,14 by washing with concentrated  $H_2SO_4$ , 5% NaOH, and then distilled  $H_2O$ . The solvent was predried over MgSO<sub>4</sub>, stored in amber bottles over molecular sieves for at least 12 h, and then distilled from P2O5 under Ar immediately before use

Trifluoromethanesulfonic acid (Aldrich) was fractionally distilled under N<sub>2</sub> at ambient pressure. Trifluoroacetic acid was refluxed over, and then fractionally distilled from,  $P_2O_5$  under  $N_2$  after the method of Perrin et al.<sup>14</sup> The acids were distilled (typically 4-8 mL) directly into a graduated reservoir (similar to Kontes Model K-288630), which allowed for delivery of a known volume of acid with minimal exposure to the atmosphere during preparation of acid solutions.

Triphenylphosphine was recrystallized twice from hexanes and then from EtOH by dissolving in the hot solvent, filtering, and allowing the filtrate to cool to 0 °C; the crystals were then stored under  $N_2$ . A solution of tricyclohexylphosphine in hexanes was filtered and evaporated to dryness in a flow of N<sub>2</sub>; alternatively, it was purified by preparing and recrystallizing the CS<sub>2</sub> adduct and then regenerating the phosphine.<sup>15</sup> The phosphines Et<sub>3</sub>P and MePh<sub>2</sub>P (Aldrich) were distilled prior to use, and Me<sub>3</sub>P was generated by heating Me<sub>3</sub>P·AgI (Aldrich) under vacuum. The remaining phosphines,  $(p-ClC_6H_4)_3P$ ,  $(p-FC_6H_4)_3P$ , ( $MeOC_6H_4)_3P$ ,  $(t-Bu)_3P$  (Strem),  $(p-MeC_6H_4)_3P$ ,  $(o-MeC_6H_4)_3P$  (Pressure Chemical), and Me<sub>2</sub>PhP (Aldrich), were used as received.

1,3-Diphenylguanidine ((PhNH)<sub>2</sub>CNH, hereafter referred to as DPG) was available as a primary standard from GFS Chemicals. The compound was dried in an oven at 110 °C for 3-6 h and then stored in a desiccator over P2O3.

Preparation and Standardization of Acid Solutions. A volume of acid (CF<sub>3</sub>SO<sub>3</sub>H or CF<sub>3</sub>CO<sub>2</sub>H) corresponding to approximately 10 mmol was added directly to 100 mL of freshly distilled DCE with use of the graduated acid reservoir. After mixing, 50 mL of solution was transferred via Teflon cannula to a titration buret under  $N_2$ . The acid solution was then standardized by titration against a DCE solution of DPG ( $\sim 1.5$ mmol) in air, using bromophenol blue as indicator.<sup>16</sup> This procedure generally gave concentrations reproducible to  $\pm 0.2\%$ .

Apparatus. The protonation enthalpies were measured with a Tronac Model 458 isoperibol calorimeter equipped with a motor-driven (4 rpm) buret for delivery of titrant. A 50-mL silvered Dewar flask was used as the reaction vessel. Thermistor output was recorded with an Apple II+ computer using the ADALAB instrument interface card (Interactive Microwave, Inc.). Operation of the system was checked by measuring the heat of protonation of tris(hydroxymethyl)aminomethane (THAM) with aqueous HCl. Our value of  $-11.2 \pm 0.3$  kcal mol<sup>-1</sup> is in good agreement with the literature value of -11.33 kcal mol<sup>-1,17</sup>

Experimental Procedure. Glassware was dried in an oven at 140 °C for at least 4 h and allowed to cool in a desiccator over  $P_2O_5$ . The Dewar flask and buret plunger were also stored in a P<sub>2</sub>O<sub>5</sub>-dried desiccator for at least 12 h before a sequence of runs; the Dewar flask was returned to the desiccator between runs.

In a typical experiment, a solution of CF<sub>3</sub>SO<sub>3</sub>H in DCE (generally near 0.1 M) was loaded into the calorimeter buret (2-mL capacity) with use of a Teflon tube. The empty Dewar flask was then attached to the calorimeter's insert assembly, and the insert was lowered into the 25.0 °C bath. The reaction vessel was flushed with Ar for 20-40 min. A 5-mL aliquot of a freshly prepared solution of the phosphine in DCE (approximately 0.033 M) was injected into the reaction vessel via syringe,

- (16)1967.
- (17)Eatough, D. J.; Christensen, J. J.; Izatt, R. M. Experiments in Thermometric and Titration Calorimetry; Brigham Young University Press: Provo, UT, 1974.

<sup>(14)</sup> Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 2nd ed.; Pergamon: New York, 1980. Isslieb, K.; Brack, A. Z. Anorg. Allg. Chem. 1954, 277, 258. Huber, W. Titrations in Nonaqueous Solvents; Academic: New York,

**Table I.**  $\Delta H_{HP}$  and  $pK_{a}(aq)$  Values for Tertiary Phosphines

| $H_{\rm HP}$ , kcal mol <sup>-1 a</sup> | pK <sub>a</sub>                                                                                                                                                 |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17.0 (0.0)4                             |                                                                                                                                                                 |
| 17.9 (0.2)                              | 1.03°                                                                                                                                                           |
| 19.6 (0.2)                              | 1. <b>9</b> 7°                                                                                                                                                  |
| 21.2 (0.1)                              | 2.73 <sup>d</sup>                                                                                                                                               |
| 22.6 (0.2)                              | 3.08°                                                                                                                                                           |
| 23.2 (0.3)                              | 3.84°                                                                                                                                                           |
| 24.1 (0.2)                              | 4.57°                                                                                                                                                           |
| 24.7 (0.0)                              | 4.59°                                                                                                                                                           |
| 28.4 (0.2)                              | 6.50 <sup>d</sup>                                                                                                                                               |
| 31.6 (0.2)                              | 8.65 <sup>d</sup>                                                                                                                                               |
| 33.2 (0.4)                              | 9.70 <sup>d</sup>                                                                                                                                               |
| 33.7 (0.3)                              | 8.69 <sup>d</sup>                                                                                                                                               |
| 36.6 (0.3)                              | 11.4 <sup>c</sup>                                                                                                                                               |
|                                         | $17.9 (0.2)^{b}$ $19.6 (0.2)$ $21.2 (0.1)$ $22.6 (0.2)$ $23.2 (0.3)$ $24.1 (0.2)$ $24.7 (0.0)$ $28.4 (0.2)$ $31.6 (0.2)$ $33.2 (0.4)$ $33.7 (0.3)$ $36.6 (0.3)$ |

"For protonation with CF<sub>3</sub>SO<sub>3</sub>H in DCE solvent at 25.0 °C. <sup>b</sup>Numbers in parentheses are average deviations. <sup>c</sup>Reference 11. <sup>d</sup>Reference 9. <sup>e</sup>Reference 3a.

followed by 45 mL of DCE. The phosphine was kept in slight excess (approximately 10%) of the total amount of acid to be added. The temperature of the reaction vessel contents was adjusted to give a voltage reading below the set point of 0.00 mV (25.0 °C) by electrical heating with the calibration heater or cooling with a flow of Ar. The starting point of each experiment was chosen so that the midpoint of the titration curve would coincide as nearly as possible with the thermistor set point. This minimizes errors due to differences in titrant/titrate temperatures during an experiment. Each run consists of an initial heat capacity determination, titration, and final heat capacity determination, each preceded by a base line acquisition period. Heat capacities were evaluated by resistance heating. Titrations were generally set for 3-3.5 min at a buret delivery rate of  $0.398 \pm 0.001$  mL min<sup>-1</sup>. Tronac specifications list a typical instrument sensitivity of 35 mV °C<sup>-1</sup>. The recorded voltages for the experiments generally spanned about 15 mV, so the overall temperature change during each run was approximately 0.4 °C, and the temperature change during titration was less than 0.2 °C

The thermistor output voltages were recorded at the rate of 1 s<sup>-1</sup>. The voltage/time data were stored on diskette for each run. The data were then analyzed by linear regression for each segment of the experiment: calculated slopes (corrected for base line heat effects) and intersection points were used to determine heat capacities and total reaction heat, by using the general method outlined by Eatough et al.<sup>17</sup> The reaction enthalpies were corrected for the heat of dilution of the acid solution with DCE, resulting in the values of  $\Delta H_{HP}$ . Four experimental runs were used to determine  $\Delta H_{HP}$  for all phosphines except Ph<sub>3</sub>P (five runs), (t-Bu)<sub>3</sub>P (five runs), and  $(c-C_6H_{11})_3P$  (three runs).

Measurement of the heat of dilution was complicated by interference from protonation of traces of H<sub>2</sub>O in the titration vessel. This interference could not be completely eliminated but was minimized by rinsing the Dewar flask with anhydrous Et<sub>2</sub>O, flushing with Ar for 10 min, and then leaving the Dewar flask in a P2O5-dried desiccator for 4 h. This procedure allowed determination of the dilution heat by extrapolation of the data from the final one-third of the titration segment, giving a value of -0.32 kcal mol<sup>-1</sup>

In some  $\Delta H_{\rm HP}$  runs, a slight depression of reaction heat was noted at the beginning of the titration segment. This randomly observed depression was most likely due to traces of H<sub>2</sub>O in the titrant delivery tube, which converted some of the CF<sub>3</sub>SO<sub>3</sub>H in the first titrant portion to the weaker acid,  $(H_3O)(O_3SCF_3)$ . In these instances, the first one-third of the titration data were neglected in the  $\Delta H_{\rm HP}$  calculation.

#### Results

The enthalpies of protonation, with average deviation error limits, determined for 12 common phosphine ligands are listed in Table I. Titration curves of the phosphines exhibited no evidence of incomplete reaction. Neat CF<sub>3</sub>SO<sub>3</sub>H is one of the strongest acids known,<sup>18</sup> and the titration behavior observed in this study indicates that a 0.1 M solution of CF<sub>3</sub>SO<sub>3</sub>H in DCE is a strongly acidic medium as well, completely protonating even the weak base  $(p-\text{ClC}_6\text{H}_4)_3\text{P}$  (p $K_a = 1.03$ ). The  $\Delta H_{\text{HP}}$  values have been corrected for the heat of dilution of the acid solution, which was found to be -0.32 kcal mol<sup>-1</sup> for a 0.1011 M solution. As the range of acid concentrations varied only from 0.0951 to 0.1148 M, we consider a correction of 0.3 kcal mol<sup>-1</sup> valid for all of the experimental runs with CF<sub>3</sub>SO<sub>3</sub>H in DCE.

Our reference base for the evaluation of the solvent/acid system was DPG  $(pK_a = 10.1)$ ,<sup>19</sup> and its protonation enthalpy with CF<sub>3</sub>SO<sub>3</sub>H was found to be  $-37.2 \pm 0.4$  kcal mol<sup>-1</sup>. To compare the strength of CF<sub>3</sub>SO<sub>3</sub>H and CF<sub>3</sub>CO<sub>2</sub>H, the protonation enthalpies of DPG and Et<sub>3</sub>P were also determined with the latter acid. The values obtained (corrected for the heat of dilution of 0.1 M CF<sub>3</sub>CO<sub>2</sub>H, 0.3 kcal mol<sup>-1</sup>) were  $-23.5 \pm 0.3$  kcal mol<sup>-1</sup> for DPG and  $-12.9 \pm 0.1$  kcal mol<sup>-1</sup> for Et<sub>3</sub>P, both substantially lower (>10 kcal mol<sup>-1</sup>) than the  $\Delta H$  values with the stronger acid CF<sub>3</sub>SO<sub>3</sub>H.

For some of the compounds studied, there was evidence of heat contributions from other reactions. The experimental data for  $(t-Bu)_3P$  showed a roughly 2-fold increase in slope for the base line preceding and following titration, when compared to runs for the other phosphines in Table I. This could be attributed to oxidation of the extremely air-sensitive  $(t-Bu)_3P$  by adventitious oxygen and would be expected to contribute to the overall heat of reaction. However, since the side reaction proceeded to the same extent before and after titration, the heat of this reaction was subtracted from the  $\Delta H_{\rm HP}$  value by the normal base line correction. This, coupled with the observation that the increase in base line slope is only 3% of the titration slope, leads us to conclude that the  $\Delta H_{\rm HP}$  for  $(t-{\rm Bu})_3 {\rm P}$  is reliable.

For other compounds where side reactions were evident,  $\Delta H_{\mathrm{HP}}$ measurements were not judged to be as reliable. The phosphine  $(p-Me_2NC_6H_4)_3P$  did not exhibit clean protonation; a highly exothermic secondary reaction was apparent after addition of the acid, making estimation of  $\Delta H_{\rm HP}$  impossible. The data for the phosphite (i-PrO)<sub>3</sub>P revealed an endothermic process after titration. Calculation of  $\Delta H_{\rm HP}$  in the normal manner gives a value of -23.6 kcal mol<sup>-1</sup>, a reasonable value based on the reported  $pK_a$ of 4.08<sup>3b</sup> (see Discussion for relation of  $\Delta H_{\rm HP}$  to pK<sub>a</sub>). However, the observed decrease in base line slope amounts to 12% of the titration slope, so the actual  $\Delta H_{\rm HP}$  could be 2-3 kcal mol<sup>-1</sup> more exothermic. The reverse behavior is noted for (MeO)<sub>3</sub>P, which exhibits an exothermic secondary process occurring after addition of acid. Analysis of the base line slopes suggests that the actual  $\Delta H_{\rm HP}$  could be 2-3 kcal mol<sup>-1</sup> less exothermic than the measured value of -21.3 kcal mol<sup>-1</sup>. Side reactions in the protonation of alkyl phosphites are well-known, with acids reacting to give dialkyl phosphonates as shown in eq 2.<sup>20</sup> We suspect that the compli-

$$(\text{RO})_{3}\text{P} + \text{HX} \implies (\text{RO})_{3}\text{P} \text{H} \stackrel{\text{X}^{-}}{\longrightarrow} (\text{RO})_{2}\text{P} \text{H} + \text{RX} \qquad (2)$$

cations noted for (i-PrO)<sub>3</sub>P and (MeO)<sub>3</sub>P arise from this type of reaction.

The phosphite (PhO)<sub>3</sub>P exhibits different behavior, with normal base line slopes but an exothermic jump at the beginning of the titration, occurring to a different degree in three runs. We suspect that, as in the dilution studies,  $H_2O$  in the titrate causes the deviations. Analysis of the second half of the titration data gives a consistent value of  $\Delta H_{\rm HP} = -7.25 \pm 0.08$ ; however, as some other reaction may be causing the deviation, this value was not considered definitive.

#### Discussion

Interpretation of  $\Delta H_{HP}$  Values. Although the heat of protonation  $(\Delta H_{\rm HP})$  of phosphines has been discussed in terms of the reaction shown in eq 1, one needs to consider the possibility that other processes (such as the reactions in eq 3-5) may contribute

$$2CF_3SO_3H \stackrel{\Lambda_3}{\longleftrightarrow} (CF_3SO_3H)_2$$
(3)

$$(CF_3SO_3H)_2 \stackrel{K_4}{\longleftrightarrow} CF_3SO_3H_2^+ + CF_3SO_3^-$$
(4)

$$[R_3PH^+CF_3SO_3^-] \stackrel{K_3}{\longleftrightarrow} R_3PH^+ + CF_3SO_3^-$$
(5)

<sup>(19)</sup> Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous

Solution; Butterworths: London, 1965. (a) Weiss, R.; Vande Griend, L. J.; Verkade, J. G. J. Org. Chem. 1979, 44, 1860. (b) Olah, G. A.; McFarland, C. W. J. Org. Chem. 1971, 36, (20)1374.

to  $\Delta H_{\rm HP}$ . Equations 3 and 4 describe the dimerization and autoprotolysis of CF<sub>3</sub>SO<sub>3</sub>H, and eq 5 describes the dissociation of phosphonium triflate ion pairs. Thermodynamic data for these reactions in DCE have not been reported. However, estimates of their contributions to  $\Delta H_{\rm HP}$  can be made from data on related systems.

The reactions shown in eq 3 and 4 have been studied by means of conductivity measurements in CH<sub>2</sub>Cl<sub>2</sub>.<sup>21</sup> The overall equilibrium constant,  $K_3K_4$ , was found to be  $9 \times 10^{-8}$  at -15 °C. The authors estimate  $K_3$  to be between 1 and 0.01, so  $K_4$  should be no larger than  $10^{-5}$ . Assuming similar values for  $K_3$  and  $K_4$  in DCE, only dimerization need be considered at the total acid concentrations typical of the  $\Delta H_{HP}$  runs. It is perhaps more instructive at this point to consider the dimerization of CF<sub>3</sub>CO<sub>2</sub>H (eq 6), for which thermodynamic data in DCE are known ( $K_6 =$ 

$$2CF_{3}CO_{2}H \xleftarrow{K_{6}} (CF_{3}CO_{2}H)_{2}; \quad \Delta H_{6}$$
 (6)

1.5 l mol<sup>-1</sup>;  $\Delta H_6 = -7$  kcal mol<sup>-1</sup>).<sup>22</sup> At a total acid concentration of  $3 \times 10^{-3}$  M (a typical value after dilution of the original 0.1 M solution in the  $\Delta H_{HP}$  studies), the concentration of  $(CF_3CO_2H)_2$ is  $2.2 \times 10^{-5}$  M. The heat required to dissociate this quantity of dimer is 0.05 kcal mol<sup>-1</sup>. From the estimated  $K_3$  noted above, the concentration of  $(CF_3SO_3H)_2$  can be assumed to be near or less than that determined for  $(CF_3CO_2H)_2$ . From studies of carboxylic acid association in aprotic solvents, there is a rough correlation of less exothermic association enthalpies with increasing acidity.<sup>23</sup> The association enthalpy of CF<sub>3</sub>SO<sub>3</sub>H would thus be expected to be less than that of CF<sub>3</sub>CO<sub>2</sub>H, and the heat associated with dimer dissociation in  $3 \times 10^{-3}$  M CF<sub>3</sub>SO<sub>3</sub>H in DCE should be less than 0.05 kcal mol<sup>-1</sup>. This contribution is less than 0.2%of most  $\Delta H_{\rm HP}$  values and, therefore, is negligible, according to these estimates.

The enthalpy contribution of the ion-pair dissociation (eq 5) can be estimated from data available for  $[(n-Bu)_4N](ClO_4)$  in DCE (eq 7) with  $K_7 = 6.41 \times 10^3 1 \text{ mol}^{-124}$  and  $\Delta H_7 = 1.3$  kcal

$$Bu_4N^+ + ClO_4^- \stackrel{K_7}{\longleftrightarrow} [Bu_4N^+ClO_4^-]; \quad \Delta H_7$$
(7)

mol<sup>-1</sup> (calculated from data of Abraham et al.).<sup>25</sup> At a total salt concentration of  $3 \times 10^{-3}$  M (approximately the final concentration in the  $\Delta H_{\rm HP}$  experiments), 20% of the salt is dissociated, and the heat evolved in this process is -0.26 kcal mol<sup>-1</sup>. The  $(n-Bu)_4N^+$ ion should be similar in size to most of the phosphonium ions produced in this study, and there is evidence that R<sub>3</sub>PH<sup>+</sup> species do not form strong hydrogen bonds<sup>26</sup> (CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> is likewise a poor hydrogen-bond acceptor<sup>27</sup>), so the heat contribution due to ion-pair dissociation in the present study should be of comparable magnitude to -0.26 kcal mol<sup>-1</sup>. In addition, the total heat of solution of  $[(n-Bu)_4N](ClO_4)$  at 2.5 × 10<sup>-3</sup> M in DCE is only -0.45 kcal mol<sup>-1.25</sup> If  $\Delta H_{soln}$  were comparably small for the phosphonium triflates in eq 1, the heat contributions from all solvent interactions with the product salt would be less than 2% of the  $\Delta H_{\rm HP}$  values.

Thus, the measured  $\Delta H_{HP}$  values predominantly represent the heat evolved when  $R_3P$  reacts with monomeric  $CF_3SO_3H$  to form the  $R_3PH^+CF_3SO_3^-$  ion pair, with only minor contributions from acid dimerization and ion-pair dissociation.

General Trends in  $\Delta H_{HP}$ . As expected, the  $\Delta H_{HP}$  values in Table I become more exothermic as electron-donating substituents are substituted on phosphorus; thus, the trialkylphosphines give

- Chmelir, M.; Cardona, N.; Schulz, G. V. Makromol. Chem. 1977, 178, (21) 169
- (22) Milne, J. B. In *The Chemistry of Nonaqueous Solvents*; Lagowski, J. J., Ed.; Academic: New York, 1978; Vol. VB, p 1.
  (23) Davis, M. M. "Acid-Base Behavior in Aprotic Solvents"; NBS Monograph 105; U.S. Government Printing Office: Washington, DC, 1968; d 31.
- (24) Abraham, M. H.; Danil de Namor, A. F. J. Chem. Soc., Faraday Trans. 1 1976, 72, 955.
- (25) Abraham, M. H.; Danil de Namor, A. F.; Schulz, R. A. J. Solution Chem. 1976, 5, 529.
- Arnett, E. M.; Wolf, J. F. J. Am. Chem. Soc. 1973, 95, 978.
- Leucks, M.; Zundel, G. Can. J. Chem. 1980, 58, 311. (27)



Figure 1. Plot of  $-\Delta H_{\rm HP}$  (at 25.0 °C in DCE) vs. Hammett  $\sigma_{\rm para}$  parameters for the series  $(p-XC_6H_4)_3P_4$ 



Figure 2. Plot of  $-\Delta H_{HP}$  in DCE vs. pKa's from  $\Delta HNP$  measurements in CH<sub>3</sub>NO<sub>2</sub>. Numbers refer to Table I.

 $\Delta H_{\rm HP}$ 's approximately 10 kcal mol<sup>-1</sup> more negative than those of the triarylphosphines. The series  $Me_rPh_{3-r}P$  shows a very consistent increase in basicity as methyl replaces phenyl, with differences of 3.2, 3.7, and 3.5 kcal mol<sup>-1</sup> noted between the respective pairs Me<sub>3</sub>P-Me<sub>2</sub>PhP, Me<sub>2</sub>PhP-MePh<sub>2</sub>P, and  $MePh_2P-Ph_3P$ . The change on substitution thus appears to be additive, and, unless steric properties (such as C-P-C angles) vary regularly through this series, the  $\Delta H_{\rm HP}$  differences should be due to electronic rather than steric factors (the cone angles do not show regular variation, with differences of 4, 14, and 9°, respectively, for the above pairs, suggesting that the  $\Delta H_{\rm HP}$  differences in the  $Me_{x}Ph_{3-x}P$  series are indeed not due to steric effects).

Consistent differences in  $\Delta H_{HP}$  are also noted in the isosteric series  $(p-XC_6H_4)_3P$  (X = Cl, F, H, Me, MeO) (Table I). The  $\Delta H_{\rm HP}$  values give an excellent correlation with Hammett  $\sigma_{\rm para}$  substituent parameters (r, the correlation coefficient, is 0.992),<sup>28</sup> with  $-\Delta H_{HP}$  decreasing in the order X = MeO > Me > H > F > Cl (Figure 1).

Comparison of  $\Delta H_{HP}$  with Other Protonic Basicity Measures. The  $\Delta H_{\rm HP}$  values show a strong linear correlation with the reported  $pK_a$ 's (from the half-neutralization potentials,  $\Delta HNP$ 's, in  $CH_3NO_2$  noted previously), as seen in the plot of  $-\Delta H_{HP}$  vs  $pK_a$ (Figure 2). Linear least-squares regression gives eq 8 as the best

$$-\Delta H_{\rm HP} = 1.82 \text{p}K_{\rm a} + 16.3 \quad (\text{kcal mol}^{-1}) \tag{8}$$

fit for the data (r = 0.994). The most significant deviation from the correlation is observed for Et<sub>3</sub>P ( $pK_a = 8.69$ ), whose  $\Delta H_{HP}$  value of -33.7 kcal mol<sup>-1</sup>) indicates a difference of 1.6 kcal mol<sup>-1</sup>

<sup>(28)</sup> Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 2nd ed.; Harper and Row: New York, 1981.

**Table II.** Gas-Phase Proton Affinities and Solution  $\Delta H_{\rm HP}$ 's for the Series Me<sub>x</sub>Ph<sub>3-x</sub>P

| R <sub>3</sub> P    | PA,<br>kcal<br>mol <sup>-1</sup> <sup>a</sup> | $-\Delta H_{\rm HP},$<br>kcal<br>mol <sup>-1 b</sup> | R <sub>3</sub> P    | PA,<br>kcal<br>mol <sup>-1</sup> <sup>a</sup> | $-\Delta H_{\rm HP},$<br>kcal<br>mol <sup>-1 b</sup> |  |
|---------------------|-----------------------------------------------|------------------------------------------------------|---------------------|-----------------------------------------------|------------------------------------------------------|--|
| Ph <sub>3</sub> P   | 226.7                                         | 21.2                                                 | Me <sub>2</sub> PhP | 226.0                                         | 28.4                                                 |  |
| MePh <sub>2</sub> P | 226.7                                         | 24.7                                                 | Me <sub>3</sub> P   | 223.5                                         | 31.6                                                 |  |

<sup>a</sup>Reference 7d. Estimated errors are  $\pm 0.2$  kcal mol<sup>-1</sup> except for Ph<sub>3</sub>P, where the error is  $\geq \pm 0.2$  kcal mol<sup>-1</sup>. <sup>b</sup> This work. In DCE solvent at 25.0 °C.

(more exothermic) from the best fit line. The origin of this deviation is not entirely clear; however, it is possible that the original  $pK_a$  value for this phosphine is slightly in error. Streuli measured the  $pK_a$ 's of several phosphines by extrapolation of data from titrations in aqueous MeOH,9 and these were compared to values obtained from the  $\Delta$ HNP method. The differences in p $K_a$ were 0.2 pK unit or less for the tertiary phosphines studied, except for Et<sub>3</sub>P, where the  $pK_a$  from the aqueous MeOH data was 9.10 (a difference of 0.41). This higher  $pK_a$  value is in better accord with the  $\Delta H_{\rm HP}$  value.

Considering the vastly different properties of the solvents employed in the  $\Delta H_{HP}$  and  $pK_a$  determinations, it is perhaps surprising that the values correlate so well. Other linear  $\Delta H - \Delta G$  relationships have been noted for protonation enthalpies of amines and pyridines in organic solvents with aqueous  $pK_a$ 's.<sup>29</sup> In Arnett's study of amine protonation in FSO<sub>3</sub>H and H<sub>2</sub>SO<sub>4</sub>,<sup>296</sup> the conditions leading to such relationships are discussed. In these protonations, free energy changes  $(\Delta\Delta G)$  for a series of compounds in one solvent (CH<sub>3</sub>NO<sub>2</sub>) may be proportional to enthalpy changes  $(\Delta \Delta H)$  in another (DCE), provided  $\Delta \Delta G_{CH_3NO_2}$  is proportional to  $\Delta\Delta G_{\text{DCE}}$  and  $\Delta\Delta S_{\text{DCE}}$  is either proportional to  $\Delta\Delta H_{\text{DCE}}$  or equal to 0. However, from the available data, it is not possible to say which condition is satisfied for the correlation between  $\Delta H_{\rm HP}$  and  $pK_a$ .

Arnett's calorimetric studies of N-donor molecules in neat FSO<sub>3</sub>H have been extended to cover O-, S-, and a few P-donor bases,  $^{26,30}$  with a linear correlation (r = 0.986) observed between  $\Delta H_i$  (defined as the difference between  $\Delta H$  of solution in FSO<sub>3</sub>H and  $\Delta H$  of solution in an inert solvent, such as CCl<sub>4</sub>) and aqueous  $pK_a$ 's for over 50 bases (eq 9). The similarity of the slopes for

$$-\Delta H_i = 1.77 \,\mathrm{pK}_a + 28.1 \quad (\mathrm{kcal \ mol^{-1}}) \tag{9}$$

eq 8 and 9 is perhaps fortuitous, but a comparison of the intercepts clearly shows that neat FSO<sub>3</sub>H is a stronger protonating medium than  $CF_3SO_3H$  in DCE. This increased strength is also evident in the  $\Delta H_i$  values of the two tertiary phosphines,  $Ph_3P^{29b}$  and  $Me_3P$ <sup>26</sup> included in Arnett's studies. The  $\Delta H_i$  values for  $Ph_3P$ and Me<sub>3</sub>P are -28.7 and -44.6 kcal mol<sup>-1</sup>, respectively (compare with  $\Delta H_{\rm HP} = -21.2$  kcal mol<sup>-1</sup> for Ph<sub>3</sub>P and  $\Delta H_{\rm HP} = -31.6$  kcal mol<sup>-1</sup> for Me<sub>3</sub>P (Table I)). The difference in  $\Delta H_{\rm i}$  for Ph<sub>3</sub>P and Me<sub>3</sub>P (15.9 kcal mol<sup>-1</sup>) suggests that the slope of a  $-\Delta H_i$  vs pK<sub>a</sub> plot for phosphines will be different (larger) from the value of 1.77 observed for other bases (eq 9). Arnett<sup>30</sup> has noted that particular classes of compounds would probably show deviations from eq 9 if more data were available; this appears to be true for the tertiary phosphines. A similar variation in basicity relationships between types of bases is noted in the comparison of protonation enthalpies in CF<sub>3</sub>CO<sub>2</sub>H/DCE with  $\Delta H_{HP}$  values in CF<sub>3</sub>SO<sub>3</sub>H/ DCE. The enthalpies obtained in this study (in kcal  $mol^{-1}$ ) are -33.7 (CF<sub>3</sub>SO<sub>3</sub>H) and -12.9 (CF<sub>3</sub>CO<sub>2</sub>H) for Et<sub>3</sub>P and -37.2 (CF<sub>3</sub>SO<sub>3</sub>H) and -23.5 (CF<sub>3</sub>CO<sub>2</sub>H) for (PhNH)<sub>2</sub>CNH (DPG). The difference between enthalpies measured with the two acids (14.1 kcal mol<sup>-1</sup> for DPG, 20.8 kcal mol<sup>-1</sup> for  $Et_3P$ ) shows a sizable change in acid strength on going from CF<sub>3</sub>SO<sub>3</sub>H to CF<sub>3</sub>CO<sub>2</sub>H. These differences also indicate that the relationship between protonation enthalpies measured with CF<sub>3</sub>SO<sub>3</sub>H and CF<sub>3</sub>CO<sub>2</sub>H

Scheme I

$$P \xrightarrow{Z} H \xrightarrow{Z \cdot Me, Ph} + \sum_{Z \cdot Me, Ph} + \sum_{Z \cdot Me, Ph} P \xrightarrow{Z} H$$

will not be the same for N- and P-donor bases.

As noted in the Introduction, basicity trends of phosphines in the gas phase are, in some cases, in contrast to trends observed in solution. Table II lists gas-phase proton affinities and  $\Delta H_{\rm HP}$ values (from Table I) for Ph<sub>3</sub>P, MePh<sub>2</sub>P, Me<sub>2</sub>PhP, and Me<sub>3</sub>P. The gas-phase proton affinities do not follow the same trend as the  $-\Delta H_{\rm HP}$  and pK<sub>a</sub> values; in fact, Me<sub>3</sub>P exhibits the lowest proton affinity. The gas-phase basicities also run counter to the results of several reactivity studies of phosphine complexes, where data are successfully analyzed by using the solution basicities as a measure of  $\sigma$ -bonding ability.<sup>3</sup> One of the arguments made in explaining the gas-phase proton affinity order was that phenylsubstituted phosphonium ions could be stabilized by aryl  $\pi$  to phosphorus d donation, as depicted in Scheme I.<sup>7d,e</sup> However, there is no conclusive evidence for such a  $\pi$ -bonding interaction. As mentioned above, the correlation of  $\Delta H_{HP}$  with  $\sigma_{para}$  is excellent; but a poor correlation (r = 0.887) is found between  $\Delta H_{\rm HP}$  and  $\sigma^+$  parameters<sup>28</sup> (these measure the effect of resonance donor substituents in direct conjugation with the reaction center, as would be the case in Scheme I). This indicates that the phenyl ring  $\pi$ system does not interact significantly with the phosphorus d orbitals in the phosphonium ion. A similar conclusion was reached in a photoelectron spectroscopy study of para-substituted triarylphosphines.<sup>31</sup> In light of these results, a reevaluation of the factors leading to the reversal of the solution basicity order for the series  $Me_xPh_{3-x}P$  in the gas phase may be warranted.

Correlations of  $\Delta H_{\rm HP}$  with Taft  $\sigma^*$  and Kabachnik  $\sigma^{\rm ph}$  Parameters. The  $pK_a$ 's of phosphines were originally shown to be linearly related to Taft's  $\sigma^*$  parameters,<sup>32</sup> with a different line (of approximately equal slope) for tertiary, secondary, and primary phosphines.<sup>10</sup> A set of substituent parameters was later developed specifically for groups bound to phosphorus.<sup>33</sup> These constants, denoted  $\sigma^{ph}$ , were applied to the phosphine pK<sub>a</sub> data, giving a linear correlation for all three phosphine classes on the same line, with a higher correlation coefficient. As the  $\sigma^{ph}$  parameters could have useful predictive value if they are truly superior to  $\sigma^*$  for substituents bound to phosphorus, correlations with  $\Delta H_{\rm HP}$  values were tested for both sets of parameters. The results are given in eq 10 and 11. For the tertiary phosphines examined  $\sigma^{ph}$  gives no

$$-\Delta H_{\rm HP} = -5.83 \sum \sigma^* + 31.1 \quad (\rm kcal \ mol^{-1}) \\ (r = 0.966, 8 \ data \ points)$$
(10)

$$-\Delta H_{\rm HP} = -5.44 \sum \sigma^{\rm ph} + 13.4 \quad (\rm kcal \ mol^{-1})$$
(11)  
(r = 0.961, 11 data points)

better fit than  $\sigma^*$ . In fact, the data in the  $\sigma^{ph}$  correlation show somewhat random deviations, but only one point (for (p- $MeOC_6H_4$ )<sub>3</sub>P) in the  $\sigma^*$  correlation is significantly out of line. Thus, for tertiary phosphines such as those used in the present study,  $\sigma^{ph}$  does not appear to offer better predictive ability than σ\*.

Correlation of  $\Delta H_{HP}$  with  $\Delta H$  of R<sub>3</sub>P·HgCl<sub>2</sub> Adduct Formation. Enthalpies for the reactions of phosphines with Lewis acids may serve as measures of phosphine  $\sigma$ -donor ability. The stepwise reactions (eq 12 and 13) of phosphines with mercury dihalides

$$\mathbf{R}_{3}\mathbf{P} + \mathbf{H}\mathbf{g}\mathbf{X}_{2} \rightleftharpoons (\mathbf{R}_{3}\mathbf{P})\mathbf{H}\mathbf{g}\mathbf{X}_{2}; \quad \Delta H_{12}$$
(12)

$$\mathbf{R}_{3}\mathbf{P} + (\mathbf{R}_{3}\mathbf{P})\mathbf{H}\mathbf{g}\mathbf{X}_{2} \rightleftharpoons (\mathbf{R}_{3}\mathbf{P})_{2}\mathbf{H}\mathbf{g}\mathbf{X}_{2}; \quad \Delta H_{13}$$
(13)

in benzene solution have been studied by calorimetry.<sup>5</sup> Heats of the respective reactions are plotted vs  $\Delta H_{HP}$  in Figure 3. For  $\Delta H_{12}$  vs  $\Delta H_{HP}$ , linear regression shows a fair correlation (r =

<sup>(</sup>a) Mead, T. E. J. Phys. Chem. **1962**, 66, 2149. (b) Arnett, E. M.; Quirk, R. P.; Burke, J. J. Am. Chem. Soc. **1970**, 92, 1260. Arnett, E. M.; Mitchell, E. J.; Murty, T. S. S. R. J. Am. Chem. Soc. (29)

<sup>(30)</sup> 1974, 96, 3875.

Weiner, M. A.; Lattman, M.; Grim, S. O. J. Org. Chem. 1975, 40, 1292. (31)

Taft, R. W. In Steric Effects in Organic Chemistry; Newman, M. S., Ed.; Wiley: New York, 1956, p 556. (32)

<sup>(33)</sup> Kabachnik, M. I. Russ. Chem. Rev. (Engl. Transl.) 1969, 38, 795.



Figure 3. Plot of  $-\Delta H_{12}$  (squares) for reaction of  $R_3P$  with HgCl<sub>2</sub> in  $C_6H_6$  and  $-\Delta H_{13}$  (crosses) for reaction of  $R_3P$  with  $(R_3P)HgCl_2$  in  $C_6H_6$ vs.  $-\Delta H_{HP}$  for R<sub>3</sub>P. Numbers refer to Table I; points not numbered are for  $(n-Bu)_3P$ .

0.977) for the five phosphines  $(\Delta H_{\rm HP} \text{ for } (n-Bu)_3 P \text{ estimated from})$ eq 8), but  $(c-C_6H_{11})_3P$  (point number 10) is obviously out of line. The correlation with the point for  $(c-C_6H_{11})_3P$  removed is practically perfect (r = 1.000). The deviation of  $(c-C_6H_{11})_3P$  can be attributed to specific steric hindrance ( $\theta = 170^{\circ}$  for this phosphine)<sup>1d</sup> to adduct formation. (There may also be some contribution from a repulsive  $\pi$ -interaction between  $(c-C_6H_{11})_3P$ , which can act as a  $\pi$ -donor,<sup>3</sup> and the filled d orbitals of HgCl<sub>2</sub>). The values of  $\Delta H_{13}$  are not correlated well with  $\Delta H_{HP}$ 's (r = 0.910). For this reaction, steric effects would be expected to be more important; this, coupled with the now variable electronic properties of the acceptor, (R<sub>3</sub>P)HgCl<sub>2</sub>, eliminates any expectation of a linear correlation with  $\Delta H_{\rm HP}$ .

#### Conclusion

The present study demonstrates that protonation enthalpies  $(\Delta H_{\rm HP})$ 's, determined by calorimetric titration with CF<sub>3</sub>SO<sub>3</sub>H in DCE) are valid and consistent measures of phosphine basicity and are directly related to the electron-donating ability of phosphines in other solution media. The protonation reactions are highly exothermic  $(-\Delta H_{\rm HP} \ge 18 \text{ kcal mol}^{-1})$  for the phosphines studied; thus, errors due to secondary reactions (such as acid dimerization or ion-pair dissociation) are not significant. The method described also offers the ability to measure basicity for a wide range of base strengths under the same conditions. The  $\Delta H_{\rm HP}$  values should prove to be extremely useful tools for investigations of reactivity in transition-metal chemistry; such studies aimed at determining the relationship between phosphine and metal-phosphine complex basicity are in progress in our laboratories.

Acknowledgment. This research was supported by the National Science Foundation (Grant No. CHE-8401844). Additional support in the form of a graduate fellowship (to R.C.B.) from The Procter and Gamble Co. is gratefully acknowledged. Special thanks are extended to John Sowa for invaluable assistance in developing some of the experimental procedures used in this study. We also thank Dr. Dale Wurster of the University of Iowa, College of Pharmacy, for helpful advice on calorimetry.

**Registry No.** (*p*-ClC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>P, 1159-54-2; (*p*-FC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>P, 18437-78-0; Ph<sub>3</sub>P, 603-35-0; (*o*-MeC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>P, 6163-58-2; (*p*-MeC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>P, 1038-95-5; (p-MeOC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>P, 855-38-9; MePh<sub>2</sub>P, 1486-28-8; Me<sub>2</sub>PhP, 672-66-2;  $Me_{3}P$ , 594-09-2; (c-C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>P, 2622-14-2; Et<sub>3</sub>P, 554-70-1; (t-Bu)<sub>3</sub>P, 13716-12-6.

Contribution from the Department of Chemistry, University of Houston-University Park, Houston, Texas 77004, Laboratoire de Synthèse et d'Electrosynthèse Organométallique, Associé au CNRS (UA 33), Faculté des Sciences "Gabriel", Université de Dijon, 21100 Dijon, France, and Faculté des Sciences de Rabat, Laboratoire de Chimie Physique Générale, Université Mohammed V, Rabat, Morocco

# Electrochemical and Spectral Characterization of the Monomer–Dimer Equilibrium Involving (meso-Tetrakis(1-methylpyridinium-4-yl)porphinato)nickel(II) in Dimethylformamide

K. M. Kadish,\*<sup>1a</sup> D. Sazou,<sup>1a</sup> Y. M. Liu,<sup>1a</sup> A. Saoiabi,<sup>1b</sup> M. Ferhat,<sup>1b</sup> and R. Guilard<sup>1c</sup>

Received June 30, 1987

The electrochemistry of  $(TMPyP)Ni(ClO_4)_4$  (where TMPyP is the dianion of meso-tetrakis(1-methylpyridinium-4-yl)porphyrin) was characterized in DMF by polarography, cyclic voltammetry, spectroelectrochemistry, and ESR spectroscopy. The neutral and reduced (TMPyP)Ni(ClO<sub>4</sub>)<sub>4</sub> exist in a monomer-dimer equilibrium in DMF, and this equilibrium results in the presence of four two-electron reductions. The dimerization was also characterized by electronic absorption and NMR spectroscopy. At concentrations of porphyrin close to 10<sup>-6</sup> M the monomeric and dimeric forms of the complex exist in essentially equal amounts, but at polarographic concentrations the dimeric form prevails in solution. A dimerization constant was calculated from cyclic voltammetric measurements and was of the same order of magnitude as observed for dimerization of other TMPyP complexes in aqueous media.

### Introduction

The free base porphyrin  $[(TMPyP)H_2]^{4+}$  (where TMPyP is the dianion of (meso-tetrakis(1-methylpyridinium-4-yl)porphyrin) and its metal derivatives have potential therapeutic use because of their ability to react with DNA.<sup>2-7</sup> These "water soluble"

- (1) (a) University of Houston. (b) Université Mohammed V. (c) Université de Dijon.
- Fiel, R. J.; Howard, J. C.; Mark, E. H.; Datta Gupta, N. Nucleic Acids (2)Res. 1979, 6, 3093.
- Fiel, R. J.; Munson, B. R. Nucleic Acids Res. 1980, 8, 283J.
- (4)Pasternack, R. F.; Gibbs, E. J.; Villafranca, J. J. Biochemistry 1983, 22, 2406.
- (5) Pasternack, R. R.; Gibbs, E. J., Villafranca, J. J. Biochemistry 1983, 22, 5409.

meso-tetrakis(1-methylpyridinium-4-yl)porphyrins play an important role as photosensitizers and as labels for DNA and other biological cells. The diamagnetic  $[(TMPyP)H_2]^{4+}$  complex has a positive charge on the pyridinium nitrogen atoms, which is delocalized over the porphyrin ring via resonance structures of the type<sup>8</sup>



- Banville, D. L.; Marzilli, L. G.; Wilson, W. D. Biochem. Biophys. Res. (6) Commun. 1983, 113, 148. Blom, N.; Odo, J.; Nakamoto, K.; Strommen, D. P. J. Phys. Chem.
- (7)1986, 90, 2847.

686

0020-1669/88/1327-0686\$01.50/0 © 1988 American Chemical Society