1,1,2,2-Tetrafluoro-2-(polyfluoroalkoxy)ethanesulfonic Acids, 1,1,2,2-Tetrafluoro-2-(perfluoroalkoxy)ethanesulfonic Acids, and 2,2'-Oxybis(1,1,2,2-tetrafluoroethanesulfonic acid)

Wenbiao Cen, Zhi-Xia Dong, Ting-Ji Huang, Debao Su, and Jean'ne M. Shreeve*

Received November 3, 1987

Basic hydrolysis of 1,1,2,2-tetrafluoro-2-(polyfluoroalkoxy)ethanesulfonyl fluorides leads to new polyfluoroalkanesulfonic acids, $R_1OCF_2CF_2SO_3H$ ($R_f = CF_3CH_2$, $CF_3CF_2CH_2$, $CF_3CF_2CF_2CH_2$), after passing the aqueous solution through a strongly acidic resin. 1,1,2,2-Tetrafluoro-2-(perfluoroalkoxy)ethanesulfonic acids, $R_1OCF_2CF_2SO_3H$ ($R_1 = CF_3CF_2$, $CF_3CF_2CF_2CF_2$) resulted when $I(CF_2)_nO(CF_2)_2SO_2F$ was fluorinated, subjected to basic hydrolysis, and distilled from H_2SO_4 . Synthesis of the disulfonic acid HSO₃CF₂CF₂OCF₂CF₂SO₃H was also accomplished.

Introduction

Tetrafluoroethane- β -sultone, CF₂CF₂OSO₂, is a useful precursor to perfluoro and polyfluoro sulfonic acids. Earlier we reported the high-yield, straightforward preparation of polyfluoroalkyl esters of difluoro(fluorosulfonyl)acetic acid, viz.

$$CF_2CF_2OSO_2 + R_fOH \xrightarrow{base}{-HF} R_fOC(O)CF_2SO_2F^1$$

Fluorination of the carbonyl functionality with sulfur tetrafluoride in anhydrous hydrogen fluoride led to the corresponding α, α difluoro ethers. This provides a general and direct synthetic route to tetrafluoro(polyfluoroalkoxy)ethanesulfonyl fluorides, R_fOCF₂CF₂SO₂F

$$R_{f}OC(O)CF_{2}SO_{2}F \xrightarrow{SF_{4}/HF} R_{f}OCF_{2}CF_{2}SO_{2}F^{2}$$

where R_f is polyfluoroalkyl.

Others have used CF2CF2OSO2 to synthesize totally fluorinated precursors to mono- and disulfonic acids by utilizing a different route:

$$CF_{3}(CF_{2})_{n-1}O(CF_{2})_{2}SO_{2}F \xrightarrow{\text{NaOH}} CF_{3}(CF_{2})_{n-1}O(CF_{2})_{2}SO_{3}Na^{4}$$

$$\downarrow^{\text{tr}_{3}}$$

$$CF_{2}CF_{2}OSO_{2} \xrightarrow{\text{tc}_{1}, C_{2}F_{4}} I(CF_{2})_{n}O(CF_{2})_{2}SO_{2}F^{3} \xrightarrow{\text{NaOH}}$$

I(CF2), O(CF2)2SO3 Na⁴ Na2S2O4 NaO2S(CF2), O(CF2)2SO3Na⁵ C12

 $\mathsf{ClO}_2\mathsf{S}(\mathsf{CF}_2)_n\mathsf{O}(\mathsf{CF}_2)_2\mathsf{SO}_3\mathsf{Na} \xrightarrow{\mathsf{N}_B\mathsf{O}_+} \mathsf{NaO}_3\mathsf{S}(\mathsf{CF}_2)_n\mathsf{O}(\mathsf{CF}_2)_2\mathsf{SO}_3\mathsf{Na}^4$

We have taken advantage of these methods to prepare new polyfluoro- and perfluoroalkane sulfonic acids.

Fluorinated sulfonic acids and their derivatives have had wide chemical application.^{3,6,7} Here we describe the synthesis of several new perfluoro- and polyfluorosulfonic acids that may be useful as additives to fuel cell electrolyte systems, as surfactants, or in other tasks requiring thermally and hydrolytically stable strong acids.

Results and Discussion

When standard methods of synthesis rather than electrochemical fluorination techniques are utilized to prepare sulfonic acids and their precursors, the steps necessary are numerous and time-consuming, and the purification coupled with removal of water requires repeated distillation at reduced pressure and elevated temperature. Synthesis of polyfluoro sulfonic acid precursors by the fluorination of the appropriate esters with sulfur tetra-

- Perfluoro Sulfonic Acid Group, Shanghai Institute of Organic Chem-istry, Academia Sinica. Sci. Sin. (Engl. Ed.) 1978, 21, 773.
 Su, D. B.; Chen, Q. Y.; Zhu, R. X.; Hu, H. P. Huaxue Xuebao 1983,
- 41, 946.
- (5) Huang, W. Y.; Huang, B. N.; Wang, W. Huaxue Xuebao 1983, 41, 946.
- Huang, W. Y.; Huang, B. N.; Hu, C. M. J. Fluorine Chem. 1983, 23, (6)
- (7) Howells, R. D.; McCown, J. D. Chem. Rev. 1977, 77, 69.

fluoride under mild conditions demonstrates clearly the value of the anhydrous hydrogen fluoride solvent system. Hydrolysis of the resulting sulfonyl fluorides occurs smoothly by using aqueous sodium hydroxide at 25 °C to give the sodium sulfonate salt, which must be separated from the concomitant product NaF by extended extraction with anhydrous C_2H_5OH . The alcohol-insoluble $R_f OCF_2 CF_2 SO_3 Na$ is taken up in water and passed through a strongly acidic resin—Amberlite IR-120:

$$\begin{array}{l} R_{f}OCF_{2}CF_{2}SO_{2}F \xrightarrow{\text{NaOH}} R_{f}OCF_{2}CF_{2}SO_{3}Na \xrightarrow{\text{acidic}} \\ R_{f}OCF_{2}CF_{2}SO_{3}H(aq) \\ R_{f} = CF_{3}CH_{2}, \ CF_{3}CF_{2}CH_{2}, \ CF_{3}CF_{2}CF_{2}CH_{2} \end{array}$$

After the volume of the resulting solution was reduced, P_4O_{10} was added and the anhydrous acid was slowly distilled out under reduced pressure. The acids are distilled as very viscous waterwhite liquids but often turn brown slowly on standing in a sealed Pyrex glass tube. These acids are stable to at least 150 °C as the neat compounds or in aqueous solution.

For perfluoro sulfonic acids, the tetrafluoroethane- β -sultone was reacted with KF, C_2F_4 , and ICl to form $I(CF_2)_nO(CF_2)SO_2F^3$ which can be fluorinated to lead to monosulfonic acids. However, it is interesting to note that while SbF5 was used successfully to convert I(CF₂)_nO(CF₂)₂SO₂F to CF₃(CF₂)_{n-1}O(CF₂)₂SO₂F in 90% yield⁸ (n = 4), when n = 2 the β -carbon-oxygen bond was broken.⁹ The more traditional Swarts reaction proved to be a satisfactory method in this case:

$$I(CF_2)_2O(CF_2)_2SO_2F \xrightarrow{SbF_3, SbCl_5} CF_3CF_2O(CF_2)_2SO_2F$$

In the synthesis of the disulfonic acid, the most crucial step is the conversion of I(CF₂)₂O(CF₂)₂SO₃Na to NaO₂S(CF₂)₂O(C- F_2 ₂SO₃Na. This was accomplished by using Na₂S₂O₄ to give a 90% yield.⁵ Each of the perfluoro sulfonic acids was obtained in hydrated form after distillation at temperatures between 80 and 100 °C and pressures ≤0.5 Torr. At room temperature each is a water-white, extremely viscous liquid that is stable as the neat compound or in aqueous solution at >125 °C.

Not surprisingly, all of the sulfonic acids described are highly hygroscopic and, although they can be purified adequately by distillation to meet the rigors of standard elemental analysis, purification to meet electrochemical standards is difficult.

Experimental Section

⁽¹⁾ Huang, T.-J.; Dong, Z.-X.; Shreeve, J. M. Inorg. Chem. 1987, 26, 2304.

Huang, T.-J.; Dong, Z.-X.; Shreeve, J. M. Inorg. Chem. 1987, 26, 2604.

Materials. I(CF₂)₂O(CF₂)₂SO₂F, I(CF₂)₄O(CF₂)₂SO₂F, CF₃CF₂O-(CF₂)₂SO₂F, CF₃CF₂CF₂CH₂OCF₂CF₂SO₂F, CF₃CF₂CH₂OCF₂CF₂S-O₂F, and CF₃CH₂OCF₂CF₂SO₂F were prepared according to the literature.2,3

General Procedures. ¹⁹F NMR spectra were obtained on a JEOL FX-90Q Fourier transform NMR spectrometer operating at 84.26 MHz. DMSO- d_6 , D₂O, and ethyl acetate were used as solvents with CFCl₃ as external reference. Chemical shifts upfield from CFCl3 were assigned

Bagnall, R. D.; Bell, W.; Pearson, K. J. Fluorine Chem. 1979, 13, 209. (9) Su, D. B.; Chen, Q. Y.; Zhu, R. X. Youji Huaxue 1986, 112.

negative values. ¹H NMR spectra were obtained at an operating frequency of 89.56 MHz. Elemental analyses were performed by Beller Mikroanalytisches Laboratorium, Göttingen, W. Germany.

General Procedure for Polyfluoro Sulfonic Acids. With $CF_3CH_2OC-F_2CF_2SO_2OH$ as an example, the procedure follows. $CF_3CH_2OCF_2C-F_2SO_2F$ (13 mmol) was condensed into a flask at -196 °C that contained an aqueous solution of NaOH (1.08 g, 27.09 mmol) in 5.5 mL of water. The mixture was warmed to 25 °C. After the mixture was stirred for 48 h, the water was removed under vacuum, leaving solid $CF_3CH_2OC-F_2CF_2SO_2ONa$ and NaF, which were placed in a Soxhlet extractor and extracted with absolute C_2H_3OH . Pure $CF_3CH_2OCF_2CF_2SO_3Na$ remained after the C_2H_3OH was evaporated. An aqueous solution of this salt was passed through an Amberlite IR-120 ion-exchange resin (strongly acidic gel-type resin). The volume of the aqueous acid was reduced, P_4O_{10} was added, and the anhydrous $CF_3CH_2OCF_2CF_2SO_2OH$ was distilled (65% yield). Also prepared in this manner were CF_3CF_2 - $CH_2OCF_2CF_2SO_2OH$ (60%) and $CF_3CF_2CF_2CH_2OCF_2CF_2SO_2OH$ (50%).

CF₃CH₂OCF₂CF₂SO₂OH. ¹H NMR δ 10.44 (s, OH), 4.6 (q, CH₂). ¹⁹F NMR: ϕ -73.26 (tr tr, CF₃), -84.21 (complex, OCF₂), -116.7 (tr, CF₂S), $J_{CF_3-CH_2} = 8.79$ Hz, $J_{OCF_2-CF_2S} = 1.83$ Hz, $J_{CF_3-OCF_2} = 2.81$ Hz. MS (EI): m/e 199 (M - SO₃H⁺), 83 (CF₃CH₂). Anal. Calcd for C₄F₇H₃O₄S: C, 17.14; H, 1.07; F, 47.5. Found: C, 17.05; H, 1.15; F, 47.1.

CF₃**CF**₂^B**CH**₂^C**OCF**₂^D**CF**₂^E**SO**₂**OH.** ¹H NMR: δ 11.20 (s, OH), 4.73 (tr, CH₂). ¹⁹F NMR: ϕ -83.16 (s, CF₃), -84.79 (complex, OCF₂), -116.9 (tr, CF₂S), -123.2 (tr tr, CF₂), J_{C-B} = 13.19 Hz, J_{D-E} = 1.34 Hz. MS (EI): m/e 281 (CF₃CF₂CH₂OCF₂CF₂S⁺). Anal. Calcd for C₅F₉H₃O₄S: C, 18.18; H, 0.91; F, 51.82. Found: C, 18.54; H, 1.01; F, 50.9.

CF₃^A**CF**₂^B**CF**₂^C**CH**₂^D**OCF**₂^E**CF**₂^F**SO**₃^G. ¹H NMR: δ 10.25 (s, OH), 4.75 (tr, CH₂). ¹⁹F NMR: ϕ -80.67 (tr, A), -84.67 (complex, E), -116.8 (tr, F), -120.0 (complex, B), -127.1 (tr, C), $J_{C-D} = 13.7$ Hz, $J_{A-B} = 8.78$ Hz, $J_{E-F} = 1.34$ Hz. MS (EI): m/e 360 (M - HF⁺), 280 (CF₂CF₂CF₂CH₂OCF₂CF₂⁺). Anal. Calcd for C₆F₁₁H₃O₄S: C, 18.95; H, 0.79; F, 55.0. Found: C, 18.93; H, 0.89; F, 54.6.

Preparation of CF₃(CF₂)₃O(CF₂)₂SO₂F. Antimony pentafluoride (8.7 g, 40 mmol) was added dropwise to $I(CF_2)_4OCF_2SO_2F$ (10.5 g, 20 mmol) at 0 °C with stirring that was continued for 1 h. About 7 mL of H₂O was added dropwise to the mixture at 0 °C. After filtration, an oil layer was separated and CF₃(CF₂)₃O(CF₂)₂SO₂F (7.5 g, 18 mmol) was obtained by distillation (90% yield). ¹⁹F NMR (no solvent): ϕ 43.03, -83.92, -84.27, -85.08, -114.9, -128.5.

Preparation of CF₃(CF₂)₃O(CF₂)₂SO₃Na. A mixture of CF₃(CF₂)₃-O(CF₂)₂SO₂F and an equivalent amount of aqueous NaOH in a small amount of ethanol was stirred vigorously at 110 °C for 2 h. The mixture was maintained slightly alkaline at all times. After a small amount of acetone was added, the mixture was evaporated to dryness to give a white solid that was then extracted with boiling ethyl acetate. After the solvent was removed, the residue was a white solid that was dried to a constant weight at 100 °C (~100% yield). ¹⁹F NMR (ethyl acetate): ϕ -82.47, -83.17, -83.28, -119.4, -127.5.

Preparation of $CF_3(CF_2)_3O(CF_2)_2SO_3H\cdot 2H_2O$. Into a 10 mL roundbottomed flask was placed $CF_3(CF_2)_3O(CF_2)_2SO_3Na$ (4.2 g, 9.6 mmol). Then, concentrated H₂SO₄ (4 g) was dropped into the flask with stirring that was continued at 110 °C for 2 h to give a colorless liquid that was distilled twice under reduced pressure to give $CF_3(CF_2)_3O(CF_2)_2SO_3$ -H·2H₂O (3.5 g, 7.7 mmol, 80% yield); bp 91 °C (0.27 Torr). ¹⁹F NMR for $CF_3^{A}CF_2^{B}CF_2^{C}CF_2^{D}OCF_2^{E}CF_2^{F}SO_3$ H·2H₂O (DMSO-d₆): ϕ -80.91 (t, $J_{A-C} = 8.6$ Hz, A), -126.4 (m, B and C), -83.28 (m, D), -82.15 (t, $J_{D-E} = 13.4$ Hz, E), -118.3 (s, F). ¹H NMR (DMSO-d₆) δ 5.57 (s). Anal. Calcd for $C_6H_5F_{13}O_6S$: C, 15.94; H, 1.12; F, 54.63; S, 7.09. Found: C, 16.14; H, 1.19; F, 56.2; S, 7.29.

Preparation of CF₃CF₂O(CF₂)₂SO₃Na. The compound was prepared in a manner similar to that for CF₃(CF₂)₃O(CF₂)₂SO₃Na. ¹⁹F NMR (ethyl acetate): ϕ -82.70, -86.47, -88.20, -118.3.

Preparation of CF₃CF₂O(CF₂)₂SO₃H·H₂O. The compound was prepared in a manner similar to that for CF₃(CF₂)₃O(CF₂)₂SO₃H (80% yield); bp 82 °C (0.5 Torr). ¹⁹F NMR for CF₃^ACF₂^BOCF₂^CCF₂^DSO₃H·H₂O (DMSO-d₆): ϕ -86.52 (s, A), -88.32 (t, B J_{B-C} = 12.8 Hz, B), -82.50 (t, C), -118.4 (s, D). ¹H NMR (DMSO-d₆): δ 6.43. Anal. Calcd for C₄H₃F₉O₅S: C, 14.38; H, 0.91; F, 51.18; S, 9.60. Found: C, 14.36; H, 0.89; F, 49.7; S, 9.20.

Preparation of NaO₂S(CF₂)₂O(CF₂)₂SO₃Na. Into a 250-mL threenecked round-bottomed flask were placed ICF₂CF₂O(CF₂)₂SO₃Na (25 g, 56 mmol), Na₂S₂O₄ (19.5 g, 112 mmol), NaHCO₃ (9.4 g, 112 mmol), 27 mL of H₂O, and 10 mL of CH₃CN. Under a stream of nitrogen the contents were stirred vigorously at 90 °C for 12 h. After the solvents were removed, the residue was extracted three times with 40 mL of boiling ethyl acetate. The combined filtrates were evaporated to give a white solid that was recrystallized from isopropyl alcohol to give Na-O₂S(CF₂)₂O(CF₂)₂SO₃Na (20.5 g, 50 mmol, 89% yield). ¹⁹F NMR for NaO₂SCF₂^ACF₂^BOCF₂^CCF₂^DSO₃Na (ethyl acetate): ϕ -133.2 (A), -83.9 (B), -83.4 (C), -119.7 (D).

Preparation of $ClO_2S(CF_2)_2O(CF_2)_2SO_3Na$. Into a 100-mL threenecked round-bottomed flask were placed $NaO_2S(CF_2)_2O(CF_2)_2SO_3Na$ (20.5 g, 50 mmol) and 30 mL of H₂O. Then Cl_2 gas was bubbled through the solution at 0 °C for 4 h. A white solid (14.0 g, 33 mmol) was obtained by filtration (66% yield). ¹⁹F NMR for $ClO_2SCF_2^ACF_2^BOCF_2^CCF_2^DSO_3Na$ (ethyl acetate): ϕ -109.1 (A), -79.7 (B), -82.4 (C), -118.3 (D).

Preparation of NaO₃SCF₂CF₂O(CF₂)₂SO₃Na. The compound was prepared in a manner similar to that for CF₃(CF₂)₃O(CF₂)₂SO₃Na. ¹⁹F NMR for NaO₃SCF₂^ACF₂^BOCF₂^BCF₂^ASO₃Na (D₂O): ϕ -82.53, -118.2. Anal. Calcd for C₄F₈Na₂O₇S₂: C, 11.38. Found: C, 11.57 (H <0.2%).

Preparation of HO₃S(CF₂)₂O(CF₂)₂SO₃H·H₂O. The compound was prepared in a manner similar to that for CF₃(CF₂)₃O(CF₂)₂SO₃H·H₂O (74% yield); bp 99 °C (0.22 Torr). ¹⁹F NMR for HO₃SCF₂^ACF₂^BOCF₂^BCF₂^ASO₃H·H₂O (DMSO-d₆): φ -117.3 (A), -82.9 (B). ¹H NMR (DMSO-d₆): δ 12.0. Anal. Calcd for C₄F₈H₄O₈S₂: C, 12.13; H, 1.02; F, 38.38; S, 16.19. Found: C, 12.24; H, 1.00; F, 38.20; S, 16.05.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, to the NSF (Grants CHE-8404974 and 8703790), to the AFOSR (Grant 87-0067), and to GRI for support of this work.