Found: C, 26.34; H, 3.99; F, 24.38; N, 9.21.

Acknowledgment. We acknowledge support of this research by the National Science Foundation through Grant No. 86 18766.

Registry No. I, 15684-01-2; Cr₂(tfa)₄[(EtO)₃PO]₂, 113274-02-5; Cr₂(tfa)₄(HMPA), 113274-03-6; Cr₂(tfa)₄(DMTF)(Et₂O), 113274-04-7; $Cr_{2}(tfa)_{4}(DMCA)(Et_{2}O), 113274-05-8; Cr_{2}(tfa)_{4}(DMF)(Et_{2}O),$ 113274-06-9; $Cr_2(tfa)_4[(MeO)_3P](Et_2O), 11\overline{3274}-07-0; Cr_2(tfa)_4-07-0; Cr_2(tfa)_4-0; Cr_2(tfa$ [(EtO)₃PO](Et₂O), 113274-08-1; Cr₂(tfa)₄(DMA)(Et₂O), 113274-09-2; $Cr_2(tfa)_4(DMSO)(Et_2O), 113274-10-5; Cr_2(tfa)_4(Me_3PO)(Et_2O),$ 113274-11-6; Cr₂(tfa)₄(HMPA)(Et₂O), 113274-12-7; Cr₂(tfa)₄-(DMTF)₂, 113274-13-8; Cr₂(tfa)₄(DMCA)₂, 113274-14-9; Cr₂(tfa)₄-(DMF)₂, 113274-15-0; Cr₂(tfa)₄[(MeO)₃P]₂, 113301-74-9; Cr₂(tfa)₄-(Me₄Urea)₂, 113274-16-1; Cr₂(tfa)₄(DMA)₂, 113274-17-2; Cr₂(tfa)₄- $(DMSO)_2$, 113274-18-3; $Cr_2(tfa)_4(Me_3PO)_2$, 113274-19-4.

Supplementary Material Available: Tables of molar magnetic susceptibility corrected for diamagnetism with Pascal's constants and raw calorimetry data (15 pages). Ordering information is given on any current masthead page.

> Contribution from the Department of Chemistry. Texas A&M University, College Station, Texas 77843

Effect of d-Orbital Occupation on the Coordination Geometry of Metal Hydrates: Full-Gradient ab Initio Calculations on Metal Ion Monohydrates

Randall D. Davy and Michael B. Hall*

Received August 20, 1987

Hartree-Fock-Roothaan self-consistent-field calculations were performed on monohydrates of the metal ions Li⁺, Na⁺, K⁺, Ca²⁺, Sc³⁺, Ti²⁺, Cr²⁺, Co⁺, and Ni²⁺ and the neutral Fe⁰. Optimal geometries were calculated with the requirement that Cs symmetry be maintained. From these calculations the effect of the electronic interaction on the metal-water coordination geometry was isolated from bulk effects and its strength estimated. Potential energy curves were calculated for the metal ion versus the angle θ_w (the "wag angle"). The potential energy curve for this wagging motion was found to be shallow, and in all cases except Fe⁰ the planar, C_{2v} , geometry ($\theta_W = 0^\circ$) was found to have the lowest energy. The potential curve depended strongly on the charge of the ion and weakly on the d-orbital occupation of the transition metals.

Introduction

Metal ion hydration, especially hydration of biologically important alkali metals, has been thoroughly studied and reviewed.1-3 Clementi and co-workers performed extensive ab initio calculations on alkali-metal ions, including construction of potential energy surfaces for a water molecule in the field of Li⁺, Na⁺, or K⁺ ions.⁴ They obtained the lowest energy when the metal lies along the water dipole, as in Figure 1 with $\theta_W = 0^\circ$. Dacre did a more detailed study of the Na^+-OH_2 complex and obtained results similar to those of Clementi.⁶ The potential energy surface calculated by Clementi for the H2O-Li⁺ complex was subsequently used by Impey et al. in a Monte Carlo simulation.⁷ Bounds has used an analytical gradient technique to provide the potential terms for Monte Carlo simulations of dilute aqueous Li⁺, Na⁺, K⁺, Ca²⁺, and Ni²⁺ solutions.⁸ This is an efficient method of calculating a potential energy surface, and earlier Bounds found that a gradient calculation produced a potential surface for Na⁺, Li⁺, and K⁺ in good agreement with that of Clementi.⁹

Although the potential energy surfaces used in the Monte Carlo calculations give minima for θ_w of 0°, the Monte Carlo calculations of Bounds show the tendency of the water to coordinate the metal with θ_w greater than zero, generally 25–45°.⁸ This result

- Schuster, P.; Jakubetz, W.; Marius, W. Top. Curr. Chem. 1975, 60, 1.
- Hunt, J. P.; Friedman, H. L. Adv. Inorg. Chem. 1983, 30, 359.
 Clementi, E.; Popkie, H. J. Chem. Phys. 1972, 57, 1077.
- (5) Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1973, 58, 1689.
- (7) Impey, R. W.; Madden, P. A.; McDonald, I. R. J. Phys. Chem. 1983, 87, 5071.
- Bounds, D. G. Mol. Phys. 1985, 54, 1335.
- (9) Bounds, D. G.; Bounds, P. J. Mol. Phys. 1983, 50, 25.

is in agreement with both crystal structures of metal hydrates¹⁰ and the inelastic neutron scattering experiments of Enderby and co-workers.^{11,12} It is postulated that the water-water interactions, especially hydrogen bonding, contribute to θ_{W} being closer to the tetrahedral value (31.5°) than the planar.

There are still unanswered questions concerning the interaction of water molecules coordinated to metal ions. Calculations on H_3O^+ give a nonplanar geometry for the gas-phase ion. What is the difference between Li⁺ and H⁺, which makes the former planar and the latter pyramidal? The predominant interaction at a long M-O distance is certainly the ion-dipole interaction, which will favor the planar geometry. At shorter M-O distances, however, one might expect orbital interactions to induce a nonplanar geometry.¹³ Enderby's study included the transition-metal ion Ni²⁺, which has an unfilled d shell. One might therefore ask whether certain d-orbital occupations favor a nonplanar geometry apart from bulk interactions. The transition-metal hydrates have not been studied as extensively as those of the alkali metals, although their hydration geometries are important for understanding reactions such as the electron transfer between Fe^{II}(H₂O)₆ and $Fe^{III}(H_2O)_6$.¹⁴ We have attempted to answer these questions by calculating optimal geometries of the hydrates of the spherical ions Li⁺, Na⁺, K⁺, Ca²⁺, and Sc³⁺, of the ions Ti²⁺ and Cr²⁺, with two and four d electrons, and of the ions Fe^0 , Co^+ , and Ni^{2+} , with eight d electrons. In this study, rather than trying to understand all the interactions in a cluster, we will focus on the effect of the electronic interactions on the coordination geometry of a single

- (10) Friedman, H. L.; Lewis, L. J. Solution Chem. 1976, 5, 445.
 (11) Enderby, J. E.; Neilson, G. W. Rep. Prog. Phys. 1981, 44, 38.
 (12) Enderby, J. E. Annu. Rev. Phys. Chem. 1983, 34, 155.
 (13) Albright, T. A.; Burdett, J. K.; Whangbo, M. H. Orbital Interactions in Chemistry; Wiley-Interscience: New York, 1985; p 106.
- (a) Jafri, J. A.; Logan, J.; Newton, M. D. Isr. J. Chem. 1980, 19, 340.
 (b) Newton, M. D. J. Phys. Chem. 1986, 90, 3734.
 (c) Newton, M. (14) D.; Sutin, N. Annu. Rev. Phys. Chem. 1984, 35, 437.

⁽¹⁾ Conway, B. E. Ionic Hydration in Chemistry and Biophysics; Elsevier: New York, 1982.

Figure 1. General structure of the metal monohydrates. θ_W is the angle between the metal ion and the H₂O plane, with the metal ion lying in the plane of symmetry.

Table I. Lowest Energy Geometries

	НОН							
metal	<i>r</i> (M–O),	<i>r</i> (O–H),	angle,	energy,				
ion	Å	Å	deg	hartree				
A. Spherical Ions								
Li ⁺	1.849	0.9537	106.3	-83.190977				
Na ⁺	2.217	0.9516	105.5	-235.790848				
K ⁺	2.659	0.9505	105.0	-669.440 990				
Ca ²⁺	2.340	0.9595	103.8	-746.031 452				
Sc ³⁺	1.994	0.9947	103.5	-827.564018				
B Ions with Partially Filled d Shells								
$Ti^{2+} (d_{12} - 2)^2$	2.074	0.9677	105.6	-916,195313				
$Ti^{2+} (d_{m})^2$	2.073	0.9667	105.6	-916.195.312				
$Ti^{2+} (d_{m})^2$	2.093	0.9639	105.9	-916.182 792				
$Ti^{2+} (d_{-})^2$	2.176	0.9625	105.4	-916.171 528				
$Cr^{2+} (d_{r^2-\nu^2})^2 (d_{\nu\tau})^2$	1.862	0.9716	106.4	-1108.784 304				
$Cr^{2+} (d_{x^2-v^2})^2 (d_{xy})^2$	1.966	0.9689	106.1	-1108.769 994				
$Ni^{2+} (d_{r^2})^a$	1.850	0.9713	108.5	-1569.419938				
$Ni^{2+} (d_{xz})^a$	1.924	0.9703	106.6	-1569.394 529				
$Ni^{2+} (d_{yz})^a$	1.989	0.9688	106.2	-1569.384860				
$Ni^{2+} (d_{xv})^a$	1.989	0.9664	106.4	-1569.376757				
Co ^{+ b}	2.010	0.9528	108.0	-1445.406129				
Fe ^{0 c}	2.142	0.9533	107.5	-1327.498 433				

^{*a*} Indicates the single unoccupied d orbital. ^{*b*} Co⁺ occupation is $(d_{x^2-y^2})^2 (d_{xy})^2 (d_{xz})^2 (d_{yz})^2$. ^{*c*} Fe⁰ occupation is $(4s)^2 (d_{xy})^2 (d_{xz})^2 (d_{yz})^2$.

water molecule bound to a metal ion.

Theory

Calculations were done by using the Hartree–Fock–Roothaan method¹⁵ and the generalized valence bond (GVB) method of Goddard.¹⁶ The geometry optimizations in all cases were done by using full-gradient techniques. The basis functions used in this study were obtained by a least-squares fit of linear combinations of Gaussian functions to near-Hartree–Fock-limit-quality Slater type functions.¹⁷ The metal core functions were fit by three Gaussians, which were then contracted to a single function. The 3d orbitals on Ti, Cr, Fe, Co, and Ni were fit by four Gaussian functions, which were then split into a contraction of three functions and a single diffuse function. The basis set on the hydrogen and oxygen was Pople's 4-31G¹⁸ plus a single d-orbital function with an exponent of 0.85 added to the oxygen. The calculations of optimal geometry for Li⁺ and Na⁺ hydrates were repeated by using Pople's 3-21G basis¹⁹ for Li⁺ and Na⁺, with no change in the results.

In this study use was made of level shifting. The Hartree-Fock-Roothaan procedure will usually converge to the lowest energy state of closed-shell molecules, i.e., the global minimum. The computational technique of level shifting can be used, however, to obtain convergence to excited closed-shell states, which are local minima for the closed-shell energy surface. This is accomplished by swapping orbitals between the occupied and virtual sets and then minimizing the mixing of the occupied and virtual sets. If, however, an occupied orbital is swapped with a virtual orbital of the same symmetry, then level shifting cannot prevent convergence to the original state, because mixing between orbitals of the same symmetry is too facile. All calculations were done by using the GAMESS program²⁰ and were run on the Texas A&M Amdahl 5860 computer or at the Cornell Theory Center Production Supercomputer

Figure 2. Energy versus θ_W for the ions Li⁺ (\bullet), Na⁺ (\circ) K⁺ (\Box), Ca²⁺ (\blacksquare), and Sc³⁺ (\blacktriangle). The curve is fit by cubic spline.

Table II. O-H Bond s/p Ratios^a

$\theta_{\rm W}$, deg	Li ⁺	Ca ²⁺	Cr ²⁺	H₃O ⁺		
0	0.4988	0.4948	0.5502	0.6972		
10	0.4983	0.4942	0.5463	0.6350		
20	0.4962	0.4926	0.5344	0.6043		
30	0.4934	0.4895	0.5233	0.5782		
44 ^b				0.5478		

^a The amount of s and p character was determined by taking the square root of the sum of the squares of contracted and diffuse s and p orbitals in the localized (Boys) O-H orbital. The value for the water O-H bond in our basis set is 0.4401. ^b Optimal angle for H₃O in our basis set.

Facility with FPS264 Array Processors attached to an IBM 3090-400 computer.

Results and Discussion

The calculated bond lengths and angles and total energies are shown for the lowest energy geometries in Table I. All geometries shown in Table I are at $\theta_W = 0^\circ$ except for that of Fe⁰, which is at $\theta_W = 45^\circ$. A table of all calculated geometries is available as supplementary material. The geometry optimizations were begun with a θ_W value of 20°, and in each case (except Fe⁰) the optimization procedure brought the metal back into the water plane. To calculate a potential curve for bending, θ_W was fixed at 10, 20, 30, and 45° and all other bond lengths and the HOH angle were optimized. The results of the calculations on the spherical ions are shown in Figure 2.

The calculated metal-oxygen distances for the Na⁺, Li⁺, and K⁺ hydrates agree well with those of Clementi, which were obtained by using a larger basis set. It should be pointed out, however, that the purpose of the study is not to obtain accurate absolute values for bond lengths and angles of hypothetical monohydrates; rather, our purpose is to understand the dependence of coordination geometry, especially θ_{W} , upon electronic interactions. Although it is not as large as the basis set used by Clementi, our basis set is adequate for the prediction of trends in the geometry. Clementi and Corongiu showed the necessity of configuration interaction (CI) calculations to accurately describe the H_2O-Be^{2+} potential surface and indicated that the need for CI in calculating interactions between water molecules and +2 ions is general.²¹ Configurations with $M^+-(OH_2)^+$ character are important for a proper description of the interaction potential of dications and water. Clementi and Corongiu indicated, however, that the importance of CI decreases for the series Be^{2+} to Mg^{2+} to Ca^{2+} . The influence of CI on our calculations was tested for the lowest energy closed-shell state of Ti²⁺. The potential curve for θ_W was recalculated by using a GVB description of the metal-water σ bond. The potential energy curve was slightly flatter, in the GVB calculation, but the planar geometry remained

⁽¹⁵⁾ Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.

⁽¹⁶⁾ Bobrowicz, F. W.; Goddard, W. A. In Methods of Electronic Structure Theory; Schaefer, H. F., Ed.; Plenum: New York, 1977; Chapter 5.

⁽¹⁷⁾ Clementi, E. IBM J. Res. Dev. 1965, 9, 2.
(18) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.

 ^{(19) (}a) Li: Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939. (b) Na: Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797.

⁽²⁰⁾ M. F. Guest, SERC Daresbury Laboratory, Warrington, WA4 4AD United Kingdom.

⁽²¹⁾ Clementi, E.; Corongiu, G. J. Chem. Phys. 1978, 69, 4885.

Figure 3. Interaction diagram for metal d orbitals and water valence orbitals.

the energy minimum. The Ti-O and O-H bond lengths and the HOH angle changed very little. The presence of polarization functions on the Ca^{2+} ion also had only a small effect. When d orbitals were added to the Ca2+ ion, the planar geometry remained the energy minimum but the Ca-O bond shortened to 2.257 Å.

It has been previously shown that H_3O^+ assumes a nonplanar geometry,²² and one might expect that the alkali metal ion monohydrates would also be nonplanar. The pyramidal geometry of H_3O^+ is due to the proton's ability to cause rehybridization of the water orbitals. Free H_2O is hybridized in such a way that the s to p ratio in the bond is low, reflecting the tendency to keep the oxygen lone pair high in s character.²³ If an H^+ ion approaches along the water dipole, then electrons are donated to the H⁺ from a p_z -2s hydrid; i.e., in planar H₃O⁺ the O-H bonds are sp^2 hybrids and the lone pair is in a p orbital. The H₃O⁺ ion therefore adopts a pyramidal configuration, which allows more charge transfer from the electrons in p orbitals and leaves some s character in the lone-pair orbital. The metals investigated here, however, are not strong enough acids to force this rehybridization; the composition of the water orbitals changes very little upon interaction with the metal ion. This is shown in Table II. Binding Li^+ , Ca^{2+} , or Cr^{2+} in the plane of the water does not change the nature of the water orbitals. The oxygen lone pair remains high in s character; therefore, the complex need not adopt a nonplanar geometry to add s character to the lone pair. Since the orbital interactions do not strongly favor a bent geometry, the ion-dipole interactions set the θ_W value at 0°. The maximum energy required for a bend of 45° due to the classical ion-dipole interaction alone (assuming the dipole calculated for free water in our basis set and no charge transfer to the metal) is between 5 and 10 kcal for Li⁺, Na⁺, and K⁺. This is close to our calculated value of about 3 kcal.

Complexes of transition-metal ions have the added effect of partially filled d shells. The major orbital interactions between metal d orbitals and water valence orbitals (at $\theta_{W} = 0^{\circ}$) are shown in Figure 3. The calculations for Ti²⁺, Ni²⁺, and Cr²⁺ were done with various d-orbital occupancies but restricted to ${}^{1}A_{1}$ (${}^{1}A'$ for

nonzero θ_{w}) states. With the use of virtual-orbital level shifting, however, it is possible to obtain convergence (defined as the largest change in the density matrix of less than 10⁻⁵) to both the lowest lying and excited ${}^{1}A_{1}$ states.

One may infer from the qualitative MO diagram, given in Figure 3, which orbitals will be occupied as d electrons are added to the metal. For Ti²⁺ the lowest energy is obtained when the single d-electron pair occupies either the $d_{xy}(a_2)$ or $d_{x^2-y^2}(a_1)$ orbital, both of which are nonbonding. The results shown in Table I confirm that these two ${}^{1}A_{1}$ states are nearly degenerate and have very similar geometries. The next orbital above the a1, a2 nonbonding pair is the b_2 antibonding orbital. This is the antibonding interaction between the b_2 water O-H bond and the Ti $d_{\nu z}$ orbital. The large energy difference between the water b₂ orbital and the metal d orbitals implies that their interaction will be weak. As shown in Table I, occupying the d_{vz} orbital gives an energy 0.013 hartree higher than the energy of the nonbonded occupations. If the electron pair is forced into the antibonding p_x-d_{xz} (b₁) orbital, rather than the nonbonding orbitals, then the calculated energy increases by 0.024 hartree. The antibonding a_1 orbital cannot be occupied, because the electrons move into the nonbonding $d_{x^2-y^2}$ orbital, which is also a_1 symmetry, despite the use of large level shifters.

When the d-electron pair is forced into an antibonding rather than a nonbonding orbital, a ligand to metal donation becomes a four-electron repulsive interaction. The greater the importance of a given donation, the greater will be the lengthening of the M-O bond when that d orbital is occupied. From qualitative molecular orbital theory one would expect the strongest interactions where energy differences between the orbitals are minimized and where overlap is largest. A relatively strong interaction is therefore expected for the b_1 orbitals, because the p_x lone pair is the HOMO of the water molecule, and for the a_1 (metal d_{z^2}) interaction, because the σ overlap between the d_{z²} and the oxygen p_z orbitals is substantial. The results in Table I show that the Ti-O bond lengthens by more than 0.10 Å when the d_{xz} orbital is occupied instead of the nonbonding $d_{x^2-y^2}$ or d_{xy} . There is, however, little change in the Ti–O distance upon filling the Ti $d_{\nu z}$ orbitals, which confirms the weakness of the b_2 interaction.

Another system that allows one to evaluate the importance of donation into specific d orbitals is $Ni^{2+}-OH_2$, which has a single unoccupied d orbital. We can force a given orbital to remain unoccupied by using level shifting. The lowest energy ${}^{1}A_{1}$ state is obtained when the a₁ antibonding orbital is left unoccupied, as one would expect from the MO diagram. If this orbital is empty, the σ donation into the metal d_{z^2} orbital is conserved, and thus the shortest Ni-O bond (1.850 Å) is also calculated for this occupation. Similarly, the first excited ¹A₁ state is calculated when b_1 is the only antibonding orbital left empty. In this case the π rather than the σ donation is conserved, and the Ni–O bond lengthens by 0.074 Å. If both the a_1 and b_1 orbitals are occupied, but the b₂ orbital is forced into the virtual set, the energy is higher yet and the Ni-O bond is 0.149 Å longer than the Ni-O bond of the ground ${}^{1}A_{1}$ state. If the nonbonding $d_{xy}(a_{2})$ orbital, rather than d_{yz} (b₂), is forced into the virtual set, the energy goes up but the Ni-O bond does not lengthen. We may conclude that there is some interaction between the water b_2 orbital and Ni d_{yz} but it has a negligible effect on the Ni-O bond length. The order of bonding ability $a_1 > b_1 > b_2 > a_2 = a_1 (d_{x^2-y^2})$ was also found by Bauschlicher for Ni^{+, 26}

The potential energy curve for $\theta_{\rm W}$ will also depend on the d-orbital occupation. The water-d-orbital interactions that are most strongly affected by a change in θ_{W} are $a_1(d_{z^2})$ and b_1 . (Note that in this work all results are presented in terms of the C_{2v} coordinate convention, as shown in Figure 1.) The energies of the nonbonding d orbitals and the b₂ bonding and antibonding orbitals are almost unchanged. The $d_z - p_z$ bonding interaction weakens as $\theta_{\rm W}$ is increased to 45°. As shown in Figure 4a, the d_{z^2} and p_z orbitals point slightly away from each other at $\theta_W =$ 45°, which increases the out-of-phase interaction. The d_{xz} - p_x bond,

Rodwell, W. R.; Radom, L. J. Am. Chem. Soc. 1981, 103, 2865. Hall, M. B. J. Am. Chem. Soc. 1978, 100, 6333. (22)

Kaufman, J. W.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem. 1985, (24) 89, 3541.

Blomberg, M. R. A.; Brandemark, U.; Siegbahn, P. E. M.; Broch-(25) Mathisen, K.; Karlström, G. J. Phys. Chem. 1985, 89, 2171.

⁽²⁶⁾ Bauschlicher, C. W. J. Chem. Phys. 1986, 84, 260.

Figure 4. Molecular orbital plots for (a) the d_{zz} - p_z bonding orbital, (b) the d_{xz} - p_x bonding orbital, and (c) the d_{xz} - p_x antibonding orbital of Ni⁺-H₂O at $\theta_W = 0$ and 45°. All plots are of the *xz* plane. The locations of the projections of the hydrogen atoms onto the *xz* plane have been given for reference.

which is shown in Figure 4b, changes very little in energy upon bending. The d_{xz} - p_z antibonding orbital, however, decreases in energy because it becomes more nonbonding as the metal is rotated out of the water plane. This can be seen in Figure 4c by the constructive interference between the Ni and O atoms at 45°. An occupied d_{xz} - p_x antibonding orbital therefore favors a bent structure. The a_1 bond, as well as the classical dipole interaction, will, however, favor the planar geometry. The question is which of the competing effects is strongest in the complexes with occupied $2b_1$ orbitals.

The $d_{xz}-p_x$ antibonding orbital must remain occupied as the metal is bent out of the plane of the water if its effect on the potential energy curve is to be analyzed. As the symmetry of the system is reduced to C_s , however, both the b_1 and a_1 representations become a'. For Ti²⁺-OH₂ there is only one electron pair; if it is forced to occupy the antibonding $d_{xz}-p_x$ orbital instead of the nonbonding $d_{x^2-y^2}$ orbital, lowering the symmetry to C_s will allow the orbitals to mix in the SCF process and the nonbonding orbital will become occupied. To keep the $d_{xz}-p_x$ antibonding orbital occupied, the lower lying a' orbital must be occupied as well. The simplest system in which one can compare the energy of the planar and bent geometries, while keeping the $d_{xz}-p_z$ antibonding orbital occupied, must have two electron pairs.

This requirement is met in $Cr^{2+}-OH_2$. The purpose of calculations on $Cr^{2+}-OH_2$ was only to determine whether occupation of $d_{xx}-p_x$ can affect θ_w ; therefore, we did not perform calculations on all possible occupancies of the metal d orbitals, as was done with Ni²⁺ and Ti²⁺. Calculations were performed on the lowest energy ${}^{1}A_1$ state and the ${}^{1}A_1$ state in which the $d_{xx}-p_x$ antibonding orbital remains occupied upon bending the metal out of the water plane. (One might expect the lowest energy ${}^{1}A_1$ state for this system to be $(d_{xy})^2(d_{x^2-y^2})^2$. This is, however, not the case due to the large electron repulsion energy for four electrons in the xy plane.) When we force the d_{xx} orbital to be occupied, the Cr–O bond length increases and the energy goes up, as is expected from the results on Ti and Ni. Despite the $d_{xx}-p_x$ antibonding interaction, however, the planar geometry remains the minimum for

Figure 5. Energy versus θ_W for the ions $Ti^{2+} (d_{x^2-y^2})^2 (\bullet)$, $Ni^{2+} (d_{x^2-y^2})^2 (d_{xz})^2 (d_{yz})^2 (d_{yz})^2$ and $Cr^{2+} (d_{x^2-y^2})^2 (d_{xz})^2 (O)$, $Co^+ (d_{x^2-y^2})^2 (d_{xz})^2 (d_{yz})^2 (d_{y$

the potential curve. The factors that favor a planar geometry, namely overlap of the water and the metal d_{z^2} orbitals and the ion-dipole interaction, outweigh the d_{xz} -p_x antibonding interaction for Cr²⁺-OH₂.

The ion-dipole interaction weakens and charge transfer to the metal decreases as the charge on the metal is reduced from 2+ to 1+ to 0. Calculations were therefore done on the lowest energy closed-shell states of the Co⁺ and Fe⁰ monohydrates to determine if lowering the charge would allow the d_{xz} - p_z antibonding interaction to induce a nonplanar geometry. These systems meet the requirement of keeping the antibonding d_{xz} - p_x orbital occupied upon bending. The results given in Figure 5 show that the curve flattens for the Co⁺ ion, but only for Fe⁰, in which the ion-dipole interaction is absent and donation to the metal is not as important, does the metal bend out of the plane. The Fe⁰-OH₂ system also has the 4s, rather than the $d_{x^2-y^2}$, orbital occupied in the ground state. The water dipole penetrates part of the 4s orbital, which weakens the induced dipole-dipole bonding.

The Fe⁰-OH₂ bond is weaker and perhaps more difficult to calculate accurately. An experimental study²⁴ and several theoretical studies of neutral transition-metal-water complexes have been published recently. Blomberg and co-workers²⁵ and Bauschlicher²⁶ have published detailed theoretical studies of a single water bound to neutral transition metals. Bauschlicher has also shown that CI is not critical for an accurate description of Ni⁰-OH₂.²⁷ Bauschlicher²⁶ and Blomberg²⁸ show that the induced dipole-dipole interaction is a major part of the bonding, and therefore, the water basis set must be large enough to accurately reproduce the water dipole. The water dipole in our basis set is 0.864 au, compared to 0.78 au for the Hartree-Fock limit and an experimental value of 0.72 au. Our results therefore err toward the planar geometry and provide only an estimate of the energy of bending for Fe⁰-OH₂.

We may conclude that the ion-dipole interaction and σ donation set θ_W at 0° in the monohydrated metal ions. This is in agreement with Bauschlicher, who concluded that the bonding of Ni⁺-OH₂ was dominated by electrostatic terms.²⁶ When fully hydrated, ions such as Ni²⁺ will have a decreased net charge and the orbital interactions will begin to influence the energy of bending. The d_{xz} -p_x antibonding interaction, however, favors the bent geometry only weakly. Calculations by Bauschlicher on a single water bound to a neutral 14-atom Ni cluster found θ_W to be zero, but only 0.001 eV was required for bending.²⁹ On the basis of our Fe⁰ results

⁽²⁷⁾ Bauschlicher, C. W. Chem. Phys. Lett. 1987, 142, 71.

⁽²⁸⁾ Blomberg, M. R. A.; Brandemark, U.; Siegbahn, P. E. M. Chem. Phys. Lett. 1986, 126, 317.

⁽²⁹⁾ Bauschlicher, C. W. J. Chem. Phys. 1985, 83, 3129.

the maximum energy gain by bending would be estimated at 2 kcal. Thus, hydrogen bonding, which is worth roughly 6 kcal. should dominate the wag angle of water molecules coordinated to ions both in solution and in the solid state.

Acknowledgment. We thank the National Science Foundation (Grant No. CHE 86-19420) for support of this work. This research was conducted in part at the Cornell National Supercomputer Facility, a resource for the Center for Theory and Simulation in Science and Engineering at Cornell University, which is funded

in part by the National Science Foundation, New York State, and IBM Corp.

Registry No. Li(H₂O)⁺, 51518-07-1; Na(H₂O)⁺, 51518-11-7; K- $(H_2O)^+$, 111681-71-1; $Ca(H_2O)^{2+}$, 68433-66-9; $Sc(H_2O)^{3+}$, 113162-13-3; $Ti(H_2O)^{2+}$, 113162-14-4; $Cr(H_2O)^{2+}$, 113162-15-5; $Co(H_2O)^{+}$, 113162-16-6; Ni(H₂O)²⁺, 113162-17-7; Fe(H₂O)⁰, 98652-47-2.

Supplementary Material Available: A table of all calculated geometries and energies (4 pages). Ordering information is given on any current masthead page.

Contribution from the Chemical Technology Division, Materials Science Division, and Chemistry Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

Valence Fluctuations in the YBa₂Cu₃O_{7-x} Superconductor

L. A. Curtiss,* T. O. Brun, and D. M. Gruen

Received July 23. 1987

The electronic structures of copper oxide clusters representing the new superconducting materials YBa₂Cu₃O_{7-x} and La_{2-x}M_xCuO₄ (M = Ba, Sr) have been calculated by semiempirical molecular orbital methods. For $YBa_2Cu_3O_{7-x}$ the orbital energies indicate that the Cu's located in the CuO₃ "chains" are primarily "trivalent", while the Cu's in the CuO₂ "dimpled planes" are primarily "divalent". The effects of the oxygen breathing mode on the charge distributions and orbital energies are investigated for different electronic configurations. The results indicate that the oxygen breathing modes can cause significant charge fluctuations on the Cu's in the clusters. For certain electron configurations, a double-well type potential may exist for oxygen movement between Cu's in the "chains". This may cause an instability at oxygen stoichiometries near 6.75 and result in a phase separation. A phase diagram is proposed for YBa₂Cu₃O_{7-x}, which suggests that the 94 K high-temperature superconducting phase is characterized by an oxygen stoichiometry near 7.0. The phase diagram predicts that a plateau should exist for T_c in the region x = 0.0-0.25and that in this region two phases are present which are characterized by compositions having oxygen stoichiometries either in the range 6.5-6.75 or close to 7.0.

I. Introduction

The discovery of oxide superconductors with T_c 's as high as 94 K has raised questions concerning the mechanism of superconductivity in these materials. One of the remarkable features of the superconducting oxides is that the oxygen stoichiometry requires copper in both $La_{2-x}M_xCuO_4$ (M = Ba, Sr) and $YBa_2Cu_3O_{7-x}$ to exist in a mixed oxidation state, leading from the outset to the recognition that valence fluctuations may be involved in the superconducting mechanism.1-3

The structure of the high-temperature YBa₂Cu₃O_{7-x} superconductor has been studied by X-ray diffraction⁴ and more recently by neutron diffraction.⁵ There are two crystallographically distinct copper atoms in the unit cell: one-third of the copper atoms are in the b-c plane consisting of CuO₃ "chains", while two-thirds are in "dimpled" $CuO_2 a-b$ planes (see Figure 1). The two planes are separated by yttrium layers without any oxygen, thus minimizing Cu-O-Cu bond overlap between copper-containing planes.5 The structure suggests that the electronic properties of the material could be highly anisotropic and furthermore raises the possibility that valence fluctuations of the type $Cu^{2+} \rightleftharpoons Cu^{3+}$ may occur between copper ions. Such considerations have important consequences, both for the mechanism of superconductivity and the superconducting properties of these materials.

To discuss mixed valency in YBa2Cu3O7-x, it must be recognized that, of the constituent oxides, only those of Cu can deviate to any appreciable extent from the stoichiometric formulas Y_2O_3 , BaO, and CuO since Y₂O₃ and BaO are extremely stable thermodynamically. An oxygen content greater than 6.5, therefore, requires an equivalent amount of Cu to be in the +3 oxidation state. Hence, the average oxidation state of Cu in $YBa_2Cu_3O_{7-x}$ is given by 2.33 - 0.66x and varies from +2 to +2.33 in going from an oxygen stoichiometry of 6.5 to one of 7.0.

Because of the unique structure of $YBa_2Cu_3O_{7-x}$ a question arises concerning the statistical distribution of Cu³⁺ between the

* To whom correspondence should be addressed at the Chemical Technology Division.

two crystallographic sites. In particular, the very short Cu(1)-O(4) bond length of 1.843 Å suggests that Cu^{3+} is primarily located in the "chains" rather than the "planes" by analogy with the well-authenticated Cu³⁺ compound KCuO₂ where similar short Cu-O distances have been found.⁶ It is the exact distribution of Cu^{3+} between the *a*-*b* and *b*-*c* planes and the change in that distribution as a function of oxygen stoichiometry that become very important considerations if $Cu^{2+} \rightleftharpoons Cu^{3+}$ valence fluctuations are, in fact, involved in the mechanism of superconductivity in these materials.1-3

Band structure calculations⁷⁻¹⁵ of varying degrees of sophistication have been reported on the La_{2-x}M_xCuO₄ and $YBa_2Cu_3O_{7^{\perp}x}$ materials. For $YBa_2Cu_3O_7$ these calculations have generally shown that the CuO_3 chains contain Cu^{3+} while the

- Bednorz, J. G.; Müller, K. A. Z. Phys. 1986, B64, 189. Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q. Phys. Rev. Lett. 1987, 58, 405. (2)
- Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. Phys. Rev. Lett. 1987, 58, (3) 908.
- (4) Cava, R. J.; Batlogg, B.; van Dover, R. B.; Murphy, D. W.; Sunshine, S.; Sunshine, T.; Siegrist, T.; Remeika, J. P.; Rietman, E. A.; Zahurak, S.; Espinosa, G. P. Phys. Rev. Lett. 1987, 58, 1676.
- (5) Beno, M. A.; Soderholm, L.; Capone, D. W.; Hinks, D. G.; Jorgensen, J. D.; Grace, J. D.; Schuller, I. K.; Segre, C. U.; Zhang, K. Appl. Phys. Lett. 1987, 51, 57
- Hestermann, K.; Hoppe, R. Z. Anorg. Allg. Chem. 1969, 367, 249. Whangbo, M.-H.; Evain, M.; Beno, M. A.; Williams, J. M. Inorg.
- Chem. 1987, 26, 1829. (8) Whangbo, M.-H.; Evain, M.; Beno, M. A.; Williams, J. M. Inorg.
- Chem. 1987, 26, 1831. Whangbo, M.-H.; Evain, M.; Beno, M. A.; Williams, J. M. Inorg. (9)
- Chem. 1987, 26, 1832. Yu, J.; Freeman, A. J.; Xu, J.-H. Phys. Rev. Lett. 1987, 58, 1035. (10)
- Mattheiss, L. F.; Hamann, D. R. Solid State Commun. 1987, 63, 395. Mattheiss, L. F. Phys. Rev. Lett. 1987, 58, 1028. (11)
- (12)
- (13) Massida, S.; Yu, J.; Freeman, A. J.; Koelling, D. D. Phys. Lett. A 1987, *122A*, 198.
- (14)Yu, J.; Massidda, S.; Freeman, A. J.; Koelling, D. D. Phys. Lett. A 1987, 122A, 203.
- Fu, C. L.; Freeman, A. J. Phys. Rev. B: Condens. Matter 1987, 35, (15)8861.