Linear Electron-Hole-Electron Pair Model of High-Temperature Superconductivity in La_{2-x}M_xCuO₄ and LBa₂Cu₃O₇ Cu²⁺-O-Cu³⁺-O-Cu²⁺ Units via Concerted **Breathing-Mode Vibration Small Cooper Pair Formation in Linear**

Sir:

Current carriers of conventional Bardeen-Cooper-Schrieffer (BCS) superconductors are pairs of electrons,¹ which arise from electron-phonon interactions: A moving electron induces a slight, momentary lattice deformation around it, which affects the movement of a second electron in the wake of the first in such a way that, effectively, the two electrons move as an entity (i.e., a Cooper pair) as if bound together by an attractive force. Whether or not these interactions are also responsible for the electron pairing of the high-temperature superconductors $La_{2-x}M_xCuO_4$ (M = Ba, Sr; $x \approx 0.15$; superconducting transition temperature $T_c \approx 35$ K) and $LBa_2Cu_3O_{7-v}$ (L = Y, Sm, Eu, Gd, Dy, Ho, Yb; $y < 0.3$; $T_c \approx 93$ K) has been a controversial subject. $2,3$ Recently, an increasing number of experimental studies suggest that phonons do play an important role in the electron pairing of the copper oxide superconductors: (a) For both $La_{1.85}Sr_{0.15}CuO₄^{4a,c}$ and $YBa₂Cu₃O_{7-y}^{4b,c}$ small but significant oxygen isotope effects are found. (b) According to Mossbauer studies⁵ on ¹⁵¹Eu- and ¹¹⁹Sn-doped EuBa₂Cu₃O_{7-v}, a softening of copper-oxygen vibrational modes occurs as a precursor to the onset of superconductivity. (c) The thermal conductivity of $YBa₂Cu₃O_{7-y}$ increases sharply below T_c ^{6a} due most likely to a drastic reduction in the phonon scattering by holes (i.e., formal $Cu³⁺$ centers) as holes form superconducting pairs. The thermal conductivity of $La_{1.8}Sr_{0.2}CuO_4$ also exhibits a small upturn below its T_c^{6b} (d) A far-infrared study⁷ of YBa₂Cu₃O_{7-y} shows narrowing of phonon lines at 155 and 195 cm-l in the superconducting state, in analogy with the effect of the electron-phonon interaction in conventional BCS superconductors.

Thus, a correct electron-pairing mechanism for the copper oxide superconductors must incorporate electron-phonon interactions in some way. Cooper pairs of conventional BCS superconductors are large (coherence length of $\sim 10^4$ Å), so that many pairs ($\sim 10^6$) overlap within the volume of one pair $(\sim 10^{12} \text{ Å}^3)$, thereby leading to a long-range order.8 Cooper pairs of the copper oxide su-

- (1) (a) Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. *Phys. Reu.* **1957, 106,** 162. (b) McMillan, W. L. *Phys. Rev.* **1968,** *167,* 33. (c) Rose-Innes, A. C.; Rhoderick, E. H. *Introduction to Superconductivity,* 2nd ed.; Pergamon: New York, 1978.
- (2) (a) Anderson, P. W. Science (Washington, D.C.) 1987, 235, 1196. (b)
Kivelson, S. A.; Rokhsar, D. S.; Sethna, J. P. Phys. Rev. B: Condens.
Matter 1987, 35, 8865. (c) Emory, V. J. Phys. Rev. Lett. 1987, 58, 2794. (d) Hirsch, J. E. *Phys. Rev. Lett.* **1987.59,** 228. *(e)* Varma, C. M.; Schmitt-Rink, S.; Abraham, E. *Solid State Commun.* **1987, 62,** 681. *(f)* Cyrot, M. *Solid State Commun.* **1987,62,821.** (9) Zaanen, J.; Oles, A. M., submitted for publication.
- (3) (a) Chakraverty, B. K.; Feinberg, D.; Zheng, H.; Avignon, M. *Solid State Commun.,* in press. (b) Bok, J.; Labbe, J. *Europhys. Lett.* **1987, 58,** 2794. (c) Phillips, J. C. *Phys. Reu. Lett.* **1987,36,** 861. (d) Hardy, J. R.; Flocken, J. W., submitted for publication. (e) Salomon, M. B.; Bardeen, J. *Phys. Rev. Lett.* **1987, 59,** 2615.
- (4) (a) Faltens, T. A.; Ham, W. K.; Keller, *S.* W.; Leary, K. J.; Michaels, J. N.; Stacy, A. M.; zur Loye, H.-C.; Morris, D. E.; Barbee, T. W., III;
Bourne, L. C.; Cohen, M. L.; Hoen, S.; Zettle, A. *Phys. Rev. Lett.* **1987**,
59, 915. (b) Leary, K. J.; zur Loye, H.-C.; Keller, S. W.; Faltens, T. A.; Ham, W. K.; Michaels, J. N.; Stacy, A. M. *Phys. Rev. Lett.* **1987,** *59,* 1236. (c) zur Loye, H. C.; Leary, K. J.; Keller, S. W.; Ham, W. K.; Faltens, T. A.; Michaels, J. N.; Stacy, **A.** M. *Science (Washington, D.C.)* **1987, 238,** 1558.
- (5) (a) Boolchand, P.; Enzweiler, R. N.; Zitkovsky, I.; Meng, R. L.; Hor, P. H.; Chu, C. W.; Huang, C. Y. Solid State Commun. 1987, 63, 521.
(b) Boolchand, P.; Enzweiler, R. N.; Zitkovsky, I.; Wells, J.; Bresser, W.; McDaniel, D.; Meng, R. L.; Hor, P. H.; Chu, C. W.; Huang, C. Y., submitted for publication.
- (6) (a) Uher, C.; Kaiser, A. B. Phys. Rev. B: Condens. Matter 1987, 36, 5680. (b) Uher, C.; Kaiser, A. B.; Gmelin, E.; Walz, L. Phys. Rev. B: Condens. Matter 1987, 36, 5676.
- (7) Bonn, D.,A.; O'Reilly, A. H.; Greedan, J. E.; Kamaras, K.; Tanner, D. B., submitted for publication in *Phys. Rev. B: Condens. Matter*

perconductors are estimated to be very small (coherence length of \sim 12 Å),^{3e} so that one needs to understand how such small pairs give rise to a long-range order. On the basis of the analysis of how the T_c value and the overall Cu2-O4-Cu1-O4-Cu2 linkage distance of $YBa₂Cu₃O_{7-y}$ vary as a function of the oxygen content, it was suggested⁹ that the 93 K superconductivity might involve **Cooper** pair formation across the Cu2-04-Cul-04-Cu2 linkages *(See* Figure 1 of ref lo), which connect the copper atoms of one $CuO₂$ layer to those of the other $CuO₂$ layer in each superconducting $Ba_2Cu_3O_{7-y}^3$ slab. These linkages are about 8 Å long, which is comparable to the coherence length of the Cooper pair $({\sim} 12 \text{ Å})$.^{3e} On the basis of band electronic structure calculations,^{9b,10,11} we may describe the Cu2-O4-Cu1-O4-Cu2 linkage by the electron configuration ϕ_1 (i.e., Cu²⁺-O²⁻-Cu³⁺-O²⁻-Cu²⁺ in 1). The tendency for Cu^{2+} ions to disproportionate into Cu^+

1

and low-spin Cu^{3+} ions¹² makes the configuration ϕ_2 (i.e., $Cu^{3+}-O^2-Cu^+-O^{2}-Cu^{3+}$ in 1) also appropriate for the linkage. Promotion of electrons from the oxygen p-block to the copper d-block levels¹³ in ϕ_2 leads to the configuration ϕ_3 (i.e., Cu²⁺-O⁻-Cu²⁺-O⁻-Cu²⁺ in **1**), in which the promotion energy is in part compensated by the removal of the on-site repulsion on an oxygen atom. In general, the electronic structure of a Cu2- 04-Cul-04-Cu2 linkage or any other linear Cu2+-02-- $Cu^{3+}-O^{2-}-Cu^{2+}$ unit in the CuO₂ layers is best described by the linear combination $\psi = c_1\phi_1 + c_2\phi_2 + c_3\phi_3$ ¹⁴ Lack of evidence for Cu³⁺ ions in the copper oxide superconductors as determined from spectroscopic studies¹⁵ might arise from the participation of a configuration such as ϕ_3 .

The concerted breathing-type distortion 2a favors ϕ_1 , while 2b favors ϕ_2 and ϕ_3 . (Here 2a and 2b refer to $Cu^{2+}-O^{2-}$ $Cu^{3+}-O^{2-}-Cu^{2+}$ units of the CuO₂ layers. Similar breathing-mode distortions can be considered for the Cu2-O4-Cu1-O4-Cu2 linkages.) Thus, the weight of ϕ_1 in ψ would be greater in 2a than linkages.) Thus, the weight of ϕ_1 in ψ would be greater in 2a than in 2b, while the weight of ϕ_2 or ϕ_3 would have an opposite trend. In a sense, the distortion 2a \rightarrow 2b forces the two electrons at the

- (8) Eisberg, R.; Resnick, R. *Quantum Physics* of *Atoms, Molecules, Solids, Nuclei and Particles,* 2nd ed.; Wiley: New York, 1985; pp 484-493.
- (9) (a) Whangbo, M.-H.; Evain, M.; Beno, M. A.; Geiser, U.; Williams, J. M. *Inorg. Chem.* 1988, 27, 467. (b) Whangbo, M.-H.; Evain, M.; Beno, M. A.; Williams, J. M. High-Temperature Superconducting Materials: Preparations
- (10) Whangbo, M.-H.; Evain, M.; Beno, M. A.; Williams, J. M. *Inorg. Chem.* **1987,** 26, 1831, 1832.
- (11) (a) Mattheis, L. F.; Hamann, D. R. *Solid State Commun.* **1987, 63,** 395. (b) Hermann, F.; Kasowski, R. V.; Hsu, W. Y. *Phys. Rev.* B: *Condens. Matter* **1987, 36,** 6904.
- (12) (a) Simon, A. *Angew. Chem., Inr. Ed. Engl.* **1987, 26,** 579. (b) Pouchard, M.; Grenier, J. C.; Doumerc, J. P., submitted for publication.
- (c) Wilson, J. A. *J. Phys.* **C 1987,** *20,* L911. (1 3) Here the oxygen p- and copper d-block levels refer to *interacted levels* that have copper-oxygen bonding and antibonding characters, respectively, as discussed in ref. 9b.
- (14) (a) In ϕ_1 the two spins are assumed to be paired. The configurations ϕ_2 and ϕ_3 are extremes. Other configurations may well contribute to the expansion of ψ , which will not alter the basic tenets of the present argument. (b) For configuration interactions in a mixed-valence system argument. (b) For configuration interactions in a mixed-valence system
as a function of geometry relaxation, see: Shaik, S. S.; Whangbo, M.-H.
Inorg. Chem. 1986, 25, 1201.
(15) (a) Yarmoff, J. A.; Clarke, D. R.; Drube, W
- *State Commun.* **1987, 63,** 857. **(c)** Bianconi, A.; Castellano, A. C.; De Santis, M.; Delogu, P.; Gargano, A,; Giorgi, R. *Solid State Commun.* **1987.63,** 1135. (d) Note that these are formal charges **on** Cu. There is appreciable screening from the surrounding oxygen atoms, so that the actual charges **on** Cu and their difference are expected to be much smaller.

the middle copper atom to make a $Cu³⁺-O-Cu⁴⁺-O-Cu³⁺$ unit, end copper atoms of a Cu²⁺-O-Cu²⁺-O-Cu²⁺ unit to flow into
the middle copper atom to make a Cu³⁺-O-Cu⁴-O-Cu³⁺ unit,
whereas the distortion $2b \rightarrow 2a$ leads to the opposite valence fluctuation. Effectively, the mixed-valence fluctuation in a linear Cu^{2+} -O-Cu³⁺-O-Cu²⁺ unit induced by a concerted breathingfluctuation. Effectively, the mixed-valence fluctuation in a linear Cu^{2+} -O-Cu²⁺-O-Cu²⁺ unit induced by a concerted breathing-
mode vibration such as $2a \leftrightarrow 2b$ can serve as an electron-pairing mechanism: As illustrated in **3,** a concerted breathing-mode distortion **(2a)** at a given $Cu^{2+}-O-Cu^{3+}-O-Cu^{2+}$ unit is likely to induce a concerted breathing-mode distortion of opposite parity **(2b)** on the nearest-neighbor $\tilde{Cu}^{2+}-O-Cu^{3+}-O-Cu^{2+}$ units. Thus, a long-range order in the entire lattice can be achieved by successively inducing concerted breathing-mode vibrations of opposite parity between all nearest-neighbor Cu²⁺-O-Cu^{x+}-O-Cu²⁺ (x $= 2, 3$) units. Then two electrons "confined" in each Cu²⁺-O- $Cu^{3+}-O-Cu^{2+}$ unit would move effectively as an entity rather than act independently, since the latter would require energy to break a series of successive concerted breathing-mode vibrations.

Two electrons involved in the valence fluctuation of a linear Cu^{2+} -O-Cu³⁺-O-Cu²⁺ unit via its concerted breathing-mode vibration may be referred to as a linear electron-hole-electron (e-h-e) pair. Evidence for a breathing-mode vibration has recently been found for $La_{2-x}M_xCuO_4$ from electron diffraction measurements,¹⁶ so that the concerted breathing-mode vibration invoked for linear e-h-e pairing seems reasonable. $LBa_2Cu_3O_{7-v}$ is expected to contain holes both in the $CuO₂$ layers and in the $CuO₃$ chains (vide infra), so that linear e-h-e pairing can occur in the layers and the Cu2-O4-Cu1-O4-Cu2 linkages. The latter is compatible with the finding from a Mössbauer study^{5b} that the Cul-0 vibrational modes undergo a softening as a precursor to the superconductivity onset and also with the observation from a ⁶³Cu nuclear spin-relaxation study¹⁷ that the Cu1 atoms are also involved in electron pairing.

According to the linear e-h-e pair model, atoms involved in the pairing must undergo concerted breathing-mode vibrations. However, atoms not involved in the pairing are not constrained in their vibrational modes and hence may engage in certain modes that disrupt linear e-h-e pairing. Such pair-breaking vibrations are generally suppressed by lowering the temperature of a crystal lattice. If more holes are present in the lattice, more atoms are involved in linear e-h-e pairing, and fewer atoms remain to provide pair-breaking vibrational modes. Consequently, a crystal with more holes requires less cooling to suppress the pair-breaking vibrational effect, thereby leading to a higher T_c value. This accounts for why the T_c values of $La_{2-x}M_xCuO_4$ and $YBa_2Cu_3O_{7-y}$ are observed to increase almost linearly with the number of holes.¹⁸

The CuO₄ layers of $La_{2-x}M_xCuO_4$ are made up of axially elongated $CuO₆$ octahedra by sharing their equatorial oxygen atoms (O_{α}) . The axial oxygen atoms (O_{ax}) of each CuO_6 octahedron have short contacts with La³⁺ cations (and with M^{2+} cations at the La³⁺ sites as well) along the Cu-O_{ax} direction to form La- O_{ax} -Cu units perpendicular to the Cu(O_{eq})₂ plane.¹⁹ In

- Koyama, Y.; Hasebe, Y. Phys. Rev. B: Condens. Matter 1987, 36, (16) **7256.**
- (17) Warren, W. W., Jr.; Walstedt, R. E.; Brennert, G. **F.;** Espinosa, G. P.; Remeika, J. P. *Phys. Rev. Lett.* **1987,** *59,* **1860.**
- (18) (a) Wang, Z. Z.; Clayhold, J.; Ong, N. **P.;** Tarascon, J. M.; Greene, L. H.; McKinnon, W. R.; Hull, G. W. *Phys. Rev. E Condens. Matter* **1987,36,7222.** (b) Shafer, M. W.; Renney, T.; Olsen, B. L. *Phys. Rev. E: Condens. Matter* **1987, 36,4047.** (c) Newns, D. M. *Phys. Rev. E: Condens. Matter* **1987, 36, 5 5 9 5.**
- (a) Day, P.; Rosseinsky, M.; Prassides, K.; David, W. I. F.; Moze, O.; Soper, A. J. Phys. C 1987, 20, L429. (b) Jorgensen, J. D.; Schuttler, H.-B.; Hinks, D. G.; Capone, D. W., II; Zhang, K.; Brodsky, M. B.; Scalapino, D. (19)

 $La₂$, M, CuO₄ an applied pressure is expected to exert its strongest effect along the direction perpendicular to the $CuO₄$ layers. In particular, an applied pressure along the $\text{La} \cdot \text{O}_{\text{ax}} - \text{Cu}$ units will suppress the vibrational modes arising from the $Cu-O_{ax}$ stretching. Only the concerted breathing-mode vibrations associated with the $Cu(O_{\infty})_2$ planes are essential for linear e-h-e pairing, and hence the vibrational modes of the $Cu-O_{ax}$ stretching will disrupt linear e-h-e pairing. Since this pair-disrupting effect can be suppressed by an applied pressure, the T_c value of $La_{2-x}M_xCuO_4$ increases substantially with an applied pressure $(dT_c/dp = 0.64 \text{ K/kbar})^{20}$

Let us now consider the origin of the plateaus in the T_c vs oxygen content plot of YBa₂Cu₃O_{7-y} ($T_c \approx 93$ K for $y \approx 0.15$ -0.25; $T_c \approx 55$ K for $y \approx 0.4$ -0.5).^{9,21} The distance of the Cu2-O4-Cu1-O4-Cu2 linkage increases with increasing y ,⁹ which is unfavorable for linear e-h-e pairing to occur in the linkage even if a hole is present in it. Thus, the lower plateau at $T_c \approx 55$ K would mean that linear e-h-e pairing occurs only within the $CuO₂$ layers.⁹ Therefore, one experimental test for the linear e-h-e pair model would be to perform 63Cu nuclear spin-relaxation measurements on YBa₂Cu₃O_{7-y} of the lower plateau region (i.e., $T_c \approx 55$ K for $y \approx 0.4$ -0.5),^{9,21} for which only one pairing energy associated with the copper atoms of the layers is expected. Within the linear e-h-e pair model, the observation of the nearly constant *T,,* which defines each plateau region, implies that the number of holes does not significantly change for the range of *y* values in that region. According to the electronic structure studies on $YBa₂Cu₃O_{7-y}$ ⁹ the oxidation state of Cu1 is Cu³⁺ when the Cu1 site is planar four-coordinate but $Cu⁺$ in all other cases. The $YBa₂Cu₃O_{7-y}$ lattice gains two electrons when an O1 atom is removed from the $CuO₃$ chains. Thus, removal of a bridging O1 atom between two planar four-coordinate Cul sites destroys *two holes* in the CuO₃ chain but creates *two holes* in the CuO₂ layers. Removal of a bridging 01 atom between planar three- and four-coordinate Cu1 sites destroys one hole in the $CuO₃$ chain and hence does not change the number of holes in the $CuO₂$ layers. This explains how the number of holes in the whole $YBa₂Cu₃O_{7-y}$ lattice or that in the $CuO₂$ layers can remain unchanged for a range of different *y* values. For large values of *y,* removal of an oxygen atom is likely to occur from a bridging 01 site between two three-coordinate Cul atoms. Since the removal does not change the number of holes in the $CuO₃$ chain, two holes in the $CuO₂$ layers are destroyed. The $CuO₂$ layers can be free of holes (i.e., consist of only Cu^{2+} sites) if the numbers of Cu^{3+} and Cu^{+} sites in the CuO₃ chains maintain the ratio $(1 - y)/y^{9a}$ This accounts for the nonsuperconducting, semiconducting, and antiferromagnetic properties of $YBa_2Cu_3O_{7-\gamma}$ for $y > 0.5$.^{9a,22}

Acknowledgment. Work at North Carolina State University and Argonne National Laboratory was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, **US.** Department of Energy, under Grant DE-FG05-86ER45259 and under Contract W31-109-ENG-38, respectively. M.-H.W. wishes

 (20) (a) Driessen, A.; Griessen, R.; Koeman, N.; Salomons, E.; Brouwer, R.; de Groot, D. G.; Heeck, K.; Hemmes, H.; Rector, J. *Phys. Rev. E: Condens. Matter* **1987, 36, 5602.** (b) Chu, C. W.; Hor, P. H.; Meng, R. **L.;** Gao, L.; Huang, Z. J. *Science (Washington, D.C.)* **1987,235, 567.**

⁽a) Veal, B. W.; Jorgensen, J. D.; Crabtree, G. W.; Kwok, W.; Umezawa, A.; Paulikas, A. P.; Morss, L. R.; Appelman, E. H.; Nowicki, L. J.; Nunez, L.; Claus, H. Presented at the International Conference on Electronic Structure and Phase Stability in Advanced Ceramics; Argonne National Laboratory, Argonne, IL, Aug 17-19, 1987. (b) Johnston, D. C.; Jacobsen, A. J.; Newsam, J. M.; Newandowsky, J. T.; Goshorn, D. P.; Xie, D.; Yelon, W. B. Presented at the Symposium on Inorganic Superconductors, 194th National Meeting of the American Chemical Society, New Orleans, LA, Aug 31-Sept **4, 1987.** (c) Cava, **R.** J.; Batlogg, B.; Chen, C. H.; Rietman, E. A,; Zahurak, S. M.; Werder, D. Phys. Rev. B: Condens. Matter 1987, 36, 5719

⁽a) Santoro, A.; Miraglia, S.; Beech, F.; Sunshine, S. A,; Murphy, D. W.; Schneemeyer, L. F.; Waszczak, J. V. *Mater. Res. Bull.* 1987, 22,
1007. (b) Bordet, P.; Chaillout, C.; Capponi, J. J.; Chenavas, J.; Ma-
rezio, M. *Nature (London)* 1987, 327, 687. (c) Tranquada, J. M.; Cox, D. E.; Kunnmann, W.; Moudden, H.; Shirane, G.; Suenaga, M.; Zolliker, P., submitted for publication.

to thank Prof. T. A. Albright and Dr. F. Studer for invaluable discussions.

Received January 5, 1988

Ni^{II}(dioxo[16]aneN₅)-Induced Methane Formation from **Methyl Coenzyme M**

Sir:

The nickel tetrapyrrole containing factor, F_{430} , is implicated in the final methane evolution step in methanogenic bacteria¹⁻⁴ and has attracted considerable attention.⁵⁻⁸ The essential role of F_{430} in methane formation was demonstrated by Ankel-Fuchs and Thauer, who reported the in vitro catalysis of H_3CSCH_2C - $H_2SO_3^-$, methyl coenzyme M (methyl-CoM), to methane and CoM by purified methyl-CoM reductase under reducing conditions.⁹ Since F_{430} exists in both the Ni(I) (or Ni(III)) and the Ni(II) states in *Methanobacterium thermoautotrophicum*,^{10,11} it is of interest to examine the role of the nickel ion oxidation state $12,13$ in methyl-CoM catalysis. We have found both the mono- and the divalent oxidation states of the water-soluble Ni(dioxo[16]aneN_s), NiL, complex¹⁴ catalyze methyl-CoM to methane and CoM.

In a typical reaction Ni"L (0.267 mM) in deoxygenated distilled

- **(1)** Wolfe. R. **S.** *Trends Biochem. Sci. (Pers. Ed.)* **1985.** *10.* **396.**
- Ankel-Fuchs, D.; Huester, R.; Moerschel, E.; Albracht, S. P. J.; Thauer, R. K. *Syst. Appl. Microbiol.* **1986, 7, 383.**
- **(3)** Diekert, G.; Klee, B.; Thauer, R. K. *Arch. Microbiol.* **1980,** *124,* **103.**
- **(4)** Whitman, W. B.; Wolfe, R. **S.** *Biochem. Biophys. Res. Commun.* **1980, 92. 1196.**
- **(5)** Pfaltz, A,; Jaun, B.; Fassler, A,; Eschenmoser, A,; Jaenchen, R.; Gilles, H. H.; Diekert, G.; Thauer, R. K. *Helu. Chim. Acta* **1982,** *65,* **828.**
- **(6)** Livingston, D. A.; Pfaltz, A.; Scheiber, J.; Eschenmoser, A.; Ankel-Fuchs, D.; Moll, J.; Jaenchen, R.; Thauer, R. K. *Helu. Chim. Acta* **1984,** *67,* **334.**
- **(7)** Fassler, A.; Pfaltz, A.; Krautler, B.; Eschenmoser, A. *J. Chem.* **SOC.,** *Chem. Commun.* **1984, 1365.**
- **(8)** Hausinger, R. **P.;** Orme-Johnson, W. H.; Walsh, C. *Biochemistry* **1984,** *23,* 801.
- **(9)** Ankel-Fuchs, D.; Thauer, R. K. *Eur. J. Biochem.* **1986,** *155,* **171.** The rate in the purified methyl coenzyme **M** reductase system is $6 \times$ (mol of CH₄)(g of protein)⁻¹ h⁻¹.
-
- **(10)** Jaun, **B.;** Pfaltz, A. *J. Chem. SOC., Chem. Commun.* **1986, 1327. (1 1)** Albracht, **S.** P. J.; Ankel-Fuchs, D.; Van der Zwaan, J. W.; Fontijn, **R.** D.; Thauer, R. K. *Biochim. Biophys. Acta* **1986,** *870,* **50.**
- **(12)** Walsh, C. T.; Orme-Johnson, W. H. *Biochemistry* **1987,** *26,* **4901.**
- **(13)** (a) Bakac, A.; **Espenson,** J. H. *J. Am. Chem. SOC.* **1986,** *208,* **5353.** (b) Ram, M. **S.;** Bakac, A,; **Espenson,** J. **H.** *Inorg. Chem.* **1986,** *25,* **3267.** (c) Stoltzenberg, A.; Stershic, M. T. *Inorg. Chem.* **1987,** *26,* **3082.**
- **(14)** Kimura, E.; Machida, R.; Kodama, M. *J. Am. Chem.* Soc. **1984,** *106,* **5497. Dioxo[16]aneN5** (L) IH NMR (CDC13): B(TMS) **7.90 (s, 2** H, amide), 3.30 (m, 4 H, amide ethylene), 3.20 (s, 2 H, malonyl methylene), 2.85 (m, 12 H, ethylene), 2.00 (b s, 3 H, amine). ¹³C NMR (CDCl₃): δ (TMS) 169.0, 49.0, 48.5, 48.0, 43.0, 38.5. The UV-vis spectrum of Ni"L is pH-dependent. UV-vis [pH **9.5** borate buffer] **(e): 260, 290 (1664), 340** nm **(120).**

H20 (20 mL) was placed into a two-neck round-bottom flask equipped with a magnetic stirbar. Methyl-CoM¹⁵ (0.800 mM) was added under a heavy flow of argon and the flask connected to a gas-uptake manometer.¹⁶ Methane was identified as the sole carbon-containing gas phase product by GC, IR, and MS analysis,17 and the extent of product formation was assayed either by the gas-uptake manometer or by the integration of the methyl and ethylene 'H NMR signals of the methyl-CoM and CoM containing final reaction mixture.¹⁸ One equivalent of methyl-CoM per equivalent of Ni^{II}L forms 0.60 ± 0.04 equiv of CoM and 0.20 **f** 0.02 equiv of **2,2'-dithiobis(ethanesulfonic** acid), CoM disulfide.¹⁵ As the reaction proceeds, the green solution containing Ni"L and methyl-CoM becomes brown with an UV-visible spectrum identical with that of Ni"L titrated with CoM (Figure 1).¹⁹ Since the reaction continues until 1.2 \pm 0.1 equiv of methyl-CoM is consumed, it is evident the formation of Ni-CoM prevents additional conversion of methyl-CoM. The fact that no methane is produced when methyl-CoM is added to a solution containing an equimolar amount of Ni"L and CoM supports this conclusion.

The magnetic susceptibility of the reaction mixture was measured by the Evans method.²⁰ Ni^{II}L (μ = 2.60 μ _B) and methyl-CoM were placed in a concentric NMR tube and sealed under argon. As 1 equiv of methyl-CoM was consumed during the reaction, the magnetic susceptibility slowly increased to a final value of 2.74 μ_B . This small increase in the magnetic moment is attributed to the formation of $Ni^{II}(L)(CoM).¹⁹$ When the reaction is run under O_2 , the magnetic moment per nickel increased from 2.99 to 3.17 $\mu_{\rm B}$.²⁰

We do not believe that Ni^IL is required for methane evolution for the following reasons. In the presence of an 8:l excess of substrate to Ni^{II}L at 21.5 \pm 1 °C the initial rate is (1.94 \pm 0.14) \times 10⁻² (mol of CH₄) (mol of Ni)⁻¹ h⁻¹ under 1 atm of argon and $(2.24 \pm 0.16) \times 10^{-2}$ (mol of CH₄) (mol of Ni)⁻¹ h⁻¹ under 1 atm of O_2 .²¹ It is expected that O_2 would inhibit the formation of

- **(IS)** For the preparation of methyl-CoM see: Taylor, C. D.; Wolfe, R. **S.** *Biochemistry* **1978,17, 2374.** Sodium salt of **2-mercaptoethanesulfonic** acid (CoM) **'H** NMR (D20): B(TMS) **2.97** (m, **2** H), **2.67** (m, **2** H). Ammonium 2-(methylthio)ethanesulfonate (NH,(methyl-CoM)) 'H NMR (D,O): B(TMS) **2.99** (m, **2 H), 2.69** (m, **2** H), **1.95 (s, 3** H). The disodium **salt of 2,2'-dithiobis(ethanesulfonic** acid) (CoM disulfide) was prepared by titrating an aqueous solution of CoM with I_2 until its color persisted. ¹H NMR (D₂O): δ (TMS) 3.13 (m, 4 H), 2.88 (m, 4 H). Methyl-CoM does not decompose to methane and CoM between pH **4** and pH **9.5.**
- (16) **Drago, R. S.; Gaul, J. H.; Zombeck, A.; Straub, D.** *J. Am. Chem. Soc.* **1986,** *102,* **1033.**
- **(17)** (a) **Bode,** J. **H.** G.; Smit, W. M. A. *J. Phys. Chem.* **1980,84, 198.** IR: CHI, **3000** cm-'; CDH,, **2950** cm-'.
- (18) After a reaction was complete, the solution was freeze-dried and re-
constituted with **D₂O**. ¹H NMR integration of CoM and methyl-CoM
was within $\pm 4\%$ of the yield of methane gas evolution calculated according to step 6. No carbon-containing side products were observed in the GC, GC-MS, 'H NMR, or FT-IR measurements in either the gas or the solution phase. The background O₂ concentration observed in the GC-MS spectrum of the gas-phase products introduced significant uncertainty in the determination *of [O,].*
- **(19)** When LNi" was titrated with CoM, **new** UV-visible absorptions in a pH **9.5** borate buffer were observed **(e): 333 (2217), 405 (754), 510** nm **(297).**
- **(20)** (a) **Evans,** D. F. *J. Chem.* **SOC. 1959, 2003.** (b) Becker, **E.** D. *High Resolution NMR: Theory and Chemical Applications,* 2nd ed.; Aca-demic: New York, **1980;** pp **42-61. (c)** Shifts are based **on tert-butyl** alcohol. The reproducibility between samples is about $\pm 0.15 \mu_B$, but the magnitude of the magnetic susceptibility increase during each run is reproducible within $\pm 0.02 \mu_B$. Magnetic susceptibility measurements were taken every $\frac{1}{2}$ h for the initial 4 h and every 4 h thereafter.
- (21) The rate of LNi^H decomposition under $O₂$ is slow compared to the initial rate.