Acknowledgment. We are indebted to Dr. P. K. Das for his assistance in some of the time-resolved experiments. The research

Registry No. phen, 66-71-7; Cr(phen)₃³⁺, 15276-16-1; Cr(phen)₂- $(OH_2)_2^{3+}$, 47667-82-3.

Contribution from the Departement de Physico-Chimie, Centre d'Etudes Nucléaires de Saclay, IRDI/DESICP/DPC/SCM UA CNRS 331, 91191 Gif-sur-Yvette Cédex, France, and Rocketdyne, A Division of Rockwell International, Canoga Park, California 91303

Preparation and Characterization of $Ni(BiF_6)_2$ and of the Ternary Adducts $[Ni(CH_3CN)_6](BiF_6)_2$ and $[Ni(CH_3CN)_6](SbF_6)_2$. Crystal Structure of $[Ni(CD_3CN)_6](SbF_6)_2$

Roland Bougon,*^{1a} Pierrette Charpin,^{1a} Karl O. Christe,^{1b} Jacques Isabey,^{1a} Monique Lance,^{1a} Martine Nierlich,^{1a} Julien Vigner,^{1a} and William W. Wilson^{1b}

Received August 10, 1987

 $Ni(BiF_6)_2$ was prepared from the reaction of NiF₂ with BiF₅ in anhydrous HF, followed by removal of the excess of BiF₅ by sublimation. The compound was characterized by elemental analysis, X-ray powder data, and vibrational spectroscopy. Both Ni(BiF₆)₂ and Ni(SbF₆)₂ react with acetonitrile to give ternary adducts of the formula NiF₂·2MF₅·6CH₃CN, with M = Bi or Sb. These isomorphous adducts are stable at room temperature and were characterized by elemental analyses, X-ray powder data, and infrared and electronic spectroscopy. In these ternary adducts the Ni²⁺ ion is octahedrally coordinated by six acetonitrile molecules via the nitrogen, and the counterions are MF6. The [Ni(CD3CN)6](SbF6)2 complex was characterized by X-ray diffraction methods, crystallizing in the trigonal space group $R\bar{3}$ with a = 11.346 (3) Å, c = 17.366 (6) Å, V = 1936 Å³, Z = 10.366 (6) Å, V = 10.366 Å³, Z = 10.3663, and R = 0.034. The Sb atoms lie on C₃ sites and are octahedrally coordinated by six F atoms with two nonequivalent Sb-F distances of 1.80 (1) and 1.83 (1) Å. The octahedrally coordinated Ni atoms lie on C_{3i} sites with Ni–N distances of 2.07 (1) Å. It is shown that coordination of the Ni²⁺ ions by six CH₃CN molecules lessens the strong polarizing effect of these ions on the MF_{6}^{-} counterions, which had been found for the Ni(MF₆)₂ salts, and reduces their distortion from octahedral symmetry.

Introduction

The preparation and characterization of $Ni(SbF_6)_2$ have been described in a recent paper,² and preliminary results concerning $Ni(BiF_6)_2$ and the acetonitrile adducts of both salts have been presented at a meeting.³ This paper gives a full report on the preparation and characterization of Ni(BiF₆)₂ and the acetonitrile adducts. The previous formulation² of NiF₂·2SbF₅·6CH₃CN as $[Ni(CH_3CN)_6]^{2+}(SbF_6)_2$ was confirmed by elemental analysis, vibrational and electronic spectroscopy, and a crystal structure determination. Furthermore, it was interesting to determine how coordination of the Ni²⁺ ion by CH₃CN influences its interaction with the MF_6^- counterions.

Experimental Section

Apparatus. Volatile materials were manipulated in an all-metal vacuum line equipped with Teflon or metal valves. Solid products were handled in a glovebox flushed with dry nitrogen. The high-pressure reactor used has previously been described.⁴ Infrared spectra were recorded in the range 4000-200 cm⁻¹ on a Perkin-Elmer Model 283 spectrophotometer. Spectra of solids were obtained by using dry powders pressed between AgCl or AgBr windows in an Econo press (Barnes Engineering Co.). The low-frequency parts of the spectra were also recorded as halocarbon (Voltalef) or Nujol mulls between silicon plates. Raman spectra were recorded on a Coderg Model T 800 spectrophotometer by using the 514.5-nm exciting line of an Ar ion Spectra Physics laser or the 647.1-nm exciting line of a Kr ion Spectra Physics laser. Sealed quartz capillaries were used as sample containers in the transverse-viewing-transverse-excitation mode. Low-temperature spectra

were obtained with a Coderg liquid-nitrogen cryostat and a Coderg RC 200 regulator. The electronic absorption spectra were recorded on a Beckman UV 5240 spectrophotometer, the solution being contained in a 1 mm thick quartz cell fitted with a Teflon-TFE Rotaflo stopcock. X-ray diffraction powder patterns of the samples sealed in 0.3 mm o.d. quartz capillaries were obtained by using a Phillips camera (diameter 11.46 cm) using Ni-filtered Cu $K\alpha$ radiation. Crystals suitable for structure determination were transferred into quartz capillaries in the drybox.

Materials. Anhydrous nickel difluoride⁵ was obtained by the treatment of nickel acetate with HF at 270 °C followed by fluorination with F₂ at 200 °C. Bismuth and antimony trifluorides were from Ozark Mahoning Co., and their purities were checked by infrared spectroscopy and X-ray diffraction. Fluorine (Union Carbide Co.) was passed over NaF pellets to remove HF. Bismuth pentafluoride was prepaed by the reaction of BiF₃ with F₂ at 350 °C at a pressure of 20 atm. Acetonitrile (Prolabo) and acetonitrile- d_3 (CEA) were refluxed over P_2O_5 followed by treatment and storage on 5A molecular sieves. The adduct $Ni(SbF_6)_2$ was prepared as described previously² except that NiF₂ and SbF₃ were used instead of Ni and SbF5, respectively. Microanalyses were by Analytische Laboratorien, Elbach, West Germany.

Preparation of Ni(BiF₆)₂. A mixture of NiF₂ (2.57 mmol) and BiF₅ (5.15 mmol) was loaded in the drybox into half of a prepassivated Teflon double-U metathesis apparatus.⁶ Dry HF (~10 mL) was added on the vacuum line to the half containing NiF_2 -BiF₅, and the resulting mixture was stirred for 6 h at 25 °C. The metathesis apparatus was inverted, and the resulting solution, pressurized by 2 atm of dry nitrogen, was filtered into the other half of the apparatus. The HF solvent was pumped off for 12 h at 25 °C, leaving 1.4749 g of a pale yellow solid. The X-ray powder diffraction patterns indicated that this solid consisted of a mixture of Ni(BiF₆)₂ and BiF₅ and that the filter cake contained NiF₂ and Ni(Bi- $F_6)_2$. The solid residue obtained from the evaporation of the solution was ground and loaded in the drybox into a prepassivated 30 cm long sapphire tube, which was connected to an aluminum valve by a Swagelock compression fitting using Teflon ferrules. The lower part of the tube was

⁽¹⁾

⁽a) Centre d'Etudes Nucléaires de Saclay.
(b) Rocketdyne.
Christe, K. O.; Wilson, W. W.; Bougon, R.; Charpin, P. J. Fluorine Chem. 1987, 34, 287. (2)

Bougon, R.; Charpin, P.; Lance, M.; Isabey, J.; Christe, K. O.; Wilson, W. W. Presented at the 8th Winter Fluorine Conference of the Am-(3)erican Chemical Society, St. Petersburg, Fl, Jan 25-30, 1987. Hagenmuller, P. Preparative Methods in Solid State Chemistry: Ac-

⁽⁴⁾ ademic: New York and London, 1972; p 423.

Sample kindly supplied to us by M. Bergez, CEA/IRDI.

⁽⁶⁾ Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1977, 16, 849.

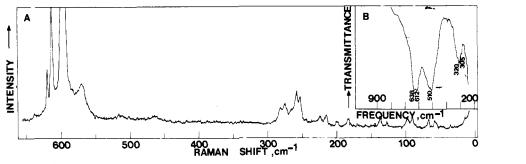


Figure 1. Vibrational spectra of $Ni(BiF_6)_2$.

Table I. X-ray Po	wder Data for N	$Ni(BiF_6)_2$	
	intens	d, Å	intens
4.67	m	1.883	m
4.21	S	1.854	vw
		1.826	w
3.75	S		
3.68	m	1.742	w
		1.734	ms
2.77	w	1.717	vw
2.74	m		
		1.661	m
2.55	m	1.630	m
2.387	mw		
2.357	w	1.515	mw
		1.504	w
2.252	m	1.475	m
2.241	m	1.445	w
		1.411	w
2.189	mw	1.376	w
2.109	m	1.343	mw
	-		

heated for 17 h at 100 °C with pumping. The solid that had sublimed onto the wall of the tube was identified as BiF_5 whereas the X-ray pattern and the vibrational spectra showed that the solid residue in the bottom of the tube (0.757 g) contained only Ni(BiF₆)₂.

Anal. Calcd for Ni(BiF₆)₂: Ni, 8.33; Bi, 59.32; F, 32.35. Found: Ni, 8.27; Bi, 60.65; F, 30.41.

Preparation of [Ni(CH_3CN)_6]^{2+}(MF_6)_2 (M = Sb or Bi). The Ni- $(MF_6)_2$ salts, typically on a 1-5 mmol scale, were loaded in the drybox into the Teflon double-U metathesis apparatus.⁶ Approximately 10 mL of CH₃CN or CD₃CN was condensed at -196 °C onto the Ni(MF₆)₂; the mixture was warmed to 20 °C and stirred for 2 h. The blue solutions were filtered into the second half of the apparatus. Upon solvent removal in vacuo, the solutions yielded purple crystals of $[Ni(CH_3CN)_6](MF_6)_2$.

Table II. Vibrational Frequencies and Assignments for $Ni(BiF_6)_2$

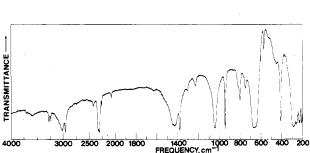


Figure 2. Infrared spectrum of [Ni(CH₃CN)₆](SbF₆)₂.

Single crystals of $[Ni(CD_3CN)_6](SbF_6)_2$ were grown from these solutions by slow evaporation of some of the solvent.

Anal. Calcd for Ni(CH₃CN)₆(SbF₆)₂: C, 18.56; H, 2.34; N, 10.82; F, 29.36; Sb, 31.36; Ni, 7.56. Found: C, 18.53; H, 2.32; N, 10.79; F, 29.31; Sb, 31.67; Ni, 7.59.

Anal. Calcd for Ni(CH₃CN)₆(BiF₆)₂: C, 15.16; H, 1.91; N, 8.84; F, 23.97; Bi, 43.95; Ni, 6.17. Found: C, 15.15; H, 1.86; N, 8.80; F, 22.85; Bi, 44.55; Ni, 6.20.

Results and Discussion

Synthesis of Ni(BiF₆)₂. The combination of NiF₂ with an excess of either BiF₅ at 160 °C in a Teflon FEP tube or BiF₃ + F₂ at 240 °C in an alumina crucible, contained in a Monel reactor, did not produce pure Ni(BiF₆)₂. The solid products were always contaminated with excess BiF₅ and to some extent NiF₂ and/or BiF₃. The NiF₂ impurity was removed by anhydrous HF in which NiF₂ is insoluble. Any excess of BiF₅ was removed by vacuum sublimation at 100 °C. In this manner pure Ni(BiF₆)₂ was obtained.

obs	d freq, cm ⁻¹ (rel i	ntens ^a)		
	Ra	man		
IR	28 °C	-196 °C	·····	assignment
638)	639 (0+)	639 (2)	$\nu_{as}(BiF_3)$ out of phase	
> vs	619 sh	621 (11)	$\nu_{as}(BiF_3)$ in phase	$\langle nonbridging BiF_3 stretching modes \rangle$
612)	613 (33)	615 (33)	$v_{sym}(BiF_3)$ out of phase	(nonorlaging Bir ₃ stretching modes
	596 (100)	596 (100)	$v_{sym}(BiF_3)$ in phase)
	569 sh	571 (10)	$v_{sym}(BiF_3)$ out of phase	
510 vs		517 (1)	$v_{as}(BiF_3)$ out of phase	bridging BiF ₃ stretching modes
305 sh)				
320 ms			NiFBi stretching	
		283 (4)	`	
	275 sh	276 (5)		
	261 (6)	259 (8)		
	/	254 (6)		
	225 (3)	225 (2)		
215 ms	(-)	216 (2)	Bi-F deformations	
		201 (0+)		
	181 (0+)	184 (3)		
	(••)	138 (3)		
	123 (1)	128 (1)		
	95 (3)	99 (3)	\langle	
		91 (3)	1	
	64 (3)	68 (2)	Ni…F deformations or lattice mod	les
	59 (3)	59 (2)		

^aUncorrected Raman intensities based on relative peak heights.

Table III. Electronic Absorption Data for $[Ni(CH_3CN)_6](SbF_6)_2$ in CH_3CN Solution

band max, cm ⁻¹	$^{\epsilon_{max}}$, L mol ⁻¹ cm ⁻¹	assignment
10430	40	$\Gamma_5({}^3F) \leftarrow \Gamma_2({}^3F)$
13910	9	$\Gamma_3(^1\text{D}) \leftarrow \Gamma_2(^3\text{F})$
17120	35.4	$\Gamma_4({}^3\mathrm{F}) \leftarrow \Gamma_2({}^3\mathrm{F})$
22 990	weak sh	$\Gamma_5(^1\text{D}) \leftarrow \Gamma_2(^3\text{F})$
27 400	52.6	$\Gamma_4({}^3\mathrm{P}) \leftarrow \Gamma_2({}^3\mathrm{F})$

X-ray Diffraction Data. The X-ray power diffraction data for $Ni(BiF_6)_2$, which are listed in Table I, indicate that the structure of this compound is very similar to that² of $Ni(SbF_6)_2$. Nevertheless, a splitting of some of the lines indicate that the symmetry is probably lowered, so that not all lines could be assigned in the hexagonal system proposed² for $Ni(SbF_6)_2$.

Vibrational Spectra. The observed infrared and Raman spectra of Ni(BiF₆)₂ are shown in Figure 1, and the frequencies are summarized in Table II. As discussed² for Ni(SbF₆)₂, the spectra clearly indicate that the MF_6^- anion is not octahedral but is strongly distorted, and that both bridging and nonbridging fluorines are present. The assignments given in Table II.are based on those² previously proposed for Ni(SbF₆)₂.

Syntheses and Properties of the $[Ni(CH_3CN)_6](MF_6)_2$ Adducts. The Ni(MF₆)₂ salts, where M = Sb or Bi, are very soluble in CH₃CN and form bright blue solutions containing the [Ni-(CH₃CN)₆](MF₆)₂ adducts. The electronic absorption spectra of these solutions are characteristic of an octahedrally coordinated Ni²⁺ ion and are quite comparable to those reported^{7,8} for [Ni-

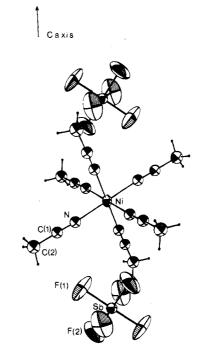


Figure 3. ORTEP¹³ drawing of the molecular unit $[Ni(CD_3CN)_6](SbF_6)_2$.

 $(CH_3CN)_6]^{2+}(BF_4^-)_2.$ The data obtained from the spectrum of $[Ni(CH_3CN)_6]^{2+}(SbF_6^-)_2$ are summarized in Table III. A strong

Table IV. Infrared Data (cm^{-1}) for $[Ni(CH_3CN)_6]^{2+}(SbF_6^{-1})_2$, $[Ni(CH_3CN)_6]^{2+}(BiF_6^{-1})_2$, and $[Ni(CD_3CN)_6]^{2+}(SbF_6^{-1})_2$

	[Ni(CH ₃ CN) ₆] ²⁺ -	[Ni(CH ₃ CN) ₆] ²	+_		Ni(CD ₃ CN) ₆] ²⁺ -	
CH₃CNª	$(SbF_6)_2$	$(BiF_6)_2$	CD3	CN ^₄	$(SbF_6)_2$	assignment
2942	2946	2949	211	5	2114	$\nu_1(A_1)$ sym CH ₃ (D ₃) str
2252	2299	2299	225		2308	$\nu_2(A_1)$ C=N str
1374	1373	1374	110		1104	$\nu_3(A_1)$ sym CH ₃ (D ₃) def
919	942	945	83		858	$\nu_4(A_1)$ C—C str
3001	3012	3012	overlappe	d with v ₂	2257	$\nu_{5}(E)$ asym CH ₃ (D ₃) str
1415	1422	1429	103		1034	$\nu_6(E)$ asym CH ₃ (D ₃) det
1039	1040	1039	84	8 o	verlapped with ν_4	$\nu_7(E)$ CH ₃ (D ₃) rock
378	412	412	34	.7	382	$\nu_8(E)$ C—C=N bend
		Combination N	Modes of Coordin	nated CH ₃ CN(C	D ₃ CN)	
[Ni(CH ₃	$[N_{6}]^{2+}$. [N	i(CH ₃ CN) ₆] ²⁺ -		[Ni(C	$(D_3CN)_6]^{2+}$	
(Sb	F ₆ ⁻) ₂	(BiF ₆ ⁻) ₂	assignment	($SbF_6)_2$	assignment
32	268	3267	$2\nu_4 + \nu_3$		3420	$\nu_2 + \nu_3$
	232	3239	$\nu_2 + \nu_4$		3282	$v_{5} + v_{6}$
27	40	2738	$2\nu_3$		3167	$\nu_1 + \nu_6, \nu_2 + \nu_4, \nu_2 + \nu_7$
					3120	$\nu_5 + \nu_7, \nu_4 + \nu_5$
					2957	$\nu_1 + \nu_4, \nu_1 + \nu_7$
	12	2420	$\nu_3 + \nu_7, \nu_6 + \nu_7$	7	2917	$2\nu_6 + \nu_4$
	20	2321	$\nu_{3} + \nu_{4}$		1949	$\nu_3 + \nu_4, \nu_3 + \nu_7$
	252	2254	$2\nu_8 + \nu_6$		1880	$\nu_4 + \nu_6, \nu_6 + \nu_7$
20)72	2070	$2\nu_7$		1725	$2\nu_4, 2\nu_7, \nu_4 + \nu_7$
			_		1460	$\nu_3 + \nu_8$
	19	820	$2\nu_8$			_
8	00	799	?		743	$2\nu_8$
			XF_6^- Modes (X =	. ,		
[Ni($(CH_3CN)_6]^{2+}(SbF_6)_2$	[Ni(CH ₃ CN) ₆]	$^{2+}(\text{BiF}_{6}^{-})_{2}$ [Ni(CD ₃ CN) ₆] ²⁺	$(SbF_6)_2$	assignment ^b
	1306	1150		1304		$\nu_1 + \nu_3$
	1228	1100		1226		$\nu_2 + \nu_3$
	750	659				$\nu_2 + \nu_6$
					`	$\nu_1(\mathbf{A}_{1\mathbf{g}})$
	665	570		668 sh 654	}	$\nu_3(\mathbf{F}_{1u})$
	570			568	,	$\nu_2(E_g)$
	450					$\nu_{5} + \nu_{6}?$
	288	215		288		$\nu_4(F_{1u})$
	270					$\nu_5(F_{2g})$

^a Liquid at 35 °C.¹⁰ ^b Assignment based on space group O_h . See text.

Table V. Crystal Data

formula	$\overline{C_{12}D_{18}F_{12}N_6NiSb_2}$
fw	794.6
crystn solvent	acetonitrile-d ₃
cryst syst	trigonal
space group	R3
cryst dimens, mm	$0.300 \times 0.200 \times 0.050$
cryst color	purple
lattice params	
<i>a</i> , Å	11.346 (3)
<i>c</i> , Å	17.366 (6)
Z V, Å ³	3
V, Å ³	1936
$d_{\rm calcd}, {\rm g \ cm^{-3}}$	2.045
radiation	Mo K α (λ = 0.7107 Å),
	graphite monochromator
μ (Mo K α), cm ⁻¹	29.1
temp, K	295
instrument	Enraf-Nonius CAD 4
ω range, deg	2–40
octants	h,k,l (0 to +10, 0 to +10, 0 to +16)
no. of collcd data	256
no. of data with	148
$\sigma(I)/I < 0.33$	
no. of params	45
data/variable ratio	5.7
resolution programs	SDP 80 program package, Enraf-Nonius, Delft, The Netherlands
scattering factor	a
(f', f'') sources	
structure soln	heavy-atom method
R(F)	(0.035)
$R_{w}(F)$	(0.042)
w	$\frac{4F_o^2}{\sigma(I_o)^2} + (pF_o^2)$ with $p = 0.04$
function used in the least-squares refinement	$\sum w(F_0 - F_c)^2$
deuterium atoms	in calcd positions, riding on their C atoms, with thermal param $B_{\rm H} = 15B_{\rm c}$

^a International Tables for X-ray Crystallography; Kynoch: Birmingham, England, 1974; Vol. IV, Tables 2-2B and 2-3-1.

band at 46 510 cm⁻¹, which is not included in Table III, is assigned to a charge transfer. The value of the ligand field splitting $(10Dq)^9$ was found from the $\Gamma_5({}^3F) \leftarrow \Gamma_2({}^3F)$ transition to be equal to 10 430 cm⁻¹.

The acetonitrile adducts and their solutions are stable at room temperature. Owing to their absorption range, which includes the wavelengths of the laser exciting lines used for Raman spectroscopy, no Raman spectra of these adducts were obtained. However, information regarding the molecular arrangement could be obtained from the infrared spectra alone since they displayed sharp and well-defined bands (see Figure 2 and Table IV).

The positions of the ligand bands are as expected⁷ for coordinated acetonitrile. Compared to those for free acetonitrile,¹⁰ the bands assigned to the C—C=N skeletal modes, ν_2 , ν_4 , and ν_8 , show the expected^{7,11} frequency increase while the remaining modes are essentially unshifted. The remaining bands in the infrared spectra can be assigned to the MF₆⁻ anions.¹² According to the crystal structure (see below), the site symmetry of the SbF₆⁻ anion is C₃, which implies that the modes coresponding to $\nu_3(F_{1u})$, $\nu_4(F_{1u})$, $\nu_5(F_{2g})$, and $\nu_6(F_{2u})$ of O_h symmetry each might be split into two components of symmetry A and E, which are active in both the Raman and infrared.² The number of infrared bands,

- (7) Reedijk, J.; Groeneveld, W. L. Recl. Trav. Chim. Pays-Bas 1967, 86, 1103.
- (8) Hathaway, B. J.; Holah, D. G. J. Chem. Soc. 1964, 2400.
- (9) Ballhausen, C. J. Introduction to Ligand Field Theory; McGraw-Hill: New York, San Francisco, Toronto, London, 1962; p 261.
- (10) Shimanouchi, T. Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.) NSRDS-NBS 39, 84. Pace, E. L.; Noe, L. W. J. Chem. Phys. 1968, 49, 5317.
- (11) Purcell, K. F. J. Am. Chem. Soc. 1967, 89, 247.
- (12) Reedijk, J.; Zuur, A. P.; Groeneveld, W. L. Recl. Trav. Chim. Pays-Bas 1967, 86, 1127 and references therein.

Table VI.	Positional and	Thermal	Parameters	for
[Ni(CD ₃ C	$N_6](SbF_6)_2$			

atom	x	у	z	<i>B</i> ,ª Å ²
Sb	0.000	0.000	0.3293 (1)	4.01 (3)*
F(1)	-0.131 (1)	-0.002 (2)	0.3891 (7)	14.1 (5)*
F(2)	-0.131 (1)	-0.129 (1)	0.2669 (7)	13.3 (5)*
Ni	0.000	0.000	0.000	2.38 (8)*
Ν	0.149 (1)	0.151 (1)	-0.0675 (6)	3.9 (3)
C(1)	0.241 (1)	0.243 (1)	-0.1012 (9)	4.1 (4)
C(2)	0.349(1)	0.348(1)	-0.1419 (9)	4.5 (4)
D(1)	0.317	0.387	-0.179	6.8
D(2)	0.407	0.416	-0.107	6.8
D(3)	0.398	0.311	-0.167	6.8

^{*a*} Starred values denote anisotropically refined atoms for which B_{equiv} ^{*4*}/₃ $\sum_{ij}\beta_{ij}a_{ij}a_{ij}a_{ij}$.

Table VII.	Interatomic	Distances (Å)) and	Angles	(deg)
------------	-------------	---------------	-------	--------	-------

			0/
Ni–N N–C(1)	[Ni(NCCD ₃) 2.07 (1) 1.20 (2)	C(1)-C(2)	1.40 (2)
Ni-N-C(1)	175 (2)	N-C(1)-C(2)	179 (2)
Sb -F(1)	SbF ₆ - (1.80 (1)	Octahedron Sb-F(2)	1.83 (1)
F(1)-Sb-F(1) F(1)-Sb-F(2) F(2)-Sb-F(2)	90.2 (6) 89.7 (6) 88.5 (7)	F(1)-Sb-F(2) F(1)-Sb-F(2)	91.7 (7) 178.2 (7)

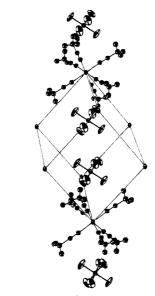


Figure 4. View of the molecular packing of $[Ni(CD_3CN)_6](SbF_6)_2$.

their contours, and relative intensities indicate that the octahedral symmetry of the MF_6^- anions is indeed lower than O_h in these adducts but that the distortion is considerably less than that observed for the Ni(MF_6)₂ salts. This is not surprising in view of the fact that the polarizing strength and hardness of the Ni²⁺ acid is greatly diminished by surrounding it with six bulky CH₃CN ligands, which isolate the Ni²⁺ cations from the MF_6^- anions.

Crystal Structure. The molecular stereochemistry of the ternary adducts was established by a single-crystal study of the adduct $[Ni(CD_3CN)_6]^{2+}(SbF_6^{-})_2$. Crystal data are given in Table V. Final positional and thermal parameters are given in Table VI with their estimated standard deviations. The relevant distances and angles are given in Table VII. Figure 3 shows the molecular unit and atomic labeling scheme, and Figure 4 gives a view of the molecular packing.¹³ Both ions have octahedral geometry. In $[Ni(CD_3CN)_6]^{2+}$, the Ni atom lies on a C_{3i} symmetry and the six nitrogen atoms form a slightly compressed octahedron with

⁽¹³⁾ Johnson, C. K. "ORTEP II"; Report ORNL 5138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976.

the two N-N distances being significantly different: 2.95 (2) Å and 2.89 (2) Å. The SbF₆⁻ anion has only a C_3 symmetry and hence two independent F atoms: Sb-F(1) = 1.80(1) Å; Sb-F(2)= 1.83 (1) Å. The F-F distances are equal: F(1)-F(1) = 2.55(2) Å; F(2)-F(2) = 2.56 (2) Å; F(1)-F(2) = 2.57 (2) Å. Thus, in spite of the two nonequivalent F atoms, Sb lies in a nearly regular octahedron.

Conclusion. The results of this study show that the corrosion products formed in high-temperature fluorination reactions involving BiF, in nickel or Monel reactors are analogous to those² found for SbF₅. In the formed Ni(MF₆)₂ products the MF₆⁻ anions are strongly distorted by the strong polarizing effect of the small, doubly charged Ni²⁺ cations and the resulting strong fluorine bridging. Basic ligands with good donor properties, such as CH₃CN, can add to the Ni²⁺ cations and form ternary adducts of the composition $[Ni(CH_3CN)_6](MF_6)_2$. The increased size and softness of the new cations diminishes the strong polarizing effect of the Ni²⁺ cations on the MF_6^- anions in the Ni(MF₆)₂ type compounds.

Acknowledgment. The authors from Rocketdyne thank the U.S. Army Research Office and the Office of Naval Research for financial support.

Note Added in Proof. After submission of this paper, the results of an independent crystal structure determination of [Ni(CH₃CN)₆](SbF₆)₂ have been published by: Leban, Gantar, Frlec, Russell, and Holloway, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1987, 43, 1888.

Registry No. Ni(BiF₆)₂, 112817-17-1; NiF₂, 10028-18-9; BiF₅, 7787-62-4; $[Ni(CH_3CN)_6]^{2+}(SbF_6^-)_2$, 69102-75-6; $[Ni(CH_3CN)_6]^{2+}$ - (BiF₆⁻)₂, 112817-18-2; $[Ni(CD_3CN)_6](SbF_6)_2$, 112839-66-4.

Supplementary Material Available: Tables of bond distances, bond angles, atomic positional parameters, anisotropic thermal parameters, and lattice constants and space group (7 pages); a table of calculated and observed structure factors (2 pages). Ordering information is given on any current masthead page.

Contribution from Hall-Atwater Laboratories, Wesleyan University, Middletown, Connecticut 06457, and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405

Luminescence Spectra and Lifetimes of Cerium(III) Compounds as Indicators of Solution Behavior and Radiative Efficiency

Paulette N. Hazin,[†] Chitra Lakshminarayan,[†] Linda S. Brinen,[†] Joseph L. Knee,^{*†} Joseph W. Bruno,^{*†} William E. Streib,[‡] and Kirsten Folting[‡]

Received September 30, 1987

The luminescence spectra and radiative lifetimes of a number of cerium(III) organometallics and halide compounds have been obtained by using a picosecond laser single-photon-counting system. These spectra, which can be determined for solids or solutions, are very useful for determining the exact nature of organocerium species in solution. Herein we report the solution behavior of some bis(pentamethylcyclopentadienyl)cerium compounds, including the tendency of $[K(THF)_2][(C_5Me_5)_2CeI_2]$ (1) to adopt a $(C_5Me_5)_2CeIL_n$ solution structure in either THF (n = 1) or CH₃CN (n = 2). While crystallization from THF regenerates the salt adduct 1, the salt-free material (C₅Me₅)₂Ce(I)(NCCH₃)₂ (3) crystallizes from CH₃CN in high yield. A crystallographic study of 3 shows that the compound adopts a highly distorted trigonal bipyramidal solid-state geometry with axial nitrile ligands; the steric bulk of the C_5Me_5 rings causes the nitriles to bend toward the iodide. Crystal data: space group *Pnab*, a = 13.952 (3) Å, b = 14.768 (3) Å, c = 12.831 (3) Å, V = 2643.59 Å³, Z = 4 (-150 °C). Lastly, the study of lifetimes has revealed a correlation between luminescence energy and lifetime, in accord with theoretical predictions. This correlation holds for a wide range of compounds, indicating that most of them have a high radiative efficiency (ca. 1); a noteworthy exception is 3, which has a radiative efficiency of ca. 0.02. The presence of nonradiative decay channels resulting from the structural characteristics of 3 is considered.

Introduction

Recently we reported the luminescence spectra of a series of cerium(III) organometallic and halide compounds.¹ All of the cerium(III) compounds we have studied to date exhibit such emissions, and we noted a strong dependence of luminescent wavelength on the nature of the ligand sphere. As such, halide complexes such as $CeX_3(THF)_x$ (X = Cl, I; x = 3, 4) emit at higher energies (ca. 350 nm) while bis(pentamethylcyclopentadienyl)cerium(III) species (e.g. [Li(Et₂O)₂][(C₅Me₅)₂CeX₂]) were found to emit at lower energies (ca. 550-600 nm). The compounds typically show two broad bands in their emission spectra, which are assigned to emission from the lowest ²D excited-state component to the two spin-orbit components of the ground state, ${}^{2}F_{5/2}$ and ${}^{2}F_{7/2}$.² The energetic separation of these emission bands (ca. 2000 cm⁻¹) reflects the magnitude of the ground-state splitting; the relative constancy from one compound to another indicates that the f orbitals are largely unaffected by the nature of the ligand sphere. However, the wide range of emission energies exhibited across the series of compounds (ca. 350-600 nm) illustrates that the energies of the excited ²D states vary considerably as a function of ligand sphere. In this regard cerium(III) is very different from other trivalent lanthanides that

are known to luminesce as a result of f-f transitions;³ the latter are considerably less sensitive to the nature of the ligand sphere.

The cerium(III) emissions can also be used empirically to gather information regarding the nature of the medium in which the compound is located. This can be highly useful since most of the trivalent lanthanides are paramagnetic, $^{\!\!\!4}$ and thus NMR studies are of limited utility. Moreover, the luminescence method operates in a time regime which is considerably shorter than that of the NMR experiment. As such, we presented data in our previous paper¹ regarding the spectra of compounds such as [Li]- $[(C_5Me_5)_2CeCl_2]$ and $(C_5Me_5)CeI_2(THF)_3$ in various solvents as well as the solid state; substantial differences were noted as a

Wesleyan University.

[‡]Indiana University.

⁽¹⁾ Hazin, P. N.; Bruno, J. W.; Brittain, H. G. Organometallics 1987, 6, 913-918.

⁽a) Lang, R. J. Can. J. Res., Sect. A 1936, 14, 127. (b) Brewer, L. J. (2)Opt. Soc. Am. 1971, 61, 1666-1682. (c) Crozier, M. H. Phys. Rev. A 1965, 137, 1781-1783. (d) Loh, E. Phys. Rev. 1966, 147, 332-335. (e) Blasse, G.; Bril, A. J. Chem. Phys. 1967, 47, 5139-5145. (f) Blasse, G.; Bril, A. Appl. Phys. Lett. 1967, 11, 53-55. (g) Blasse, G.; Bril, A. Philips Tech. Rev. 1970, 31, 1970.

⁽a) Brittain, H. G.; Meadows, J. H.; Evans, W. J. Organometallics (a) J. 2, 1661-1665. (b) Brittain, H. G.; Meadows, J. H.; Evans, W. J. Organometallics 1985, 4, 1585-1590. (c) Brittain, H. G.; Wayda, A. L. Inorg. Chim. Acta 1984, 95, L1-L4. (d) Blasse, G. In Handbook on the Physics and Chemistry of the Rare Earths; Gschneidner, K. A., Construction of the Constructio Eyring, L., Eds.; North-Holland: Amsterdam, 1979; Chapter 34.
 (4) Evans, W. J.; Hozbor, M. A. J. Organomet. Chem. 1987, 326, 299–306.