

Figure 3. Room temperature, X-band EPR spectrum of the ZnTPPmeso- $^{13}C_4$ cation 6.

Although the pentyl substituent has a greater influence on the spin density distribution than does the aryl group, this disparity is not manifested in the half-wave potentials $(E_{1/2})$ for the six different meso-substituted porphyrins. These potentials are summarized in Table I. As can be seen, the $E_{1/2}$ values of **3a** and **3b** are equal and approximately midway between those of **1** and **5**. In addition, the replacement of each pentyl group by an aryl group results in an approximately linear shift of the $E_{1/2}$ to a more anodic potential (~60 mV/group). It seems reasonable that this disparity in the behavior of the redox potentials versus the ¹⁴N hyperfine splittings is due to the fact that the $E_{1/2}$ is a property of the entire macrocycle whereas the hyperfine splittings reflect the electronic properties at specific sites on the ring.

In view of the asymmetry in the ¹⁴N hyperfine splittings of the binary hybrid porphyrin cations, it would be of interest to examine

the spin density on the *meso*-carbon atoms. The spin density at this position is calculated to be considerably greater than at the pyrrole nitrogen atoms. To our knowledge, however, ¹³C hyperfine splittings have not been previously reported even for a symmetrically substituted porphyrin cation. As a consequence, we examined the EPR spectrum of the ZnTPP-*meso*-¹³C₄ cation radical **6**. This EPR spectrum is shown in Figure 3, and the hyperfine splittings that were obtained via computer simulation of the spectrum are given in Table I. The ¹³C hyperfine splitting is 5.72 ± 0.02 G (~0.06 MHz). This value can be compared with that which is estimated from the modified McConnell relation²⁴

$$a_i = 30.5\rho_i - 13.9\sum_j \rho_j$$

where a_i is the hyperfine splitting in gauss and ρ_i and ρ_j are the spin densities at the *meso*- and α -carbon atoms, respectively. The values of ρ_i and ρ_j , which are calculated with (without) configuration interaction, are 0.193 (0.158) and -0.0094 (0.0066).¹⁸ These calculated spin densities result in a predicted *meso*-¹³C hyperfine splitting of 6.15 G (4.64 G), which is in reasonable agreement with the experimentally observed splitting.

Acknowledgment. We thank Anne Marguerettaz for preparing ZnTPP-meso- $^{13}C_4$. This work was supported by Grants GM-36238 (J.S.L.) and GM-36243 (D.F.B.) from the National Institute of General Medical Sciences.

Registry No. 1, 106469-09-4; **1**⁺, 113451-71-1; **2**, 113451-68-6; **2**⁺, 113451-72-2; **3a**, 113451-76-6; **3a**⁺, 113451-75-5; **3b**, 113451-69-7; **3b**⁺, 113451-73-3; **4**, 113451-70-0; **4**⁺, 113451-74-4; **5**, 64466-25-7; **5**⁺, 113474-61-6.

(24) Karplus, M.; Fraenkel, G. K. J. Chem. Phys. 1961, 35, 1312.

Additions and Corrections

1987, Volume 26

Steven G. Rosenfield, Hilde P. Berends, Lucio Gelmini, Douglas W. Stephan, and Pradip K. Mascharak*: New Octahedral Thiolato Complexes of Divalent Nickel: Syntheses, Structures, and Properties of $(Et_4N)[Ni(SC_5H_4N)_3]$ and $(Ph_4P)[Ni(SC_4H_3N_2)_3]\cdot CH_3CN$.

Page 2793. In Table I, the values of a and c for compound 3 are interchanged; the correct values are a = 15.090 (4) Å and c = 18.958 (5) Å.—Pradip K. Mascharak