In the orthorhombic material, this distance is slightly shortened to 2.350 (14) Å. Recently published high-temperature neutron diffraction work¹⁰ reports a 2.543 (11) Å Cu-O distance at 600 °C. This may account for the distance observed in the XANES data, especially if, during measurement using the intense synchrotron source, localized heating took place and converted some of the material to the tetragonal form.

The other possibility for the observation of a disorder may be related to this material's sensitivity to its thermal history. The sample used for the XANES work may have accidentally been prepared with an anomalous composition. However, on the basis of our data, any disorder between Y and Cu is not routinely observed in either ceramic or melt-grown material.

(10) Hewat, A. W.; Capponi, J. J.; Chaillout, C.; Marezio, M. Solid State Commun. 1987, 64, 301.

M. F. Garbauskas* GE Corporate Research and Development Schenectady, New York 12301 R. H. Arendt J. S. Kasper

Received December 11, 1987

⁴³Ca Nuclear Magnetic Resonance Spectra of Ca²⁺-S100 **Protein Solutions**

Sir:

Dramatic increase of the line width of ${}^{43}Ca$ $(I = {}^{7}/_{2})$ NMR for Ca²⁺-protein solution has hampered the detection of ⁴³Ca NMR for Ca^{2+} -protein (1:1 per binding site in the protein) complex by using a conventional NMR spectrometer equipped with conventional probe.^{1,2}

S100 proteins are nerve specific proteins and belong to a family of EF-loop Ca²⁺-binding proteins such as calmodulin or troponin C.³⁻⁵ S100_b protein and S100_{a0} protein are homodimer proteins consisting of two α subunits ($M_{\rm R} = 10400$) and of two β subunits $(M_{\rm R} = 10500)$, respectively, while S100_a protein is a heterodimer protein consisting of one α and one β subunit.³

We show herein that ⁴³Ca NMR spectra of Ca²⁺-S100_b protein and Ca^{2+} -S100_{a0} protein solutions consist of two distinguishable resonances that correspond to Ca²⁺ ions bound to different sites of the $S100_b$ and $S100_{a0}$ proteins. This is the first report of ${}^{43}Ca$ NMR signals ascribable to two discernible slowly exchanging Ca²⁺ ion binding sites.

S100_b, S100_{a0}, and S100_a proteins were purified to gel-electrophoretical homogeneity by the method described previously.6-10

- (1) Forsén, S.; Vogel, H.; Drankenberg, T. In Calcium and Cell Function;
- Cheung, W. Y., Ed.; Academic: New York, 1986; Vol. 6, pp 113-157. (a) Shimizu, T.; Hatano, M. *Inorg. Chem.* 1985, 24, 2003-2009. (b) ⁴³Ca NMR spectra were obtained on a Bruker CXP-300 FT NMR spectrometer. Typical spectral conditions were as follows: quadrature detection mode; spectral frequency, 20.189 MHz; spectral offset, 6080 Hz; data points, 1K-16K; pulse width, 80 μ s (90° pulse); spectral window, 5000 Hz; exponential multiplication, 0.4-20 Hz; repetition time, 0.12-4.0 s; dead time, 50-200 µs; temperature, 294 K. Sample solutions contained 20% D₂O for a frequency lock.
 (3) Donato, R. Cell Calcium 1986, 7, 123-145.
- Martin, R. B. In Metal Ions in Biological Systems; Siegel, H., Ed.; Dekker: New York, 1984; Vol. 17, pp 1-49
- Martin, R. B. In Calcium in Biology; Spiro, T. G., Ed.; Wiley: New York, 1983; Vol. 6, pp 235-270. Isobe, T.; Nakajima, T.; Okuyama, T. Biochim. Biophys. Acta 1977,
- (6) 494, 222-23
- Baudier, J.; Holtzscherer, C.; Gerard, D. FEBS Lett. 1982, 148, 231 - 234
- Mani, R. S.; Kay, C. M. Biochemistry 1983, 22, 3902-3907. (8)

Figure 1. ⁴³Ca NMR spectra of 1.45 mM ⁴³Ca²⁺ (A), 1.45 mM $^{43}Ca^{2+}$ -0.02 mM S100_b protein (B), and 1.45 mM $^{43}Ca^{2+}$ -0.11 mM S100_b protein (C) in 0.15 M HEPES-K⁺ buffer (pH 7.2). Signal heights were normalized to that of 1.45 mM $^{43}Ca^{2+}$. A total of 5 × 10⁴ scans were acquired, and exponential line broadening of 20 Hz was applied. Part D shows changes in height of the signal at 19.2 ppm and of the chemical shift of the signal around 0.0 ppm caused by adding S100_b protein. In part D, values along the x axis give the concentration ratio of $[S100_b \text{ protein}]/[^{43}\text{Ca}^{2+}]$ and those along the y axis are signal height expressed in arbitrary units.

⁴³Ca NMR spectra of ⁴³Ca²⁺ (49.1%)-protein complexes were obtained as described previously² in 0.15 M N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES)-K+ buffer (pH 7.2).

By addition of S100_b protein to a 1.45 mM $^{43}Ca^{2+}$ solution, the ⁴³Ca NMR signal of the free ⁴³Ca²⁺ moved downfield by 2.0 ppm with concomitant increase of the line width (measured at half-height) from 0.5 Hz to more than 100 Hz (Figure 1A,B,D).¹¹ Simultaneously a new signal appeared at 19.2 ppm downfield from the signal of free ⁴³Ca²⁺ (Figure 1B). The increase of the peak height of the 19.2 ppm resonance saturated at the concentration ratio $[S100_b]/[Ca^{2+}] = 0.050$ (Figure 1D). For the ⁴³Ca²⁺ (1.45 mM)-S100_b protein (0.11 mM) solution, only the signal at 19.2 ppm was observed (Figure 1C). Since Mg^{2+} is known to bind to S100 proteins,³ excess Mg^{2+} was added to the Ca^{2+} -S100_b solution to determine whether the Ca²⁺- and Mg²⁺-binding sites are the same. The signal at 19.2 ppm decreased by half, and a new signal appeared at 2.1 ppm upon addition of 50 mM Mg^{2+} to the Ca^{2+} (1.45 mM)-S100_b (0.11 mM) solution.

When $S100_{a0}$ protein was added to the ${}^{43}Ca^{2+}$ (1.45 mM) solution, a new signal appeared at 19.3 ppm downfield from the free ⁴³Ca²⁺ signal (at 0.0 ppm) (Figure 2A,B). The appearance of the new signal at 19.3 ppm was concomitant with the shift of the resonance from 0.0 to 5.8 ppm and increased broadening of the original signal (now at 5.8 ppm).¹¹ The peak height of the

Ogoma, Y.; Miwa, T.; Fujii, T.; Kondo, Y.; Hachimori, A.; Shimizu, T.; Hatano, M. Inorg. Chim. Acta 1987, 138, 145-148. (9)

⁽¹⁰⁾ Ogoma, Y.; Nakamura, A.; Miwa, T.; Fujii, T.; Kondo, Y.; Hachimori, A.; Shimizu, T.; Hatano, M. Polym. Commun. 1987, 28, 318-320.

⁽¹¹⁾ In Figures 1 and 2, the signal/noise ratio was uniformly improved by exponential multiplication that introduced 20-Hz line broadening. This purposive line broadening outwardly decreases the difference of the line widths between A and B in Figures 1 and 2.

Figure 2. ⁴³Ca NMR spectra of 1.45 mM ⁴³Ca²⁺ (A), 1.45 mM ⁴³Ca²⁺-0.095 mM S100_{a0} protein (B) and 1.45 mM ⁴³Ca²⁺-0.29 mM S100_{a0} protein (C) in 0.15 M HEPES-K⁺ buffer (pH 7.2). Signal heights were normalized to that of 1.45 mM ⁴³Ca²⁺. A total of 5×10^4 scans were acquired, and exponential line broadening of 20 Hz was applied. Part D shows changes in height of the signal at 19.3 ppm and of the chemical shift of the signal around 0.0 ppm caused by adding S100_{a0} protein. In part D, values along the x axis give the concentration ratio of [S100_{a0} protein]/[⁴³Ca²⁺] and those along the y axis are the signal height expressed in arbitrary units.

resonance at 19.3 ppm saturated at the concentration ratio $[S100_{a0}]/[Ca^{2+}] = 0.15$ (Figure 2D). For the ${}^{43}Ca^{2+}$ (1.45 mM)–S100_{a0} (0.29 mM) solution, only the peak at 19.3 ppm was observed (Figure 2C). Addition of 40 mM Mg²⁺ to the ${}^{43}Ca^{2+}$ (1.45 mM)–S100_{a0} (0.29 mM) solution decreased the band at 19.3 ppm by half and gave rise to a band around 5.8 ppm.

Upon addition of $S100_a$ protein to 1.45 mM ${}^{43}Ca^{2+}$ solution, the free ${}^{43}Ca^{2+}$ NMR resonance moved downfield by nearly 5 ppm concomitant with an increase of line width of 0.5 Hz to 80 Hz (Figure 3A,B). These spectral changes saturated at 0.145 mM $S100_a$ (Figure 3C). Addition of 50 mM Mg²⁺ to the ${}^{43}Ca^{2+}$ (1.45 mM)-S100_a protein (0.145 mM) solution caused a decrease in the line width from 80 to 40 Hz (not shown).

Since the ⁴³Ca $(I = ^{7}/_{2})$ NMR resonance of free ⁴³Ca²⁺ is dramatically broadened upon addition of ligands or Ca²⁺-binding proteins due to fast exchange of the Ca²⁺ ion,¹ detection of ⁴³Ca NMR spectra of a Ca²⁺-Ca²⁺-binding protein (1:1 per binding site) has been very difficult with conventional NMR spectrometers and probes. In addition, up to now, there has been no report of the detection of two slowly exchanging ⁴³Ca NMR signals in a Ca²⁺-protein solution. In this paper, we report the first detection of two slowly exchanging ⁴³Ca NMR signals for ⁴³Ca²⁺-S100_b and ⁴³Ca²⁺-S100_{a0} protein solutions using a conventional NMR probe.

The appearance of a 43 Ca resonance at 19.2 ppm (Figure 1D) observed in the 43 Ca²⁺-S100_b solution suggests that S100_b protein has at least 20 Ca²⁺-binding sites. The signal at 19.2 ppm may reflect the slowly exchanging ($k_{off} \simeq 3 \times 10^{-3} \text{ s}^{-1}$)¹² Ca²⁺ ions bound to specific sites¹³ in S100_b while the broadened signal at

Figure 3. ⁴³Ca NMR spectra of 1.45 mM ⁴³Ca²⁺ (A) and 1.45 $^{43}Ca^{2+}-0.73$ mM S100_a protein (B) in 0.15 M HEPES-K⁺ buffer (pH 7.2). A total of 1 × 10⁵ scans (A) and 4 × 10⁵ scans (B) were acquired and exponential line broadening of 20 Hz was applied. Parts C and D show changes of chemical shift and line width, respectively, of ⁴³Ca NMR of 1.45 mM ⁴³Ca²⁺ caused by adding S100_a protein. In parts C and D, values along the x axis give the concentration ratio [S100_a]/[⁴³Ca²⁺].

2.0 ppm may reflect the more rapidly exchanging $(k_{\text{off}} \ge 10^2 \text{ s}^{-1})^{12}$ Ca²⁺ ions bound to other specific sites of S100_b.

The ⁴³Ca resonance at 19.3 ppm (Figure 2D) observed in the ⁴³Ca²⁺-S100_{a0} solution suggests that S100_{a0} protein has at least 7 Ca²⁺-binding sites. Signals at 19.3 and 5.8 ppm for the ⁴³Ca²⁺-S100_{a0} solution may reflect the slowly exchanging ($k_{off} \simeq 3 \times 10^{-3} \text{ s}^{-1}$)¹² Ca²⁺ ions bound to specific sites¹³ and the rapidly exchaning ($k_{off} \simeq 10^2 \text{ s}^{-1}$)² Ca²⁺ ions bound to other specific sites in S100_{a0}, respectively.

⁴³Ca NMR spectra of the ⁴³Ca²⁺-S100_a protein solutions indicate the range of fast exchange in contrast to the S100_b and S100_{a0} solutions.¹⁴ The ⁴³Ca NMR spectral changes (chemical shift and line width) caused by adding S100_a saturated at a concentration ratio of $[S100_a]/[Ca^{2+}] = 1/10$ (Figure 3C). This finding suggests that the ⁴³Ca NMR of the ⁴³Ca²⁺-S100_a solution may reflect the environment of the 10 Ca²⁺-binding sites to which Ca²⁺ exchanges very fast ($k_{off} \ge 10^2 \text{ s}^{-1}$).¹² Our finding agrees with a previous suggestion that there are 9–11 Ca²⁺-binding sites in S100_a protein in 100–120 mM Tris buffer.¹⁵

If the Ca^{2+} -binding sites of the S100 proteins are also the Mg^{2+} -binding sites, addition of excess Mg^{2+} to the Ca^{2+} -protein

 ^{(12) (}a) Wüthrich, K. NMR in Biological Research: Peptides and Proteins; North-Holland: Amsterdam, 1976; pp 36-38. (b) Swift, T. J.; Connick, R. E. J. Chem. Phys. 1962, 37, 307-320.

⁽¹³⁾ The sharp resonances of the $S100_b$ and $S100_{a0}$ solutions might partly be attributed to a high symmetry of the Ca²⁺-binding sites. A complex formation of Ca²⁺ with buffer is unlikely, however, to be a cause of the sharp resonances of the S100_b and S100_{a0} proteins since we observed the same NMR spectra in another buffer systems such as tris(hydroxymethyl)aminomethane (Tris) and 3-morpholinopropanesulfonic acid (MOPS) solutions.

⁽¹⁴⁾ $S100_b$ protein and $S100_{a0}$ protein are homodimers, each of which has identical subunits, $\alpha \alpha$ and $\beta\beta$, respectively. Both proteins have sharp resonances of slowly exchanging Ca^{2+} . However, the heterodimer ($\alpha\beta$) protein, $S100_a$ protein, had no sharp ⁴³Ca NMR resonance. Probably the homodimer protein has a special conformation at the Ca^{2+} -binding site which is different from that of the heterodimer protein. Many oligomeric proteins such as hemoglobin are known to be active only when several subunits are bound together. Conformation of the subunit protein is often different from that of the oligomeric protein. Similarly conformation of the homodimer protein (S100_b and S100_{a0}) may be different from that of the heterodimer protein (S100_a). In those respects, activities of the homodimer proteins (S100_b and S100_{a0}) may be fairly different from that of the heterodimer protein (S100_a), although functions of these proteins have not been well understood.³

solutions should cause band narrowing of the resonance of the rapidly exchanging ⁴³Ca²⁺ ions bound to the protein and/or a decrease in NMR intensity of those slowly exchanging bound $^{43}Ca^{2+}$ ion resonances.² Since addition of excess Mg^{2+} to the Ca^{2+} -S100_b and Ca^{2+} -S100_{a0} solutions changes both ^{43}Ca NMR signals, the two environmentally different Ca2+-binding sites of S100_b and S100_{a0} appear to be Mg²⁺-binding sites. Similarly at least 10 Ca²⁺-binding sites of S100_a may be Mg²⁺-binding sites since addition of excess Mg²⁺ to the Ca²⁺-S100_a solution caused ⁴³Ca NMR resonance narrowing. Our ⁴³Ca NMR findings on the Ca²⁺- and Mg²⁺-binding sites of the S100 proteins are in accordance with the previous suggestion that Ca²⁺-binding sites of S100 proteins are Mg²⁺-binding sites.^{15,16}

Using ⁴³Ca NMR studies, we have presented direct evidence that (1) $S100_b$, $S100_{a0}$, and $S100_b$ proteins have at least 20, 7, and 10 Ca^{2+} -binding sites, respectively, and that (2) the Ca^{2+} binding sites of S100 proteins are also Mg²⁺-binding sites. We would like to emphasize the utility of ⁴³Ca NMR in the

study of Ca²⁺-binding proteins using a conventional NMR spectrometer and probe.

(15)Baudier, J.; Gerard, D. Biochemistry 1983, 22, 3360-3369

- (16) Baudier, J.; Glassen, N.; Gerard, D. J. Biol. Chem. 1986, 261, 8192-8203.
- (17) Present address: Department of Functional Polymer Science, Faculty of Textile Science and Technology, Shinshu University, Ueda 386, Japan.
- (18) Present address: Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386, Japan.

Chemical Research Institute of Non-Aqueous Solutions Tohoku University Sendai 980, Japan

Yoshiro Ogoma¹⁷ Toru Shimizu* Masahiro Hatano* Toshihiro Fujii¹⁷ Akira Hachimori¹⁸ Yoshiyuki Kondo¹⁷

Received January 22, 1988

Exploitation of Crystalline Architecture and Solution Data in the Rational Preparation of Novel Mixed-Metal ATP Complexes

Sir:

Metal ions and metalloenzymes are ubiquitous in nucleotide and nucleic acid biochemistry.¹⁻⁸ However, crystallization of

- Miller, S. K.; VanDerveer, D. G.; Marzilli, L. G. J. Am. Chem. Soc. (4)
- (4) Milel, S. K., Valloured, S. C., Marzini, E. C. S. Am. Chem. Soc. 1985, 107, 104–1055.
 (5) Sigel, H.; Scheller, K. H.; Scheller-Krattiger, V.; Prijs, B. J. Am. Chem. Soc. 1986, 108, 4171–4178.
 (6) Cini, R.; Burla, M. C.; Nunzi, A.; Polidori, G. P.; Zanazzi, P. F. J. Chem. Soc., Dalton Trans. 1984, 2467–2476.
- Sabat, M.; Cini, R.; Haromy, T.; Sundaralingam, M. Biochemistry (7)1985, 24, 7827-7833.
- Chasteen, N. D. In Iron Binding Proteins Without Cofactors or Sulfur Clusters; Theil, E. C., Eichhorn, G. L., Marzilli, L. G., Eds.; Elsevier: New York/Amsterdam/Oxford, 1983; Vol. 5, pp 201-233 and references therein

Figure 1. ORTEP drawing showing the $[Cd(HATP)_2]^{4-}$ ion of I with the labeling scheme of the atoms. The view is parallel to the b axis. Ellipsoids enclose 30% probability.

relevant metal complexes is difficult since nucleotides have three types of moieties (charged phosphate; flexible puckered sugar; planar aromatic bases). Crystallization of nucleoside triphosphate complexes has been particularly difficult due to the high negative charge of species such as ATP⁴⁻. Nevertheless, considerable information concerning metal binding modes and complex stability in solution has been gathered.^{2,3,5} We now report that we have rationally exploited this solution information, together with the sparse crystallographic information on ATP complexes, to prepare the first X-ray quality mixed-metal ATP crystals. Examples include the first crystalline Cd complex and a new Zn complex.

Solutions of bis(2-pyridyl)amine (BPA), ATP, and Mg²⁺, Ca²⁺, or Mn²⁺ cations at ca. pH 4.5 formed single crystals suitable for X-ray analysis formulated as $[M(H_2O)_6][M'(HATP)_2]$ -2HBPA-nH₂O.^{6,7} In previous studies, M = M' and it appears essential that the $[M(H_2O)_6]^{2+}$ cations insulate the highly charged $[M'(HATP)_2]^{4-}$ anions from each other. For such a role, each cation forms four H-bonds to two anions for a total of eight H-bonds. The HBPA⁺ moieties stack with the adenine, which is protonated at N(1). Those metal species that gave the best crystals (Mg²⁺, Ca²⁺, Mn²⁺) have been characterized by solution studies as having a high preference for O over N and for having a > 80% "open" coordination of ATP with little involvement of adenine directly or indirectly (via a bridging H₂O) with the metal.^{2,3} Zn²⁺ gives crystals of poor quality, and Fe²⁺, Ni²⁺, Cu²⁺ and Cd²⁺ have not given similar crystalline materials. Compared to Mg^{2+} , Ca^{2+} , and Mn^{2+} , all these latter metal species either have a greater preference for N or have >30% "closed" coordination by ATP, i.e. involvement of the base either via indirect interaction

^{(1) (}a) Eichhorn, G. L. In Metal Ions in Genetic Information Transfer; Eichhorn, G. L., Marzilli, L. G., Eds.; Elsevier/North Holland: New York/Amsterdam/Oxford, 1981; Vol. 3, pp 1-46. (b) Marzilli, L. G. In Metal Ions in Genetic Information Transfer; Eichhorn, G. L., Marzilli, L. G., Eds.; Elsevier/North Holland: New York/Amster-dam/Oxford, 1981; Vol. 3, pp 47-85.

⁽²⁾ Sigel, H.; Tribolet, R.; Malini-Balakrishnan, R.; Martin, R. B. Inorg. Chem. 1987, 26, 2149-2157

Martin, R. B.; Mariam, Y. H. In Metal Ions in Biological Systems; Sigel, H., Ed.; Marcel Dekker: New York/Basel, 1979; Vol. 8, pp 57-124

⁽⁹⁾ Crystal data for I: $C_{40}H_{76}N_{16}O_{41}P_6CaCd$, mol wt 1775.4, orthorhombic, space group C222₁, a = 22.846 (3) Å, b = 10.252 (2) Å, c = 31.914(6) Å, V = 7475 (1) Å³, Z = 4, $d_{calcd} = 1.58$ g/cm³, μ (Mo K α) = 5.79 cm⁻¹. Crystal data for II: $C_{40}H_{25}N_{16}O_{44}P_6Mg_{0.72}Zn_{128}$, mol wt 1778.2, orthorhombic, space group C222₁, a = 22.666 (3) Å, b = 10.131 (2) Å, c = 30.893 (6) Å, V = 7094 (1) Å³, Z = 4, $d_{calcd} = 1.66$ g/cm³, μ (Mo K α) = 6.25 cm⁻¹. Data collection and structure solution for I and II: Data collection C_{40} Surface P_{20} different preserve with Data were collected on a Syntex P21 diffractometer with crystals measuring about 0.15 × 0.15 × 0.10 mm. A total of 3632 (I) and 2612 (II) independent reflections were measured in the range $3^{\circ} < 2\theta < 50^{\circ}$ (I) and $3^{\circ} < 2\theta < 45^{\circ}$ (II) at 20 ± 1 °C. The data were corrected for Lp effects but not for absorption because of the small absorption coefficients and crystal sizes. Only the 2394 (I) and 2206 (II) observed reflections with $F > 3\sigma(F)$ were used subsequently. The cell parameters and the distribution of reflection intensities indicated that the structures of I and II are essentially isomorphous with reported ternary complexes.^{6,7,10} However, the Patterson synthesis was still carried out for I and II. The positions of the Cd^{2+} and Zn^{2+} ions were determined and the structures were completed by a series of three-dimensional difference-Fourier maps. All the metals and the ATP non-hydrogen atoms were refined anisotropically for I and II. The N(1) hydrogen atom, located for II from the Fourier-difference analysis, was included in the refinement. Twelve blocked full-matrix least-squares cycles (SHELXTL proment. Twelve blocked full-matrix least-squares cycles (SHELXI program system 1985, implemented on a Data General Eclipse S/140 minicomputer) decreased the $R = (\sum (|F_o| - |F_c|)/\sum |F_o|)$ index to 10.15% (I) and 9.03% (II). The $R_w = (\sum w(|F_o| - |F_c|)^2 / \sum wF_o^2]^{1/2})$ index converged to 10.89% (I) and 9.89% (II). The weights were of the form w = $a/(\sigma^2(F) + bF^2)$. Scattering factors were from SHELXTL.

⁽¹⁰⁾ Cini, R.; Sabat, M.; Sundaralingam, M.; Burla, M. C.; Nunzi, A.; Polidori, G. P.; Zanazzi, P. F. J. Biomol. Struct. Dyn. 1983, 1, 633-636.