$C_{2n}[1,4,2]$ is reversed between n = 3 and n = 4. The bond lengths are all about 1.58 Å, and the particles lie close to the sphere that they are constrained to be on in the statics calculations. If the value of Q is increased from 1.228 to 12.28, then the bond lengths are longer (about 1.7 Å) and the D_{5k} structure is again the lowest energy geometry. Thus, the dynamics results include the static.

Field II. The equilibrium geometry is now C_1 (5040 isomers) with seven saddle-point geometries (the six from above plus the equilibrium geometry from above). The equilibrium geometry is shown in Figure 3, and some of the saddle-point geometries are shown in Figure 2. The energies associated with all geometries are shown in Table II. Clearly, field II creates a fluxional nightmare. Molecules for which field II gives an accurate representation of the repulsive potential would exhibit a ground-state dipole moment.41

Conclusions

Fields I and II provide insight into the preferred geometries of MX, molecules. Field I is a more realistic field because it allows as many different bond lengths as there are local symmetries in a given MX_n structure. Field II on the other hand generates geometries that are independent of any bond length assigned to a MX_n structure and thus provides a standard for geometry in

(41) Kaiser, E. W.; Muenter, J. S.; Klemperer, W.; Falconer, W. E. J. Chem. Phys. 1970, 53, 53.

molecules where all pairs of the peripheral atoms try to be diametrically opposite one another. For MX4 and MX6 molecules, the energies of the equilibrium geometries are well below those of the nearest saddle-point ones, yet for MX5 and MX7 molecules, using the same force constants, there are saddle-point geometries that are easily accessible from the equilibrium geometry. These results agree with experimental results and imply that it is the repulsive interactions between the peripheral atoms and the intrinsic geometry of the molecules that determine their dynamic behavior. In addition, the details of the geometries are also in agreement with the results of quantum-mechanical calculations:^{21,35} in MX₅, the axial bonds are longer than the equatorial ones, whereas in MX_7 they are shorter. The dynamical calculations can be made to imitate statics calculations by increasing the magnitude of the bond stretch force constant relative to the force constant Q. All isomers of a given geometry have the same potential energy with the result that derived statistical mechanical properties will have no bias.

In future work, we will use these simple potentials to study the details of isomer interconversion in MX_n molecules by scaling the force constants to give approximately correct vibrational frequencies and barrier heights.

Acknowledgment. H.-L.C. and J.F.G. acknowledge a grant from the South Carolina Energy Research and Development Center that enabled the purchase of the Digital MicroVax II computer.

Contribution from the Fachbereich Chemie, Philipps-Universität, D-3550 Marburg, FRG, and Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria

Local and Cooperative Jahn-Teller Distortions of Ni²⁺ and Cu²⁺ in Tetrahedral Coordination

Dirk Reinen,^{*†} Michail Atanasov,[‡] Georgi St. Nikolov,[‡] and Friedhelm Steffens[†]

Received July 8, 1987

A vibronic coupling model, including spin-orbit interactions, is presented and used to explain the sign and magnitude of observed Jahn-Teller distortions of Cu²⁺ and Ni²⁺ ions in tetrahedral coordination. It is demonstrated that the Jahn-Teller coupling is rather large for Cu²⁺ (²T₂ ground state) and generally dominates over steric ligand, geometric packing, or spin-orbit effects, leading to compressed tetrahedra with D_{2d} symmetry. In contrast Ni²⁺ (³T₁ ground state) undergoes much smaller Jahn-Teller interactions, and static distortions (elongated D_{2d} geometry) are not always expected. The lowering of the vibronic constants for Ni²⁺ as compared to Cu^{2+} is mainly due to the configuration interaction between the ${}^{3}T_{1}$ ground and excited states. The vibronic coupling analysis is based on spectroscopic and structural results of "CuO₄", "CuF₄", and "NiO₄" chromophores in various host structures. A quantitative discussion of the Jahn-Teller stabilization energies for the minima in the T \otimes (e + t₂) adiabatic potential surface is given. The influence of elastic interactions between the tetrahedra (cooperative Jahn-Teller effect) on the ground-state splitting and on the extent of the local Jahn-Teller distortion is also considered. An essential energy contribution to the term splittings may arise from elastic interactions of this kind in structures with widely interconnected polyhedra.

Introduction

Cu²⁺ and Ni²⁺ ions in tetrahedral coordination have orbitally degenerate ground states ${}^{2}T_{2}$ and ${}^{3}T_{1}$, respectively and are expected to be subject to Jahn-Teller forces.¹ The induced symmetry lowering and term splittings due to the minima of the adiabatic Jahn-Teller (JT) surface can be detected by spectroscopic and structural studies. Whether a static or dynamic Jahn-Teller effect prevails depends on the depth of the various minima of the adiabatic potential surface (APS). While stable minima are known to arise only from second-order contributions for Cu²⁺ in octahedral coordination, in tetrahedral geometry such points are already produced by first-order terms. Static Jahn-Teller distortions have been observed in the case of $CuCl_4^{2-}$ entities and are interpreted within the angular overlap model (AOM).² Unlike Cu²⁺

The aim of the present paper is to explain the sign and the magnitude of the static Jahn-Teller distortions in spinels with the constitution $[M_x Zn_{1-x}]^t [Cr_2]^\circ O_4$ (M = Cu²⁺, Ni²⁺; o = octahedral; t = tetrahedral) on the basis of spectral and structural data. We will first present a vibronic coupling model-including spin-orbit coupling-which allows us to describe the Jahn-Teller distortions of tetrahedral Cu²⁺ and Ni²⁺ complexes. Then we will analyze spectral and structural data of $\dot{MO_4}$ chromophores (M = N_1^{12+} ,

Reinen, D. Comments Inorg. Chem. 1983, 2, 227. Bacci, M. J. Phys. Chem. Solids 1980, 41, 1267. Reinen, D.; Allmann, R.; Baum, G.; Jakob, B.; Kaschuba, U.; Massa, W.; Miller, G. J. Z. Anorg. Allg. Chem. 1987, 548, 7.

the structural and spectral data on tetrahedral Ni²⁺ are scarce because this ion only reluctantly adopts this coordination.³ The incorporation of Cu²⁺ and also Ni²⁺ into the tetrahedral sites of the spinel structure is possible, however, if the octahedral sites are blocked by Cr³⁺.³

⁽¹⁾

⁽²⁾

Philipps-Universität.

[‡]Bulgarian Academy of Sciences.

Cu²⁺) in spinels and in square-planar arrangements and will subsequently report about spectra of tetrahedral and square-planar CuF₄²⁻ entities. In particular the following problem will be discussed: Why is the Jahn-Teller distortion considerably greater for Cu²⁺ than for Ni²⁺? Finally, a full analysis of all possible minima in the adiabatic Jahn-Teller surface for the tetrahedral ²T₂ (d⁹ configuration) and ³T₁ (d⁸ configuration) ground states is given on the basis of the parameters derived for the Cu-O and Ni-O bonds.

Experimental Section

The preparation of the compounds was performed as described elsewhere.^{3,4} The ligand field reflection spectra were recorded on a Zeiss PMQ II spectrophotometer (Infrasil) with a low-temperature attachment, by using Sr₂TeZnO₆ [(4-12) × 10³ cm⁻¹] and freshly sintered MgO [(8-30) × 10³ cm⁻¹] as standards. The data were converted into absorption values log (k/s), by following the theory of Schuster–Kubelka– Munk. The powder EPR spectra (35 GHz) were measured with a Varian E 15 spectrometer at 4.2, 77, and 298 K. DPPH was used as internal standard (g = 2.0037).

Jahn-Teller Distortions of Cu^{2+} and Ni^{2+} in Tetrahedral Coordination

A. Preliminary Remarks. The Jahn-Teller theorem, in particular its perturbational form due to Opik and Price,⁵ has provided a powerful tool for explaining and predicting molecular shapes as stationary points on a Born-Oppenheimer surface.⁶ The theorem holds for degenerate electronic states in complexes of high symmetry and reveals which normal modes are able to destroy the initial symmetry. It cannot predict the ultimate symmetry of the distorted complex, however, if various distortion geometries are possible. In a recent study, Ceulemans et al.⁷ examined in general terms the topology of an adiabatic $T \otimes (e + t_2)$ Jahn-Teller surface and used this particular case to formulate the epikernel principle, which states that the symmetry of the stable minima in an adiabatic Jahn-Teller surface is the highest possible one with lifted degeneracy: extremum points (minima, maxima, or saddle points) prefer epikernels to kernels and maximal epikernels to lower ranking epikernels. In fact this consideration is equivalent to Liehr's minimax principle⁶ in group-theoretical terms. If we consider a T ground state of a tetrahedron, such as ${}^{2}T_{2}$ for the d⁹ or ${}^{3}T_{1}$ for the d⁸ configuration, the Jahn-Teller active vibrations are the bending e $(Q_{\theta}, Q_{\epsilon})$ and $t_2 (Q_{\xi}, Q_{\eta}, Q_{\zeta})$ modes and the stretching $t_2(Q_{\xi}', Q_{\eta}', Q_{\eta}')$ normal vibration. The maximal (epikernel) symmetries of the T \otimes e and T \otimes t₂ direct products are D_{2d} and C_{3w} , respectively. The extremal points, together with the corresponding energies can be expressed in terms of the harmonic force constants K_e , K_t^b and K_t^s —the superscripts b and s standing for bending and stretching modes, respectively-the linear Jahn-Teller interaction parameters V_e , V_t^b and V_t^s , and the quadratic coupling constants L_e , L_t^b , and L_t^s . The quadratic constants result from the non totally symmetric part of the e \otimes e and $t_2 \otimes t_2$ symmetrized direct products. Bacci was the first to propose the use of ligand field theory in its AOM version to parametrize the linear Jahn-Teller coupling in terms of σ - and π -bonding parameters.⁸ This approach was extended to obtain also the second-order Jahn-Teller coupling constants.⁷ The angular overlap model is particularly suitable for the calculation of vibronic constants for bending modes.

- (4) Reinen, D.; Grefer, J. Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1973, 28a, 1185.
- (5) Öpik, U.; Pryce, M. H. L. Proc. R. Soc. London, A. 1957, 238, 425.
- (6) Liehr, A. D. J. Chem. Phys. 1963, 67, 389.
- (7) Ceulemans, A.; Beyens, D.; Vanquickenborne, L. G. J. Am. Chem. Soc. 1984, 106, 5824.
- (8) (a) Bacci, M. Chem. Phys. Lett. 1978, 58, 537. (b) Bacci, M. Chem. Phys. 1979, 40, 237.

Figure 1. Geometry of a tetrahedron distorted along a S_4 axis $[Q_{\theta}(e)]$ distortion path].

The first- and second-order vibronic constants for the T \otimes (t₂ + e) problem—quadratic terms only for the bending modes, without those due to mixing between e and t₂ vibrations—obtained previously⁷ are

$$V_{\rm e} = \pm \frac{4(2^{1/2})}{3R} \left(e_{\sigma} - \frac{1}{3} e_{\pi} \right) \tag{1.1}$$

$$V_{t}^{b} = \pm \frac{2(2^{1/2})}{3R} \left(e_{\sigma} - \frac{7}{3} e_{\pi} \right)$$
(1.2)

$$V_t^s = \pm \frac{2}{3} \left(\frac{\mathrm{d}e_\sigma}{\mathrm{d}R} - \frac{1}{3} \frac{\mathrm{d}e_\pi}{\mathrm{d}R} \right) \tag{1.3}$$

$$L_{\rm e} = \pm \frac{2}{R^2} \left(e_{\sigma} - \frac{5}{3} e_{\pi} \right) = L_{\rm t}^{\rm b}$$
(1.4)

The upper sign refers to a ${}^{3}T_{1}$ (d⁸) and the lower sign to a ${}^{2}T_{2}$ (d⁹) ground state. The experimental results on spinel mixed crystals and various other pseudotetrahedral Cu^{II}L₄ polyhedra, discussed below, will demonstrate that the vibronic coupling with the e mode is clearly dominant. This observation directly correlates with the AOM coupling constants, from which a V_e/V_t^b ratio larger than or equal $(e_{\pi} = 0)$ to 2 (eq 1.1 and 1.2) is derived. Though V_t^s is even somewhat greater than V_e , the energetic effect induced by the t₂ stretching mode is expected to be much smaller, because the force constant K_t^s is considerably larger than K_e (vide infra). We will hence restrict ourselves to the $T \otimes e$ problem, which is elaborated in the Appendix and which leads to D_{2d} deformations of the parent T_d symmetry (epikernel principle for the T \otimes e interaction). $Q_{\theta} > 0$ and $Q_{\theta} < 0$ are defined as due to tetragonal elongations and compressions, respectively (Figure 1). While the $Q_{\theta} = \rho \cos \phi$ and $Q_{\epsilon} = \rho \sin \phi$ components of the e mode transform the tetrahedral entity into D_{2d} symmetry for $\phi = 0^{\circ}$, 120°, and 240° or 180°, 300°, and 60°, any angular parameter deviating from these angles induces the lower D_2 symmetry in the ground-state potential surface. The displacements along Q_{θ} [$\varphi = 0^{\circ}(180^{\circ})$] are given by

$$(\stackrel{+}{-})^{\rho} = \frac{1}{2}R(-\Delta\theta_1 - \Delta\theta_2 + \Delta\theta_3 + \Delta\theta_4) = R[(2\theta)_1 - 2\theta] \quad (2)$$

where the angles $\Delta \theta_i$ are defined in Figure 1 and $(2\theta)_i$ and 2θ are the tetrahedral angle 109.47° and the corresponding angle in D_{2d} symmetry, respectively.

B. Ground-State Splittings in D_{2d} . The cross section of the adiabatic potential surface along the D_{2d} distortion pathway yields the following state energies for Cu²⁺ (T₂ ground state, compression):

$$E[_{a}\Gamma_{6}] = \frac{1}{2}K_{e}\rho^{2} + \frac{1}{2}|V_{e}|\rho - \frac{1}{2}\zeta$$

$$E[_{a,b}\Gamma_{7}] = \frac{1}{2}K_{e}\rho^{2} + \frac{1}{4}\left[-|V_{e}|\rho + \zeta \pm 3\left(V_{e}^{2}\rho^{2} + \zeta^{2} + \frac{2}{3}\zeta|V_{e}|\rho\right)^{1/2}\right] (3)$$

For Ni^{2+} (T₁ ground state, elongation) the following state energies are obtained:

$$E[\Gamma_{3}] = E[\Gamma_{4}] = \frac{1}{2}K_{e}\rho^{2} + \frac{1}{2}|V_{e}|\rho - \frac{1}{2}\zeta$$

$$E[\Gamma_{2}] = \frac{1}{2}K_{e}\rho^{2} + \frac{1}{2}|V_{e}|\rho + \frac{1}{2}\zeta$$

$$E[_{a,b}\Gamma_{5}] = \frac{1}{2}K_{e}\rho^{2} + \frac{1}{4}\left[-|V_{e}|\rho \pm 3\left(V_{e}^{2}\rho^{2} + \frac{4}{9}\zeta^{2}\right)^{1/2}\right]$$

$$E[_{a,b}\Gamma_{1}] = \frac{1}{2}K_{e}\rho^{2} + \frac{1}{4}\left[-|V_{e}|\rho + \zeta \pm 3\left(V_{e}^{2}\rho^{2} + \zeta^{2} + \frac{2}{3}|V_{e}|\zeta\rho\right)^{1/2}\right] (4)$$

Spin-orbit coupling was explicitly included [free ion values for the LS-coupling parameters: $\zeta_0(Cu^{2+}) = -830 \text{ cm}^{-1}$; $\zeta_0(Ni^{2+}) =$ -625 cm⁻¹]. The energies of the three Kramers' doublets of tetrahedral Cu²⁺ result from the solution of the $T_2 \otimes \Gamma_7 \otimes e(Q_{\theta})$ vibronic problem, where Mulliken and Bethe notations are used for space and spin functions, respectively (see Figure 2). Similarly the energies of the seven states of tetrahedral Ni²⁺ originate from the $T_1 \otimes \Gamma_4 \otimes e(Q_{\theta})$ coupling.

We shall now consider the mixing of excited electronic terms with the ground state. Such mixing is not present in case of copper(II) but may be important for tetrahedral Ni(II) complexes. If configuration interaction of the electronic ${}^{3}T_{1}$ ground state in T_{d} with the excited state of the same symmetry (see Figure 6, T_{d}) is taken into account, the vibronic coupling parameters V_{e} and L_{e} and the LS coupling constant ζ for the ground state should be regarded as effective values and have to be replaced as follows:

$$V_{e}^{eff} \equiv (a^{2} - b^{2})V_{e} - b^{2}V_{e}'$$

$$L_{e}^{eff} \equiv (a^{2} - b^{2})L_{e} + b^{2}L_{e}'$$

$$\zeta^{eff} \equiv \left(a^{2} - \frac{1}{2}b^{2} + 2ab\right)\zeta$$
(5)

These expressions were derived by using an operator-equivalent technique. The constants a and b (both >0) are the term mixing coefficients in the ground-state wave function, which depend on the cubic field splitting parameter Δ_t and the Racah parameter B:

$$\psi_{g} = a\psi[{}_{a}^{3}T_{1}] - b\psi[{}_{b}^{3}T_{1}]$$
(6)

The vibronic coupling constants V_e' and L_e' (see definitions in Appendix) are calculated in the AOM as

$$V_e' = \frac{4(2^{1/2})}{3R} e_\pi \tag{1.5}$$

$$L_{\rm e}' = \frac{2}{3R^2} {\rm e}_{\pi}$$
(1.6)

It can readily be seen from eq 5 that the configuration interaction reduces the linear vibronic constant, while ζ^{eff} and ζ differ only slightly. The second-order vibronic constant L_e is also reduced, but to a smaller extent. The Hamiltonian and the energy matrices, which yield eq 3 and 4, are given in the Appendix.

We will now briefly discuss the ground-state energies in terms of the vibronic coupling constants. Figures 2 and 7a show cross sections of the potential energy surfaces for the split-term manifolds of ${}^{3}T_{1}$ and ${}^{2}T_{2}$ along the Q_{θ} distortion coordinate. The parameter values were chosen according to the spectra analyses of Cu²⁺ and Ni²⁺ doped into the ZnCr₂O₄ spinel (vide infra). Without discussing the chosen parameters at present, it is clearly seen, that Cu²⁺—in contrast to Ni²⁺—undergoes a significant Jahn–Teller distortion.

If quadratic Jahn-Teller coupling terms are taken additionally into account, the full matrices as given in the Appensix should be used. For vanishing spin-orbit coupling, the D_{2d} extremal points

Figure 2. Cross section of the potential energy surface along the Q_{θ} normal coordinates ($\varphi = 0$ and 180°, 120 and 300°, or 240 and 60°), arising from the ${}^{3}T_{2}$ ground state of tetrahedral Cu²⁺. Solid and dashed curves, denote cross sections with and without LS coupling, respectively. Parameters: $e_{\sigma} = 4900 \text{ cm}^{-1}$, $e_{r} = 1400 \text{ cm}^{-1}$, $e_{sd} = 1800 \text{ cm}^{-1}$, $\zeta = -600 \text{ cm}^{-1}$, and $K_{e}^{*} = 15\ 100 \text{ cm}^{-1}/\text{Å}^{2}$.

on the ${}^{3}A_{2}$ (Ni²⁺) and ${}^{2}B_{2}$ (Cu²⁺) potential sheets are characterized by

$$\rho_{\rm m} = \frac{|V_{\rm e}|}{K_{\rm e} + L_{\rm e}}$$

$$E_{\rm m} = -\frac{1}{2} \frac{V_{\rm e}^2}{K_{\rm e} + L_{\rm e}} = -\frac{1}{2} \rho_{\rm m} |V_{\rm e}| \qquad (7)$$

(in eq 7 and 8 V_e and L_e should be replaced by V_e^{eff} and L_e^{eff} for Ni²⁺) where the quadratic vibronic constants L_e (eq 1.4) have different signs for Cu²⁺ and Ni²⁺. Apparently, the higher order terms reduce the extent of distortion in the case of Ni²⁺, while larger ligand displacements are expected for Cu²⁺ tetrahedra. The splitting of the parent ${}^{3}T_1$ or ${}^{2}T_2$ states at ρ_m is given by

$$E(E) - E(A_2 \text{ or } B_2) = \frac{3}{2}\rho_m |V_e| \frac{K_e + \frac{1}{2}L_e}{K_e + L_e}$$
(8)

Results

İ

For spinel phases $Zn_{1-x}M_xCr_2O_4$ with a normal cation distribution, transitions to tetragonal structures with c/a < 1 and c/a > 1 for $M = Cu^{2+}$ and Ni^{2+} , respectively, are observed with increasing x. They are induced by ferrodistortive elastic interactions between the distorted compressed Cu^{2+} or elongated Ni^{2+} tetrahedra.^{3,4} The compressed copper tetrahedra (spacings 1.94 Å)⁹ show a significantly larger deviation from the tetrahedral angle 109.47°, namely $\Delta(2\theta) = +13^\circ$,⁹ than the elongated NiO₄ tetrahedra ($\Delta(2\theta) = -7^\circ$ (spacings 1.93 Å).¹⁰ Unlike Ni²⁺ and Cu²⁺ the isomorphous substitution of Co(II) into the $ZnCr_2O_4$ spinel produces no phase transition; the site symmetry remains T_d (⁴A₂ ground state). While the mentioned spinel mixed crystals are cubic at low concentrations of Cu²⁺ and Ni²⁺, the transitions to the tetragonal phases are observed at the critical concentrations (298)

⁽⁹⁾ Prince, E. Acta Crystallogr. 1957, 10, 554.

⁽¹⁰⁾ Prince, E. J. Appl. Phys. 1961, 32, 68 S.

Table I. Vibronic Coupling, Elastic and AOM Parameters for Mixed Crystals $Zn_{1-x}M_xCr_2O_4$ (M = Cu²⁺, Ni²⁺)

	V_{e} , cm ⁻¹ /Å	$\frac{S_{e}}{\mathrm{cm}^{-1}/\mathrm{\AA}}$	e_{σ}, cm^{-1}	$e_{\pi},$ cm ⁻¹	$e_{sd}, \\ cm^{-1}$	L_{e} , cm ⁻¹ /Å	$\frac{K_{e}}{\mathrm{cm}^{-1}/\mathrm{\AA}^{2}}$
Cu ²⁺	-4300	-2500	4900	1400	1800	-1350	16450
Ni ²⁺	2900ª	1550	4700	1300	500	1050 ^a	b

^aEffective values (eq 5), with configuration interaction accounted for. ^bFor the NiO₄ tetrahedron about the same force constant is expected as the one calculated for CuO_4 .

K), namely x = 0.47 for Cu^{3,4} and x = 0.97 for Ni³. The end members of the mixed crystal series transform to cubic structures at $\simeq 900$ K (CuCr₂O₄¹¹) and 298 K (NiCr₂O₄¹²).

A. Cu²⁺ Tetrahedra in Spinel Phases. The electronic spectra of mixed crystals $Zn_{1-x}Cu_xCr_2O_4$ have been reported elsewhere.⁴ For x = 1 two rather broad d-d bands are observed at 4500 and 8300 cm⁻¹ (298 K), which correspond to the transitions ${}^{2}B_{2} \rightarrow$ ²E (within the T₂ ground-state split terms) and ²B₂ \rightarrow ²A₁ in D_{2d} , respectively. The transition ²B₂ \rightarrow ²B₁ (²A₁ and ²B₁ are split states of the tetrahedral ²E parent level) is symmetry forbidden in D_{2d} . Both the ground-state splitting and the structural angle 2θ = 122.5°, reported for CuCr₂O₄, reflect the local Jahn-Teller distortion as well as the cooperative elastic forces, which are responsible for the phase transition from cubic to tetragonal. These forces can be formally treated analogous to the linear vibronic coupling and give rise to the strain parameter S_e^{13} (see Appendix), which represents the molecular elastic field of neighboring Cu²⁺ tetrahedra at any Cu²⁺ center. Following the model proposed by Woitowicz¹⁴ for the elastic interactions between Jahn-Teller active centers within the spinel structure, we have calculated $|S_e|\rho \simeq$ 1100 cm⁻¹ from the critical temperature $T_c \simeq 900$ K. S_e and V_e can now be derived from the distortion of the CuO₄ tetrahedra in CuCr₂O₄ ($\rho = 0.44$ Å; eq 2) and the observed ground-state splitting $\Delta E \simeq 3/2(|V_e|\rho + |S_e|\rho)$ (eq 8 with $L_e = 0$). The AO parameters e_{σ} and e_{π} , listed in Table I, are obtained from V_{e} (eq 1.1), assuming a reasonable value for the tetrahedral ligand field parameter $\Delta_t = \frac{4}{9}(3e_{\sigma} - 4e_{\pi})$. We have chosen the value found for Co^{2+} doped into the tetrahedral site of $ZnAl_2O_4$ ($\simeq 4000$ cm⁻¹), because Ni^{2+} , Co^{2+} , and Cu^{2+} produce very similar Δ parameters in equivalent compounds. The energy contributions to the term splittings induced by the elastic interactions between the distorted CuO₄ tetrahedra ("cooperative Jahn-Teller effect") are quite large, indicating a strong influence on the Cu-O bonding properties. We have deduced the AO parameters from only that part of the ground-state splitting, which is not due to the strain energy $(\simeq^{3}/2|S_{e}|\rho)$. A parametrization without correcting for the latter contribution would result in effective e_{σ} and e_{τ} values, which are strongly dependent on the Cu²⁺ concentration in the mixed crystals $Zn_{1-x}Cu_{x}Cr_{2}O_{4}$ —in contrast to the average Cu–O bond length, which does not vary with x.⁴ The derived AO parameters hence refer to CuO₄ tetrahedra, which are distorted by solely a local Jahn-Teller effect, and may be more easily transferred to other oxidic solids with Cu²⁺ ions than "effective" parameters, which additionally reflect varying contributions due to cooperative elastic interactions. The local distortion, as expected for x values below the critical concentration $x_c = 0.47$ of the phase transition at 298 K, can be calculated by using the ratio

$$\frac{\rho_{\rm local}}{\rho_{x=1}} = \frac{|V_{\rm e}|}{|V_{\rm e}| + |S_{\rm e}|} \tag{9}$$

It is derived from (7) on the assumption that second-order contributions to the cooperative elastic forces are only small and K_e does not change significantly at the phase transition. With $\rho_{x=1}$ = 0.44 Å and V_e and S_e from Table I, a local radial distortion parameter of 0.28 Å results, corresponding to compressed tetrahedra with $2\theta \simeq 118^\circ$. The term energies for the CuO₄

(14) Woitowicz, P. J. Phys. Rev. 1959, 116, 32.

Figure 3. Term energies of CuL₄ polyhedra in T_d and D_{2d} symmetry versus the radial distortion parameter ρ or the tetrahedral angle 2 θ . Parameters: $e_{\sigma} = 4900 \text{ cm}^{-1}$, $e_{\pi} = 1400 \text{ cm}^{-1}$, $e_{sd} = 1800 \text{ cm}^{-1}$, and $\zeta = -600 \text{ cm}^{-1}$. Solid and dashed curves denote energies without and with LS coupling; the arrows mark the characteristic ρ values of 0.28 and 0.44 Å (see text).

polyhedron are plotted versus ρ and 2θ in Figure 3. The e_{σ} and e_{π} parameters of Table I were used, supplemented by e_{ds} (vide infra), which was derived from the ${}^{2}B_{2} \rightarrow {}^{2}A_{1}$ transition energy, and a spin-orbit coupling constant, which is reduced by covalency with respect to ζ_{0} by about 27%. The ${}_{a}\Gamma_{7}({}^{2}B_{2}) \rightarrow {}_{b}\Gamma_{6}({}^{2}A_{1})$ transition is predicted to occur at 6150 cm⁻¹ for $\rho = 0.28$ Å (x < 0.47), which compares well with the experimental value of 6200 cm^{-1.4} The same transition is expected at 7150 cm⁻¹ for CuCr₂O₄ ($\rho = 0.44$ Å, see Figure 3). To this "local" energy, $\rho_{x=1}|S_{e}| = 1100$ cm⁻¹ has to be added, yielding $\simeq 8250$ cm⁻¹. Which is again very near to the observed band energy of 8300 cm^{-1.4} The cooperative contribution is presumably quite large in case of the spinel lattice, because the polyhedra are widely interconnected in this structure type, leading to strong elastic interactions.

While Figure 3 gives only the electronic energies, Figure 2 comprises the results of the vibronic calculations. The chosen force constant K_e^* was derived from the known values of $|V_e|$ and ρ by following (7), but with the inclusion of LS coupling. K_e^* is an effective number and actually the sum of the true force constant K_e and the second-order vibronic coupling constant L_e , which is calculated from (1.4) as $-1350 \text{ cm}^{-1} \text{ Å}^{-2}$ ($-0.03 \text{ mdyn Å}^{-1}$) (Table I). From the calculated local force constant $K_e = 16450 \text{ cm}^{-1} \text{ Å}^{-2}$ one obtains an energy of 325 cm⁻¹ for the e bending mode of the CuO₄ tetrahedra in the spinel lattice. The value of K_e (0.32 mdyn Å⁻¹) is rather high compared to those for CuX₄²⁻ complexes (for X = Br⁻, Cl⁻, and F⁻ they are 0.10, 0.11, and 0.17 mdyn Å⁻¹, respectively; compare also Table II). We think that the rigidity of the e mode is enhanced, because the polyhedra are widely interconnected in the spinel structure, while the mentioned CuX₄²⁻ polyhedra are isolated in the respective lattices.

The cross section of the potential energy surface of the ground state of tetrahedral Cu²⁺ along the Q_{θ} normal coordinate demonstrates that the stabilization of the flattened tetrahedron relative to a slightly elongated tetrahedron is $\simeq 125 \text{ cm}^{-1}$ (Figure 2). If the LS-coupling constant is further reduced (for example by the Ham effect¹⁵) the stabilization energy increases considerably $(\simeq 450 \text{ cm}^{-1} \text{ for } \zeta = 0)$. By inspection of the cross section of the ground-state potential energy surface perpendicular to the energy axis (Figure 4), it is immediately evident that the system can move between the three equivalent D_{2d} minima at $\rho = 0.28$ Å and φ = 180°, 300°, and 60°, if the saddle-points at $\varphi = 0^{\circ}$, 120°, and 240° are surpassed by thermal motion (dynamic Jahn-Teller effect). In the presence of cooperative elastic interactions, only one minimum at $\varphi = 180^{\circ}$ remains ($\rho = 0.44$ Å, $E_{\min} \simeq -1600$ cm⁻¹). Above the phase transitions of mixed crystals

⁽¹¹⁾ Ohnishi, H.; Teranishi, T. J. Chem. Soc. Jpn. 1961, 16, 35.

⁽¹²⁾ Sawaoka, A.; Tomizuka, C. T. J. Phys. Soc. Jpn. 1974, 36, 912.
(13) Englman, R. The Jahn-Teller Effect in Molecules and Crystals; Wi-

ley-Interscience: London, England, 1972.

⁽¹⁵⁾ Ham, F. S. Phys. Rev. A 1965, 138, 1727.

Figure 4. Cross section of the adiabatic potential energy surface of tetrahedral Cu²⁺ (T₂ \otimes e problem) perpendicular to the E axis, without cooperativity (the energetically most favorable pathway between the minima is additionally marked). Parameters: see Figure 2.

 $Cu_{x}Zn_{1-x}Cr_{2}O_{4}$, the elastic constant S_e is nearly zero and only the local Jahn-Teller distortion remains. Because the energy barrier between the three minima is $\simeq 125$ cm⁻¹ (Figure 4)—or 610 cm⁻¹ at most, when spin-orbit coupling is quenched completely by the Ham effect-the distortion is expected to be dynamic above a critical temperature of 200 K (900 K). Unfortunately the EPR spectra are disturbed by strong magnetic interactions between Cu²⁺ and Cr³⁺, leading to exchange coupled signals, which are not indicative with respect to dynamic or static distortions of the CuO₄ polyhedra.4

We will report on the concentration dependence of the strain parameter S_e and the phase diagrams (x versus T_c) of mixed crystals $Zn_{1-x}M_xCr_2O_4$ [M = Cu²⁺, Ni²⁺] in a separate paper.

B. Cu²⁺ in Square-Planar Coordination. It seems promising to compare the results obtained for the flattened CuO₄ tetrahedra in the spinel structure with those for the square-planar CuO₄ coordination in Li₂CuO₂, because the latter may be regarded as the limiting geometry of tetragonally compressed tetrahedra. The CuO₄ entities are corner-connected and form layers in the Li₂MO₂ $(M = Cu^{2+}, Ni^{2+})$ structure. The bands at 14000 and 17000 cm⁻¹ in the 5 K reflectance spectrum of Li₂CuO₂ with Cu-O spacings of ≈ 1.97 Å¹⁶ (Figure 5) are assigned to the transitions from ${}^{2}B_{2g}$ to ${}^{2}B_{1g}$ and ${}^{2}E_{g}$, respectively, and the shoulder around 21 000 cm⁻¹ is due to the ${}^{2}B_{2g} \rightarrow {}^{2}B_{1g}$ transition,¹⁷ yielding $e_{\sigma} = 6800$ cm⁻¹, $e_{\pi} = 1600$ cm⁻¹, and $e_{ds} = 1800$ cm⁻¹. The parameter e_{ds} describes interactions of the *n*d with the (n + 1)s orbitals in D_{4h} symmetry.¹⁸ The e_{ds} value derived for Li₂CuO₂ has also been used for the spinel mixed crystals, discussed above. The derived AO parameters should be considered as effective values, because no corrections with respect to cooperativity contributions have been made. The same argument holds for the AO parameters of Egyptian blue,⁴ also with CuO₄ square planes $[a(Cu-O) = 1.91 \text{ Å}]^{19}$ imbedded into an array of interconnected polyhedra: $e_{\sigma} = 6500 \text{ cm}^{-1}$, $e_{\pi} = 1800 \text{ cm}^{-1}$, and $e_{ds} = 1400 \text{ cm}^{-1}$. They are very similar to those of Li₂CuO₂ and to those of CuCr₂O₄, if no corrections with respect to the cooperative elastic Jahn-Teller forces are made.

The EPR powder spectrum of Li_2CuO_2 is axial with g values $g_{\parallel} = 2.26_3$ and $g_{\perp} = 2.05_2$. They are indicative of a d_{xy} ground state,¹⁷ as expected for CuO₄ square planes. From the orbital contributions a covalency parameter $k_{\parallel} \simeq k_{\perp} \simeq 0.75$ is calculated:

$$g_{\parallel} = g_{0} + 8u_{\parallel} - 3u_{\perp}^{2} - 4u_{\parallel}u_{\perp}$$

$$u_{\parallel(\perp)} = \frac{k_{\parallel(\perp)}^{2}|\zeta_{0}|}{E[B_{2g} \rightarrow B_{1g}(E_{g})]}$$

$$g_{\perp} = g_{0} + 2u_{\perp} - 4u_{\parallel}^{2}$$
(10)

Square planar entities, which are isolated from each other, are

- (17) In order to directly correlate the axes in the T_d and D_{2d} point groups with those in the square-planar coordination, the coordinate system of Figure 1 was also used for the orbital and term notations in the point
- (18) Smith, D. W. Inorg. Chim. Acta 1977, 22, 107. Hitchman, M. A.; Bremner, J. B. Inorg. Chim. Acta 1978, 27, L61.
 (19) Clark, M. G.; Burns, R. G. J. Chem. Soc. A 1967, 1034.

Figure 5. Electronic reflectance spectra of CaCuF₄ and Li₂CuO₂.

found in the structure of CaCuF₄. Cooperative elastic interactions are hence expected to be small, in accord with the results discussed below. With the assignment ${}^{2}B_{2g} \rightarrow {}^{2}B_{1g}$, ${}^{2}A_{1g}$, and ${}^{2}E_{g}$ for the ligand field transitions at 10100, 13300, and 13800 cm⁻¹ (Figure 5), we obtain $e_{\sigma} = 5850 \text{ cm}^{-1}$, $e_{\pi} = 1850 \text{ cm}^{-1}$ ($\Delta = 3e_{\sigma} - 4e_{\pi} \simeq 10000 \text{ cm}^{-1}$), and $e_{ds} = 400 \text{ cm}^{-1}$. The assignment is consistent with the EPR results. The molecular g values, which are calculated from the exchange-coupled g tensor of $CaCuF_4$,²⁰ are $g_{\parallel} =$ 2.46₂ and $g_{\perp} = 2.07_5$. With (10), we derive the covalency parameter $k_{\parallel} \simeq k_{\perp} \simeq 0.85$, which is much larger than the one for Li_2CuO_2 —as expected for the more electronegative F⁻ ligand. Very interesting results came from Cu²⁺ incorporated in the 4-coordinate Zn^{2+} sites of $CaZnF_4$,²¹ one of the rare examples with a transition-metal ion in a tetrahedral environment of F⁻ ions. For $CaZn_{0.93}Cu_{0.07}F_4$ two rather intense transitions at 5200 and 8500 cm^{-1} are observed in the 5 K reflection spectrum, with an additional weak absorption around 6700 cm⁻¹. The three bands can be assigned to the ${}^{2}B_{2} \rightarrow {}^{2}E$, ${}^{2}A_{1}$ and the symmetry forbidden ${}^{2}B_{2} \rightarrow {}^{2}B_{1}$ transitions in D_{2d} , respectively. With the AO parameters from CaCuF₄ the observed band energies can be reproduced within 100 cm⁻¹, if $2\theta \simeq 129^{\circ}$ is chosen. Though the ZnF₄ tetrahedra in the host lattice are already tetragonally compressed by packing forces $(2\theta \simeq 116.8^\circ)$,²¹ 2 θ has increased by about 12° for the CuF₄ polyhedra-clearly indicating a significant Jahn-Teller contribution to the overall distortion. The g tensor of the doped compound $(g_{\parallel} = 2.61_6, g_{\perp} = 2.20_8)$ is in accord with the assignment of the ligand field spectrum. The interpretation on the basis of (10) yields covalency factors $k_{\parallel} \simeq k_{\perp} \simeq 0.85 \pm 0.01$, in excellent agreement with those of CaCuF₄. A continuous mixed-crystal series between the end members CaZnF4 (Scheelite structure) and CaCuF₄ (KBrF₄ type structure) does not exist.

C. Ni²⁺ in Square-Planar Coordination. Li₂NiO₂ is isostructural with Li₂CuO₂ and represents a very interesting and rare example of a paramagnetic Ni(II) square-planar chromophore. The Ni-O spacings in the NiO₄ square planes are 1.90 Å.²² Axial contacts to oxygen atoms of other NiO entities are very weak ($\simeq 3.7$ Å). The reflection spectrum consists of three bands and two shoulders (Figure 6). Using the energy matrices for a d⁸ cation in a

- von Schnering, H. G.; Bleckmann, P. Naturwissenschaften 1965, 538.
- (22) Rieck, H.; Hoppe, R. Z. Anorg. Allg. Chem. 1972, 392, 193.

Rieck, H.; Hoppe, R. Z. Anorg. Allg. Chem. 1971, 379, 159. (16)

⁽²⁰⁾ Reinen, D.; Dance, J.-M. Inorganic Solid Fluorides, Academic: London, 1985; p 525

Figure 6. Electronic reflectance spectrum of Li₂NiO₂ at 5 K and band assignment in D_{4h} symmetry. Parameters (in 10³ cm⁻¹): $e_{\sigma} = 4.7$, $e_{\pi} = 1.3$, $e_{sd} = 0.5(0.0)$, and B = 0.85; C/B = 4.3. The correlation of the terms in D_{4h} with those in T_d is also given.¹⁷

square-planar coordination, we have calculated the transition energies as a function of the AOM bonding parameters e_{σ} and e_{π} , taking into account nonzero e_{sd} values. We have explicitly checked the possibility of changing the ground-state multiplicity upon variations of e_{σ} , e_{π} , and e_{sd} . The values of the Racah parameters are $B = 850 \text{ cm}^{-1}$ and C = 4.3B, in line with previous results on Ni²⁺-oxygen chromophores.²³

The calculated d-d transition energies on the basis of the best fit parameters (in 10³ cm⁻¹), $e_{\sigma} = 4.7 \pm 0.35$, $e_{\pi} = 1.3 \pm 0.45$, and $e_{sd} = 0.50 \pm 0.05$, are compared with the experimental values in Figure 6. The correlation with the parent T_d levels is also shown.¹⁷ The electronic groundstate is ${}^{3}B_{2g}(z^{2}, xy)$, which originates from the first excited ${}^{3}T_{2g}$ state in T_d symmetry. The d-d transition energies are as follows (only diagonal terms):

$${}^{3}B_{2g} \rightarrow {}^{3}_{a}E_{g} = 3B - 2e_{\pi} + e_{\sigma} - 4e_{sd}$$

$${}^{3}_{a}A_{2g} = 3B - 4e_{\pi} + 4e_{\sigma} - 4e_{sd}$$

$${}^{3}B_{1g} = 3e_{\sigma} - 4e_{\pi}$$

$${}^{3}_{b}E_{g} = 4e_{\sigma} - 6e_{\pi} - 4e_{sd}$$

$${}^{3}_{b}A_{2g} = 12B + e_{\sigma} - 4e_{\pi} - 4e_{sd}$$

$${}^{3}_{c}E_{g} = 12B + 3e_{\sigma} - 2e_{\pi}$$

The transitions to ${}^{3}B_{1g}$ and ${}^{2}_{c}E_{g}$ are (nearly) independent of s-d interactions, while all others are lowered in energy by $\simeq 4e_{sd}$. The spectral assignment in Figure 6 is only quantitatively satisfactory, if a small, but nonvanishing e_{ds} value is assumed. Low intensities are expected for the two electron jumps ${}^{3}B_{2g} \rightarrow {}^{3}_{a}A_{2g}$ and ${}^{3}_{b}E_{g}$; this is not in contradiction to the observation. The shoulder at $\simeq 14\,000$ cm⁻¹ seems to be due to a series of triplet-singlet transitions.

Though—in analogy to Li₂CuO₂—rather large effective AO parameters are expected, the obtained e_{σ} and e_{π} values are comparatively small and seem to reflect a rather anomalous bonding situation (see below). The energy of the ${}^{3}B_{2g} \rightarrow {}^{3}B_{1g}$ transition is just the cubic ligand field splitting, $3e_{\sigma} - 4e_{\pi}$ (8900 cm⁻¹). It is very low compared to the value of 14 000 cm⁻¹ for Li₂CuO₂ (section B) and resembles the octahedral Δ value of Ni²⁺-doped MgO (8650 cm⁻¹)²⁴ or—multiplied by ${}^{4}/{}_{9}$ —the typical values for the ligand field parameters of Co²⁺ and Ni²⁺ in tetrahedral oxygen coordination²⁴ ($\Delta_{t} \simeq 4000$ cm⁻¹). The electronic energy gain due to the lowering of the ${}^{3}B_{2g}$ ground state with respect to the tetrahedral ${}^{3}_{a}T_{1}$ ground state (hole formalism) is calculated to be 2600 cm⁻¹. The corresponding ground-state stabilization for Li₂CuO₄

is by far larger (9900 cm⁻¹) and would still amount to 6700 cm⁻¹, if the AO parameters of Li₂NiO₂ are used. Apparently the square-planar ligand geometry is imposed on Ni²⁺ by the specific packing conditions in the Li_2MO_2 (M = Cu²⁺, Ni²⁺) structure, obviously without a significant vibronic energy stabilization with respect to a tetrahedral "NiO₄" entity. The ${}^{3}B_{2g}$ ground state originates from the excited tetrahedral ${}^{2}t_{2}^{2}({}^{3}T_{2})$ configuration, while usually square-planar Ni²⁺ induces a diamagnetic ${}_{a}^{1}A_{1g}$ ground state (from $e^{2}t_{2}^{6}$ in T_{d} , see Figure 6). This state is calculated here to occur at 6300 cm^{-1} above ${}^{3}B_{2g}$, though it is observed as the ground state even with oxygen as ligator atoms in some complexes. With the (larger) AO parameters of Li_2CuO_2 a diamagnetic ${}_{a}^{1}A_{1g}$ ground state would result also in this case, which lies only 200 cm⁻¹ below the first triplet term ${}_{a}^{3}E_{g}$ (${}_{a}^{3}T_{1}$), however. The electronic stabilization energy with respect to the tetrahedral ${}_{a}^{3}T_{1}$ ground state is reduced from 2600 to 2100 cm⁻¹. These findings indeed hint toward anomalous bonding properties. We think that the square-planar NiO_4 coordination is mainly stabilized by the specific packing and cooperative-elastic forces (strain contribution, accounted for by S_e) of the Li₂CuO₂ structure type. This argument is supported by the results of the next section. In agreement with the paramagnetism of Li₂NiO₂ a broad and apparently exchange-averaged EPR signal at $g \simeq 2.21_5$ is observed.

D. Ni²⁺ Tetrahedra in Spinel Phases. Unfortunately it is not possible to extract reliable AO parameters for the NiO₄ polyhedra in spinel mixed crystals $Zn_{1-x}Ni_xCr_2O_4$ from the ligand field spectra (Figure 8). Having in mind that the electronic stabilization energy of the NiO₄ square planes in Li₂NiO₂ with respect to the tetrahedral entity is comparatively small, we may choose the AO parameters for Li_2NiO_2 here as well. With these parameters the first- and second-order vibronic constants were calculated from (1.1) and (1.4) as $V_e = 4150 \text{ cm}^{-1} \text{ Å}^{-1}$ and $L_e = 1350 \text{ cm}^{-1} \text{ Å}^{-2}$ and from (1.5) and (1.6) as $V_e' \simeq 1250 \text{ cm}^{-1} \text{ Å}^{-1}$ and $L_e' \simeq 250$ cm⁻¹ Å⁻² (Table I). If K_e is chosen as for Cu²⁺ (which is surely a reasonable assumption), ζ is fixed at $\simeq 0.70\zeta_0$, and the Racah parameter B has a value of 850 cm⁻¹, the cross sections of the potential energy surfaces shown in Figure 7a result, which arise from the ${}^{3}T_{1}$ ground-state manifold along the Q_{θ} coordinate. Obviously the system remains undistorted, though the Γ_1 potential curve is slightly asymmetric and rather broad, indicating a softening of the e mode. For smaller 5 parameters (for example due to a Ham effect¹⁵) a D_{2d} distortion (elongation) is expected. It amounts to $\rho = 0.17$ Å for vanishing LS coupling, with a stabilization energy of 240 cm⁻¹ with respect to T_d symmetry.

It is already obvious at this stage of the discussion that Cu^{2+} undergoes a considerably larger Jahn-Teller coupling than Ni²⁺. Apparently the main reason is that—due to the ${}_{a}^{3}T_{1} - {}_{b}^{3}T_{1}$ configuration interaction— V_{e}^{eff} ($\simeq 2900 \text{ cm}^{-1} \text{ Å}^{-1}$, eq 5) and L_{e}^{eff} parameters ($\simeq 1050 \text{ cm}^{-1} \text{ Å}^{-2}$) have to be used instead of the considerably larger V_{e} and L_{e} coupling constants. The term mixing coefficient *a*, defined by (6), is 0.93₅. Because the signs of L_{e} are different for the two metal ions (eq 1.4), a further reduction of the vibronic stabilization is expected (eq 7).

Again following Woitowicz,¹⁴ we have derived $S_{e'}\rho \simeq 370 \text{ cm}^{-1}$ for the cooperative elastic energy in NiCr₂O₄ from the transition temperature ($T_c = 298$ K). With $\rho = 0.24$ Å ($2\theta = 102.5^{\circ}$) one obtains $S_e = 1540 \text{ cm}^{-1} \text{ Å}^{-1}$. The inclusion of S_e into the vibronic calculation (with the parameters of Figure 7a) yields a groundstate potential energy surface that possesses only one rather broad minimum along $\varphi = 0$. The radial distortion parameter is $\rho =$ 0.24 Å, which matches perfectly with the experimental value. As depicted in Figure 7b, the stabilization energy with respect to the T_d symmetry is 190 cm⁻¹. This result implies that the observed distortion of the NiO₄ tetrahedra in NiCr₂O₄ arises exclusively from cooperative elastic forces. Though the local Jahn-Teller coupling does not energetically stabilize the ground state (Figure 7a), it determines the sign of the cooperative unit cell distortion toward c/a > 1, because the potential energy curve is less steep for $\varphi = 0^{\circ}$ than for $\varphi = 180^{\circ}$.

The given interpretation is in accord with the ligand field spectra of the mixed crystals $Zn_{1-x}Ni_xCr_2O_4$ (Figure 8). They arise from Ni²⁺ and Cr³⁺ color centers, which occupy the tetrahedral and

⁽²³⁾ Reinen, D. Theoret. Chim. Acta 1966, 5, 312.

⁽²⁴⁾ Reinen, D. Ber. Bunsen-Ges. Phys. Chem. 1965, 69, 82.

Figure 7. Cross sections of the potential energy surfaces, arising from the ${}_{a}^{3}T_{1}$ ground state of tetrahedral Ni²⁺: (a) along the Q_{θ} coordinates ($\varphi = 0$ and 180°, 120 and 300°, or 240 and 60°), (b) along the Q_{θ} coordinate ($\varphi = 0$ and 180°), but with the inclusion of cooperativity ($S_{e} = 1550 \text{ cm}^{-1} \text{ Å}^{-1}$). Parameters: $e_{\sigma} = 4700 \text{ cm}^{-1}$, $e_{\pi} = 1300 \text{ cm}^{-1}$, $e_{ds} = 500 \text{ cm}^{-1}$, $\zeta = -450 \text{ cm}^{-1}$, and $K_{e}^{*} = 17500 \text{ cm}^{-1} \text{ Å}^{-2}$. Solid and dashed curves correspond to energies with and without LS coupling.

octahedral sites of the spinel lattice, respectively. As is known from the spectrum of $ZnCr_2O_4^{25}$ the absorption around 17 200 cm⁻¹ and the two sharp peaks in the region of 15 000 cm⁻¹ have to be assigned to the ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$ and ${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$, ${}^{2}a_{1g}$ transitions of Cr³⁺, respectively. We have fitted the spectra in T_{d} (x = 0.25) and D_{2d} symmetry (x = 1.0) by diagonalizing the complete d⁸ matrices within the AO model, with the inclusion of LS coupling and the tetrahedral angles suggested for $x = 0.25 (109.5^{\circ})$ and observed for x = 1.0 (102.5°). In case of NiCr₂O₄ the decrease of the ${}_{a}^{3}A_{2}$ ground state by the cooperativity ($\bar{S}_{e} \rho \approx 350 \text{ cm}^{-1}$) has been additionally taken into account. In Figure 8 only the average energies over the LS-split components are given. The narrow bands between 12000 and 14500 cm⁻¹, due to tripletsinglet transitions, are different in energy and number for x =1 and x values below the critical concentration of the phase transition from tetragonal to cubic and can well be accounted for by the assumption of D_{2d} and T_d symmetries, respectively. From the triplet-triplet bands, only the transition around 9000 cm⁻¹ shifts significantly to higher energies on going from x = 0.25 to 1.0. At 5 K in particular the spin-forbidden bands are much better resolved and have distinctly larger intensities. Ni²⁺ - Cr³⁺ interactions may strongly influence the intensities of those transitions and are presumably also responsible for the satellite in the band around 9000 cm⁻¹, which cannot be explained otherwise.

In contrast to the situation for Cu²⁺, the transition energies in the ligand field spectra of Figure 8 can be fitted by using widely differing sets of e_{σ} and e_{π} parameters, as long as they obey

$$\Delta_{\rm t} = \frac{4}{9}(3e_{\sigma} - 4e_{\pi}) \simeq 4100 \ {\rm cm}^{-1}$$

Figure 8. Electronic reflection spectra of mixed crystals $Zn_{1-x}Ni_xCr_2O_4$ at 298 and 5 K. Fitting parameters for tetrahedral Ni²⁺: $e_{\sigma} = 4700 \text{ cm}^{-1}$, $e_{\tau} = 1200 \text{ cm}^{-1}$, $B = 850 \text{ cm}^{-1}$, C/B = 4.0, $\zeta = -450 \text{ cm}^{-1}$, $2\theta = 109.5^{\circ}$ (x = 0.25) or 102.5° (x = 1.0). Only the average energies over the LS-split components are given; the ${}_{4}^{3}E({}_{4}^{3}T_{1})$ term is calculated at 1350 cm⁻¹.

Thus AOM parameters extracted from the spectra of lower symmetry Ni²⁺ complexes, which are reported in the literature, should be viewed with caution. We have adjusted the e_{σ} and e_{π} parameters used with respect to those of Li₂NiO₂ and by comparison with the parameters of the isostructural Cu²⁺ compounds—as was outlined above.

Topology of the T \otimes (e + t₂) Potential Energy Surface for Tetrahedral Cu²⁺ and Ni²⁺. Now that bonding parameters and bending mode force constants for tetrahedral Cu²⁺ and Ni²⁺ complexes are available (Table II) they can be used in a comparative study of the Jahn-Teller stabilization energies E_{JT} (eq 7), which characterize the minima of the adiabatic potential energy surface. The maximal (epikernel) symmetry of the T \otimes (e + t₂) interaction was found to be $C_{2\omega}$, whereas for the separate T \otimes e problem it is D_{2d} . The maximal epikernel symmetries of the T \otimes t₂ coupling are C_{3v} and C_{2v} , though it was shown that the absolute minima have C_{3v} symmetry.⁷ Table II lists the Jahn-Teller stabilization energies for tetrahedral CuX_4^{2-} and NiO_4^{2-} chromophores, without considering spin-orbit coupling but with second-order vibronic terms accounted for. It can be readily seen that the D_{2d} extremal points (absolute minima in the T \otimes e potential surface) are lowest in energy for all Cu^{2+} and Ni^{2+} chromophores, while the absolute minima for the full T @ (e + t_2) problem (C_{2v} symmetry) are more stable than the C_{3v} minima of the T \otimes t₂ potential surface. In agreement with the available structural data, the Cu²⁺ ion in a tetrahedral environment indeed

⁽²⁵⁾ Reinen, D. Struct. Bonding (Berlin) 1969, 7, 114.

⁽²⁶⁾ Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed.; Wiley: New York, 1978.

Table II. Jahn-Teller Stabilization Energies (cm⁻¹), Corresponding to Stationary Points of the Adiabatic T \otimes (e + t₂) [C_{2e}], T \otimes e [D_{2d}], and T \otimes t₂ [C₃₀] Potential Energy Surfaces of \overline{Cu}^{2+} and \overline{Ni}^{2+} in Tetrahedral Coordination (without Spin-Orbit Coupling)^a

	first-order JT interaction			first- and second-order JT interaction			
complex	$\overline{E_{\mathrm{JT}}(D_{2d})}$	$E_{\rm JT}(C_{3v})$	$E_{\rm JT}(C_{2v})$	$E_{\rm JT}(D_{2d})$	$E_{\rm JT}(C_{3v})$	$(E_{\rm JT}(C_{2v})$	
CuCl ₄ ²⁻	-1630	-120	-495	-2250	-175	-395	
CuBr₄ ^{2−}	-1320	-170	-460	-1545	-200	-300	
CuO4 ^{6-b}	-635	-35	-185	-700	-40	-165	
-	(-560)	(-25)	(-160)	(-610)	(-30)	(-140)	
NiO4 ^{6-b,c}	~ 530	-30	-150	`−49Ó	-25		
NiO46-b,d	-260	-25	-80	-245	-20	-95	
CuF ²⁻	-1325	-40	-360	-1560	-50	-310	

^a Parameter values used in the calculation $(K_t = K_e)$: CuCl₄²⁻, R = 2.23 Å, $e_{\sigma(\tau)} = 5690$ (1390) cm⁻¹,²⁴ $K_e = 5700$ cm⁻¹ Å⁻² (from IR data);²⁶ CuBr₄²⁻, R = 2.38 Å, $e_{\sigma(\tau)} = 4620$ (820) cm⁻¹,²⁴ $K_e = 5000$ cm⁻¹ Å⁻² (value for ZnBr₄²⁻);²⁶ CuF₄²⁻, R = 2.08 Å, $e_{\sigma(\tau)} = 5850$ (1850) cm⁻¹, $K_e = 8500$ cm⁻¹ Å⁻² (estimate from IR data);²⁶ CuO₄⁶⁻, R = 1.94 Å, $e_{\sigma(\tau)} = 5700$ (2000) cm⁻¹, $K_e = 16450$ cm⁻¹ Å⁻², with values in parentheses calculated with $e_{\sigma(\tau)} = 4900$ (1400) cm⁻¹ and $e_{sd} = 1800$ cm⁻¹; NiO₄⁶⁻, R = 1.93 Å, $e_{\sigma(\tau)} = 4700$ (1300) cm⁻¹, $K_e = 16450$ cm⁻¹ Å⁻². ^b Formal charges, because polyhedra are interconnected in the spinel structure (see text). ^c Without inclusion of configuration interaction between the two tetrahedral ³T₂ states. ^d With inclusion of configuration interaction between the two states.

interacts predominantly with the Q_{θ} component of the e mode. We expect that these rather strong interactions usually dominate over steric lattice and spin-orbit coupling effects.

In contrast Ni²⁺ in tetrahedral complexes suffers moderate to weak Jahn-Teller coupling. As was previously discussed above, configuration interaction markedly depresses the vibronic coupling parameters and the Jahn-Teller stabilization energy $|E_{JT}|$ along the D_{2d} distortion pathway in this case (Table II). $|E_{JT}|$ depends on the square of V_e (V_e^{eff}) and thus diminishes even faster than the vibronic constant itself (see (7)). The effective vibronic constant V_t^{eff} for the T \otimes t₂ problem is obtained in a manner similar to that used for V_e^{eff} :

$$V_{t}^{\text{eff}} = \left(a^{2} + \frac{1}{2}b^{2}\right)V_{t}$$
(11)

with a and b as defined in (6). It is easily seen by comparing (5) and (11) that the inclusion of configuration interaction has a much stronger influence on $E_{JT}(e)$ than on $E_{JT}(t_2)$. A reduction of $|E_{JT}|$ is also calculated for the $C_{2\nu}$ minima. Accounting for spin-orbit coupling will further reduce $|E_{JT}|$ as was shown above for the T \otimes e interaction (Figure 7a). One may conclude for NiX₄ chromophores that, in ligand fields of moderate strength, the Jahn-Teller stabilization is small in all minima. We expect that rigid lattice, steric ligand, or spin-orbit effects can be comparable in magnitude to the vibronic Jahn-Teller coupling. The interplay between these various interactions may thus lead to D_{2d} , C_{2v} , C_{3v} or even lower symmetry distortions, depending on the relative magnitudes of the mentioned electronic and elastic perturbations. Cooperative elastic interactions between the tetrahedra, which may be strong in structures with interconnected polyhedra, frequently enhance the ground-state splitting and the extent of the local Jahn-Teller distortions, leading to lower symmetry unit cells.

Summary and Concluding Remarks

Introducing a vibronic coupling model that includes both configuration interaction and spin-orbit coupling, we have shown that the extent of the Jahn-Teller distortion in the tetrahedral ${}^{3}T_{1}$ and ${}^{2}T_{2}$ ground states of Ni²⁺ and Cu²⁺, respectively, should be distinctly larger in the latter case-in agreement with the available experimental data. If we refer to eq 1, 5, and 7 and Table I, it is immediately evident, that the reduction of ρ_m on going from Cu^{2+} to Ni²⁺ is mainly due to the linear vibronic coupling. The configuration interaction between the two ${}^{3}T_{1}$ terms induces a reduction of the linear vibronic coupling constant by about 30%. $\rho_{\rm m}$ for Ni²⁺ will be further reduced with respect to Cu²⁺, if the second-order coupling parameter L_e is taken into account and K_e is considered to be equal for both cations (eq 7). The latter effect corresponds to an increase of $K_{\rm eff}^*$ by more than 15%.

It is expected that ligands with greater e_{σ} and smaller e_{π} as well as B parameters may induce considerably larger V_e^{eff} constants, because not only V_e will increase but also the configuration interaction between the two ${}^{3}T_{1}$ terms should become smaller. This

is supported by experiment. While the $NiCl_4^{2-}$ tetrahedra in $[AsPh_{3}CH_{3}]_{2}NiCl_{4}^{27}$ are undistorted within the error limit, the NiN₄ chromophores in Cat[Ni(NCS)₄]³ (Cat = p-xylylenebis- $(triphenylphosphonium)^{2+})$ exhibit rather large static distortion components due to vibronic Jahn-Teller forces. Unfortunately 4-coordinate Ni²⁺ will adopt a square-planar geometry and a singlet ground state, if ligands with even larger Δ/B ratios are present. Thus, the range of Δ/B values that could prove our concept is rather limited. If large deviations from the ideal tetrahedral angle are observed, the energetic influence of ligand-ligand repulsions, which are not included in our model, cannot be disregarded anymore. Such repulsions will destabilize the elongated tetrahedra more than the compressed ones.

Interestingly enough, Ni²⁺ can also be stabilized in a linear coordination of two oxygen ligator atoms (K_2NiO_2 ; a(Ni-O) =1.68 Å).²⁸ We observe two absorption bands at $\simeq 8500$ and ≈ 1500 cm⁻¹ (298 K) in the reflection spectrum and a broad, apparently exchange-averaged EPR signal (298 K) at $g \simeq 2.19_5$, in accord with the reported²⁸ high-spin behavior of K_2NiO_2 . The orbitally doubly degenerate ${}^3\pi_g$ groundstate (point group D_{wh}) originates from $(z^2; xz, yz)$ (hole formalism) and is stable with respect to further distortion (Renner effect). A single-crystal study of the electronic spectrum is forthcoming.²⁹

If the Jahn-Teller distorted polyhedra are involved in strong cooperative elastic interactions within the host lattice, large contributions to the observed term splittings may arise from electronic effects induced by cooperative-elastic forces. Thus, the observed static distortion of the NiO₄ tetrahedra in spinel mixed crystals $Zn_{1-x}Ni_xCr_2O_4$ at very high x values is apparently induced by the action of the cooperative Jahn-Teller effect. Without cooperativity and depending on the magnitude of ζ , the system either remains in T_d symmetry (with a softening of the e mode) or induces only small ρ_m values, which may lead to a dynamic Jahn-Teller effect even at room temperature.

It is also of interest to study the influence of rigid ligand or crystal packing effects within a host structure on the potential surfaces of Jahn-Teller ions, because observed deviations from the ideal T_d symmetry are frequently at least partly of nonelectronic origin. The comparison of the Cu²⁺ and Ni²⁺ compounds with the analogous Zn^{2+} or Co^{2+} compounds is usually helpful, because the latter complexes have orbitally nondegenerate ground states in tetrahedral ligand fields and are not subject to Jahn-Teller forces. Thus the structures of compounds $Cat[M(NCS)_4]$ (M = Co^{2+} , Ni^{2+} , Cu^{2+})³ reveal that packing forces already induce a tetragonal compression of the " MN_4 " tetrahedra (for Co²⁺, 2 θ = 115°). This compression is consideraly enhanced in case of Cu^{2+} ($2\theta = 137^{\circ}$), due to the Jahn-Teller interaction of "the same sign". In case of Ni²⁺ the Jahn-Teller forces act in a direction

- (28)
- Pauling, P. Inorg. Chem. 1966, 5, 1498. Rieck, H.; Hoppe, R. Z. Anorg. Allg. Chem. 1973, 400, 311. Hitchman, M. A.; Stratemeier, H.; Hoppe, R., manuscript in prepara-(29) tion.

⁽²⁷⁾

opposite to the packing effect and stabilize (approximately) a geometry with C_{2v} symmetry ($2\theta = 115.5$, 126.5°). Similarly interesting are the orthorhombic phases observed for spinel mixed crystals $Ni_xCu_{1-x}Cr_2O_4$ with $0.860 \ge x \ge 0.825.^3$ The static D_2 distortion of the NiO₄ and CuO₄ tetrahedra in this concentration range is the result of the combined action of Jahn-Teller couplings and the symmetry lowering due to cooperative elastic interactions between the transition-metal polyhedra. The latter (NiCr₂O₄, c/a > 1; CuCr₂O₄, c/a < 1) are always opposite in the sign of distortion to those induced by the electronic effects of Cu^{2+} (compression) and Ni²⁺ (elongation), incorporated into NiCr₂O₄ and CuCr₂O₄, respectively. The influence of a lattice strain with the same sign of distortion as the Jahn-Teller coupling on the potential surface was discussed above (Figure 7b). A grouptheoretical analysis of the described phenomena for MN4 and MO4 chromophores (M = Cu^{2+} , Ni²⁺) is given elsewhere.

Acknowledgment. M.A. is grateful to the University of Marburg and the German Science Foundation (DFG) for providing financial help during his stay in the FRG. Partial financial support by the Council of Science, Bulgaria, is also acknowledged. We owe thanks to Dr. B. Jakob (Marburg) for experimental contributions and Dr. M. A. Hitchman (Hobart) for extensive discussions.

Appendix

The vibronic Hamiltonian of the T \otimes (e + t₂) problem including linear and quadratic terms was given previously.⁷ (Some misprints in eq 10 of ref 7 are as follows: second row, the term $1/_2Q_f^2$ should read $1/_4Q_f^2$; fourth (fifth) row, a minus sign in front of $1/_2Q_\theta Q_\xi$ ($1/_2Q_\theta Q_\eta$) should be added; sixth row, the term $X_tQ_tQ_\eta$ should read $X_tQ_\xi Q_\eta$.) The part relevant for our discussion (T \otimes e problem) is

$$\mathbf{H} = \frac{1}{2} K_{\epsilon} (Q_{\theta}^{2} + Q_{\epsilon}^{2}) \mathbf{I} + \left[V_{\epsilon} Q_{\theta} + L_{\epsilon} \left(\frac{1}{2} Q_{\epsilon}^{2} - \frac{1}{2} Q_{\theta}^{2} \right) \right] C_{\theta} + [V_{\epsilon} Q_{\epsilon} + L_{\epsilon} Q_{\theta} Q_{\epsilon}] C_{\epsilon}$$

where I is the unit matrix, and

$$C_{\theta} = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
$$C_{\epsilon} = \begin{pmatrix} -3^{1/2}/2 & 0 & 0 \\ 0 & 3^{1/2}/2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

The labeling order of rows and columns corresponds to $T_1\alpha$, $T_1\beta$, and $T_1\gamma$ for the T_1 state (d⁸) and $T_2\xi$, $T_2\eta$, and $T_2\zeta$ for the T_2 state (d⁹); K_e is the e mode force constant

$$K_{e} = \frac{1}{2} \left\langle T \left| \left(\frac{\mathrm{d}^{2} V}{\mathrm{d} Q_{\theta}^{2}} + \frac{\mathrm{d}^{2} V}{\mathrm{d} Q_{\epsilon}^{2}} \right)_{0} \right| T \right\rangle$$

and the first and second order JT coupling constants V_e and L_e are defined as

$$V_{e} = -\left\langle T_{1}\gamma \middle| \left(\frac{dV}{dQ_{\theta}}\right)_{0} \middle| T_{1}\gamma \right\rangle = -\left\langle T_{2}\varsigma \middle| \left(\frac{dV}{dQ_{\theta}}\right)_{0} \middle| T_{2}\varsigma \right\rangle$$
$$L_{e} = \frac{1}{2} \left\langle T_{1}\gamma \middle| \left(\frac{d^{2}V}{dQ_{\theta}^{2}} - \frac{d^{2}V}{dQ_{\epsilon}^{2}}\right)_{0} \middle| T_{1}\gamma \right\rangle = \frac{1}{2} \left\langle T_{2}\varsigma \middle| \left(\frac{d^{2}V}{dQ_{\theta}^{2}} - \frac{d^{2}V}{dQ_{\epsilon}^{2}}\right)_{0} \middle| T_{2}\varsigma \right\rangle$$

We can simplify **H** by setting $Q_{\theta} = \rho \cos \varphi$ and $Q_{\epsilon} = \rho \sin \varphi$ and obtain the diagonal form of **H** with matrix elements:

$$\langle \mathbf{T}_{1} \boldsymbol{\alpha} | \mathbf{H} | \mathbf{T}_{1} \boldsymbol{\alpha} \rangle = \langle \mathbf{T}_{2} \boldsymbol{\xi} | \mathbf{H} | \mathbf{T}_{2} \boldsymbol{\xi} \rangle = \frac{1}{2} \left(K_{e} - \frac{1}{2} L_{e} \cos 2\varphi - \frac{3^{1/2}}{2} L_{e} \sin 2\varphi \right) \rho^{2} + \frac{1}{2} V_{e} \rho \left(\cos \varphi - 3^{1/2} \sin \varphi \right)$$

$$\langle \mathbf{T}_{1} \boldsymbol{\beta} | \mathbf{H} | \mathbf{T}_{1} \boldsymbol{\beta} \rangle = \langle \mathbf{T}_{2} \boldsymbol{\eta} | \mathbf{H} | \mathbf{T}_{2} \boldsymbol{\eta} \rangle = \frac{1}{2} \left(K_{e} - \frac{1}{2} L_{e} \cos 2\varphi + \frac{3^{1/2}}{2} L_{e} \sin 2\varphi \right) \rho^{2} + \frac{1}{2} V_{e} \rho \left(\cos \varphi + 3^{1/2} \sin \varphi \right)$$

$$\langle \mathbf{T}_{1} \boldsymbol{\gamma} | \mathbf{H} | \mathbf{T}_{1} \boldsymbol{\gamma} \rangle = \langle \mathbf{T}_{2} \boldsymbol{\zeta} | \mathbf{H} | \mathbf{T}_{2} \boldsymbol{\zeta} \rangle = \frac{1}{2} (K_{e} + L_{e} \cos 2\varphi) \rho^{2} - V_{e} \rho \cos \varphi$$

Taking into account strains due to cooperative elastic forces, an additional term H_s is introduced, which reflects the external force, transmitted by the lattice to the JT center via the localized e mode¹³

$$\mathbf{H}_{s} = S_{\theta} Q_{\theta}^{s} + S_{\epsilon} Q_{\epsilon}^{s}$$

where S_{θ} and S_{ϵ} are defined as the strain forces for a distortion, whose magnitude equals the zero point displacement amplitude of the θ or ϵ component of the e mode. H_s has the symmetry of the linear coupling terms in H, and one obtains for strains of D_{2d} symmetry

$$\mathbf{H}_{s} = + (-) S_{e} \rho \mathbf{C}_{A}$$

[compression (elongation) along the S_4 axis; $S_e \leq 0$ for d⁹ and d⁸, respectively].

The corresponding strain energy should be added to the linear coupling terms in the energy matrix. Accounting also for the spin-orbit coupling, the following off-diagonal matrix elements for the ${}^{3}T_{1}$ and ${}^{2}T_{2}$ manifolds (first-order LS coupling) result: ${}^{3}T_{1}$

$$\frac{i}{2^{1/2}} \langle {}^{3}\mathbf{T}_{1}\alpha \pm 1 | \mathbf{H}_{\mathrm{LS}} | {}^{3}\mathbf{T}_{1}\beta \pm 1 \rangle = \langle {}^{3}\mathbf{T}_{1}\alpha \pm 1 | \mathbf{H}_{\mathrm{LS}} | {}^{3}\mathbf{T}_{1}\gamma 0 \rangle = \langle {}^{3}\mathbf{T}_{1}\alpha 0 | \mathbf{H}_{\mathrm{LS}} | {}^{3}\mathbf{T}_{1}\gamma \pm 1 \rangle = \pm \zeta/2(2^{1/2}) -i \langle {}^{3}\mathbf{T}_{1}\beta \pm 1 | \mathbf{H}_{\mathrm{LS}} | {}^{3}\mathbf{T}_{1}\gamma 0 \rangle = -i \langle {}^{3}\mathbf{T}_{1}\beta 0 | \mathbf{H}_{\mathrm{LS}} | {}^{3}\mathbf{T}_{1}\gamma \pm 1 \rangle = \zeta/2(2^{1/2})$$

$$-i\left\langle {}^{2}\mathbf{T}_{2}\xi\frac{1}{2}|\mathbf{H}_{\mathrm{LS}}|^{2}\mathbf{T}_{2}\eta\frac{1}{2}\right\rangle = -\left\langle {}^{2}\mathbf{T}_{2}\xi\frac{1}{2}|\mathbf{H}_{\mathrm{LS}}|^{2}\mathbf{T}_{2}\zeta - \frac{1}{2}\right\rangle = -i\left\langle {}^{2}\mathbf{T}_{2}\eta\frac{1}{2}|\mathbf{H}_{\mathrm{LS}}|^{2}\mathbf{T}_{2}\zeta - \frac{1}{2}\right\rangle = \zeta/2$$

The vibronic coupling constants V_e' and L_e' , which are used to define the effective parameters V_e^{eff} and L_e^{eff} for a ${}^{3}\text{T}_{1}$ ground state (eq 5), are denoted as follows:

$$V_{e}' = \left\langle \epsilon \Big| \frac{\mathrm{d}V}{\mathrm{d}Q_{\theta}} \Big| \epsilon \right\rangle$$
$$L_{e}' = \left\langle \epsilon \Big| \frac{\mathrm{d}^{2}V}{\mathrm{d}Q_{\epsilon}^{2}} \Big| \epsilon \right\rangle = -\left\langle \epsilon \Big| \frac{\mathrm{d}^{2}V}{\mathrm{d}Q_{\theta}^{2}} \Big| \epsilon \right\rangle$$

The linear vibronic constants for the t_2 bending and stretching modes (eq 1.2 and 1.3) are defined by (2T_2 ground state)

$$V_{t}^{b} = -\left\langle {}^{2}T_{2}\xi \left| \frac{dV}{dQ_{t}^{b}} \right|^{2}T_{2}\eta \right\rangle$$
$$V_{t}^{s} = -\left\langle {}^{2}T_{2}\xi \left| \frac{dV}{dQ_{t}^{s}} \right|^{2}T_{2}\eta \right\rangle$$

Registry No. $CuCl_4^{2-}$, 15489-36-8; $CuBr_4^{2-}$, 14337-09-8; CuO_4^{6-} , 56509-86-5; NiO_4^{6-} , 113857-72-0; CuF_4^{2-} , 67415-38-7; Ni^{2+} , 14701-22-5; Cu^{2+} , 15158-11-9; $Zn_{1-x}Cu_xCr_2O_4$, 113924-15-5; $Zn_{1-x}Ni_xCr_2O_4$, 113924-16-6.