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The atomic energy levels of 37 3d4, one 4d2, and one 5d2 transition-metal atoms and ions have been parametrized by using a new 
formulation of the Slater-Condon;Shortley model. This formulation has two remarkable features. First, it introduces two 
orthonormal symmetry operators Q, and QE, associated with the empirical parameters D and E ,  where D is the well-known 
spin-pairing energy parameter that is found to account for 70% of the ndq repulsion splitting. Second, it allows this splitting to 
be parametrized by usingsne parameter p = (02 + for each atomic species. This parameter is associated with the empirically 
weighted operator p-'(DQD + EQE), which is found to be very close to (3.25)-'/2(1.50QD + QE) for all 39 atomic species studied. 
The formalism also allows the interelectronic repulsion to be quantitatively compared with the spin-orbit coupling, and it is found 
that while V3+ and Nb" can be described as having 99.8% and 97.1% Russell-Saunders coupling, this percentage is 71.6% for 
Ta3+, which means that this ion is 28.4% on the way toward j j  coupling. Finally, the dq repulsion data have for fixed q been used 
to express the (fractional) charge z on the metal ion as a function of the interelectronic repulsion parameter p.  These expressions 
for the different values of q form the empirical basis for the interpretation of nephelauxetism in ligand-field theory. 

1. Introduction 
The parametrical dq model is a concept covering a particular 

quantitative version of ligand-field theory. This model embodies 
the interelectronic repulsion within the d shell as well as the ligand 
field and the spin-orbit coupling. All these Hamiltonian terms 
are described by empirical parameters whose coefficients in  an 
energy matrix are quantitatively calculated within the model. In 
actual fact these calculated coefficients are completely determined 
by symmetry, and the parametrical d9 model is in this sense a 
symmetry model. It is also a semiempirical model because it has 
a theoretical part, the coefficients, and an empirical one, the 
parameters. 

When the parametrical dq model is applied to gaseous atoms 
and ions, one has the usual Slater-Condon-Shortley model. This 
model parametrizes the energies of the Russell-Saunders multiplet 
terms =+'L, which arise from the interelectronic repulsion operator 
acting on the q-electron functions of the dq configuration (the dq 
space). The present paper is primarily concerned with a new 
parametrization of this model, based upon an orthonormal set of 
operators.] However, the observables of the atomic spectra are 
not the 2s+1L terms themselves but their fine-structure J levels, 
which arise from the action of the spin-orbit coupling operator 
upon the d9 space. This paper is therefore secondarily concerned 
with the spin-orbit coupling. 

The use of orthonormal operators for expressing a model 
Hamiltonian has been shown in connection with ligand-field 
Hamiltonians to allow a quantitative comparison of the magnitudes 
of the different symmetry components of the field.2,3 By the 
introduction here of an orthonormal operator description of the 
interelectronic repulsion model Hamiltonian, the same kind of 
comparisons will be possible between the symmetry-independent 
terms of the repulsion Hamiltonian. Furthermore, since it will 
be shown that a general normalization of one- and two-electron 
operators is not possible, this paper will describe the method by 
which comparison of Hamiltonian terms described by orthogonal, 
but nonnormalized, operators must be made. Thereby the relative 
magnitudes of the interelectronic repulsion and the spin-orbit 
coupling Hamiltonian terms can be expressed quantitatively. 
Although the ligand field is not discussed here, it can, since it is 
represented by one-electron operators, be handled in quantitative 
comparisons in exactly the same way as the spin-orbit coupling. 

The paper is structured as follows. Section 2 reviews the present 
situation with regard to parametrizations of interelectronic re- 
pulsion. Section 3 discusses the concepts of the parametrical 

Hamiltonian, the average interelectronic repulsion energy of a 
d9 configuration, and the trace of an operator. Section 4 exem- 
plifies the orthogonality of operators and overlap between oper- 
ators. Section 5 introduces normalized operators and their use 
in a quantitative comparison of Hamiltonian terms. It further 
defines this paper's new orthonormal set of repulsion operators 
QD and QE and tabulates the energies of all =+'L terms of all d9 
configurations in terms of the parameters D and E .  Section 6 
presents the results of a nonlinear least-squares parameter fitting 
of repulsion and spin-orbit coupling parameters to the experi- 
mentally determined energy levels of 37 3d9 gaseous atoms and 
ions. Section 7 compares the contribution: from fhe two sym- 
metry-independent, orthonormal operators QD and QE to the total 
interelectronic repulsion splitting of the dq configurations. It 
further discusses how the spin-orbit coupling operator can be 
included in the comparison of Hamiltonian terms without re- 
normalizing it and illustrates this inclusion by means of an ex- 
ample. Fi$ally, section 8 introduces a single empirically based 
operator QR and its associated parameter R,  which is able to 
account for the energies of the =+'L terms of the dq configurations 
studied in ̂ section 5 almost as well as the two symmetry-based 
operators QD and QE with their two associated parameters D and 
E .  
2. Interelectronic Repulsion Parametrizations 

In 1929 Slater showed4 that it is possible to describe the in- 
terelectronic repulsion interaction between the electrons of a d9 
configuration (q = 2-8) in terms of only three radial integrals: 
F', p, and F'. When Slater's theory is applied to the analysis 
of experimental atomic spectra, these integrals play the role of 
the empirical parameters by which the energies of the multiplet 
terms of the configuration are expressed. In order to avoid 
fractional coefficients to the parameters in the energy expressions 
for the terms, Condon and ShortleyS introduced k-subscript pa- 
rameters that are fractions of the corresponding Slater parameters: 
F2 = ( 1 / 4 9 ) p  and F4 = (1/441)F'. Laporte and Platt noticed6 
that for F4/F2 = 1/5, high accidental degeneracies of the multiplet 
terms occur within the dq configurations, a fact that was used by 
Racah' to reparametrize the repulsion. Racah introduced the 
parameters A ,  B, and C (eq 1-3), which have several advantages 

A = FO - 49F4 

B = F2 - 5F4 
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(3) C = 35F4 
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relative to the Fk parameters. The high degeneracies just men- 
tioned now occur for the situation B = 0, which, although 
physically unrealistic, is a useful situation to consider in the 
analysis of the parametrical model. Seen from a practical point 
of view, the most important advantage of the Racah parame- 
trization probably is that the energy differences between terms 
of maximum spin multiplicity are independent of C. 

Recently the advantages of using orthogonal operators in 
parametric models have been emphasized*-l0 and a reparame- 
trization of the interelectronic repulsion in the f shell based on 
such orthogonal operators has been introduced.” We shall here 
do this for the d shell. However, the operators to be used by us 
are not only mutually orthogonal but also normalized.’ Our 
orthonormal parametrization has all the attractive properties of 
the traditional Racah parametrization, but in addition to this, its 
parameters can be given simpler conceptual interpretations. Thus, 
one of its parameters is identical to Jargensen’s spin-pairing energy 
parameter.12 
3. Parametrical Repulsion Hamiltonians and Their 
Barycenters 

The parametrical (or effective) Hamiltonian which describes 
the interelectronic repulsion interaction between the q electrons 
of a d9 configuration may in the Racah parametrization be written 
as (4). This operator expression is an abstract, basis-independent 
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B ‘ =  B (9) 

C’ = c (10) 
while relation 11 applies to A’. Since A’expresses the average 

( 1  1) 
interelectronic repulsion interaction energy per electron pair, it 
is identical with Av(nd,nd) of Condon and Odabasi (ref 15, p 221). 
The parameter A’is furthermore identical with A. of J~rgensen 
who also finds relation 11 (eq 19.14 of ref 16). 

Whereas the values of the two parameters B’ and C’ can be 
determined on the basis of transitions between different d9 
multiplet terms, the parameter A’ cannot be determined on the 
basis of experiments. Determination of A’would require that one 
was able to switch off the interelectronic repulsion within the d 
shell and observe the absolute increase in the average energy of 
the dq configuration when the repulsion was turned back on. It 
is important to realize that the average interelectronic repulsion 
energy of a d9 configuration is not the same as the average energy 
E,, of the configuration. The latter can be determined experi- 
mentally and will be discussed in section 6. 

The modification of (4), which led us to (5) through (6)-(8),  
may be elucidated by using the concepts of the operator trace and 
barycentration of Hamiltonian terms. The trace of an operator 

A’ = A - (14/9)B + (7/9)C 

Tr(2)  = Tr(A) = (12) 
I 

is the sum of the diagonal elements of one of its matrix repre- 
sentations (sometimes called representatives). The trace is in- 
dependent of the basis. The operators Q,, and Qc, have traces 
that are equal t? zero, and they are therefore said to be traceless. 
The operator Qat h?s a-non-valishing trace as have all of the 
unprimed operaJors QA,,QB, and Qc Equations 7 and 8 transform 
the operators Q B  and Qc into their traceless associates QBr and 
Qct, respectively. Thereby a transformation of Hamiltonian 4 
into ( 5 )  takes place, and the Qew primed parameters B’and C’ 
emerge. The tracelessness of Qr and Qc. within the d9 space has 
the consequence’ that the barycenter rule applies within d9 to those 
parts of the energy which depend on these operators’ associated 
parameters B’ and C’. In the formulation (eq 5 )  of the model 
Hamiltonian, tracelessness of a symmetry operator reflects the 
possibility for experimental determination of its associated energy 
parameter. The energy differences between the multiplet terms 
of a d9 configuration can be expressed in terms of the full set-of 
parameters of this kind. By being nontraceless the operator QA, 

is of a different kind than Qr and Qc,, and its parameter A’cannot 
be determined from intraconfigurational transitions or, in fact, 
as discussed above, cannot be determined empirically at all. 
4. Orthogonal Repulsion Operators 

It is well-known nowadays among chemists how the concepts 
of orthogonality and orthonormality of vectors can be generalized 
to functions. It is much less well-known that analogous concepts 
can be applied to operators with very convenient consequences 
from a conceptual as well ,as from an applicational point of view.’ 

Two operators A and B are defined to be orthogonal if their 
scalar product or operator overlap, defined by (13), vanishes.’ 
Here the last equality is valid when the matrices are real. 

(AIB) = Tr(AtB) = CAt,B,, = XAljB,J (13) 

Calculation of the operator overlap between QIT and Qct shows 
that these operators are not orthogonal while they are both or- 
thogonal to QA,. It is not difficult to construct three new (doukle 
primed) operators that span the same operator space as QA,, .Qr, 
and Qc. but are mutually orthogonal. This can be done in i;finitely 
many ways. We here choose to conserve the operators QA, and 
Q,,, so that we have 

11 JJ 

Q,,, = QAT (14) 

Hrep = Q A ~  + Q B ~  + QCc (4) 

way of expressing the information’ that is present in the intere- 
lectronic repulsion energy matrices for the various d9 configura- 
tions. It is therefore not necessary to worry about the explicit 
forms of the three Q operators that carry their associated pa- 
rameters as s_ubscripts. 

The term QAA, which in a loose sense is thought to be much 
larger than the other two, gives the same destabilization of all 
the multiplet terms of a dq cpnfiguration. This is the same as 
stating that the matrices of QA are diagonal and their diagonal 
elements are all identical for ,a given value of q. However, this 
does not mea: that the term QAA of the Racah parametrization 
(or the term QFoFO of the Slater-Condon-Shortley parametriza- 
tion) represents the average interelectronic repulsion interaction 
energy within the d9 configuration in q ~ e s t i 0 n . l ~  The parame- 
trizations need small modifications in order to obtain this con- 
venient14J5 property and in (6)-(8) the operators of such a 
modified (primed) Racah parametrization ( 5 )  are given. In 

Q C f  = Qc - (7/9)( ;)I 

(7) 

(6)-(8) 7 represents the identity operator on the dq space and the 
binomial coefficient (1) is the number of individual pair inter- 
actions between the q electrons. The parameters of the primed 
parametrization are, as far as the parameters B’and C’are 
concerned, equal to the parameters of the traditional Racah 
parametrization, i.e. 

Newman, D. J.  J .  Phys. A :  Math. Gen. 1981, 14, L429-L431. 
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Qcr = QC# 

This choice has the advantage of conserving the Racah param- 
etrization property of having the same coefficient to one of the 

(16) Jorgensen, C. K. Modern Aspects of Ligand Field Theory; North- 
Holland: Amsterdam, I97 1. 
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Table I. Matrix Elements of the Interelectronic Repulsion in d4 Configurations Expressed in Terms of the Parameters D and E of the 
Orthonormal Parametrizationo 

d2 
v QB QC QB , QC, 21QD 21QE 

1s 0 14 7 14019 5619 112 0 
‘D  2 -3 2 -1319 1119 22 -18 
1G 2 4 2 5019 1119 22 I O  

V 21QD 21Q€ Y 2lQD 2 lQ€  

3P 2 7 0 7719 -719 -14 42 
) F  2 -8 0 -5819 -719 -14 -1 8 

d3 

4P 3 -42 42 2F 3 12 48 
4F 3 -42 -1 8 2G 3 12 -32 
2P 3 12 -12 2H 3 12 -12 
*D I 1 84 0 2D1, 2D2 0 12(21)‘/2 
2D2 3 12 24 

d4 
V 21QD 21QE Y 21QD 2lQE 

5D 4 -84 0 ID2 4 24 36 
3 ~ 1  
3 ~ 2  

3 ~ 1  
3 ~ 2  

3D 

3G 
’H 
‘S1 
IS2 
‘Dl  

2 
4 
4 
2 
4 
4 
4 
0 
4 
2 

42 
-1 2 
-12 

42 
-12 
-1 2 
-1 2 
168 
24 
78 

-14 
32 
24 
6 

12 
-4 

-24 
0 

48 
54 

IF 
IG 1 
‘G2 
11 
3 ~ 1 , 3 ~ 2  
3 ~ ~ 3 ~ 2  
1s1, lS2 
ID 1, ID2 
‘ G l ,  ‘G2 

4 24 
2 78 
4 24 
4 24 

0 
0 
0 
0 
0 

24 
-30 

8 
-36 

16(14)’/2 
48 
24(2 1 ) ‘ I 2  
48(2)1/2 
16( 1 1 ) ‘ I 2  

6S 5 -140 0 2F2 5 4 24 
4P 3 -14 -42 2G 1 3 40 52 
4D 5 -50 18 2G2 5 4 8 
4 F  3 -14 18 2H 3 40 -48 
4G 5 -50 -10 21  5 4 -36 

2P 3 40 120 2D1, 2D3 0 24( 1 4 p 2  
2s 5 4 48 2D1, 2D2 0 0 

2D 1 1 112 0 2D2, 2D3 0 0 
*D2 3 40 24 2F1, 2F2 0 0 
2D3 5 4 36 2G I ,  2G2 0 0 
2F1 3 40 -60 

“Term designations are made according to Nielson and K0ster.~8 For comparison the matrix elements given by Racah’ in terms of the parameters 
B and C are included for the d2 configuration. Also the d2 elements of the barycentered Racah parametrization (primed parametrization, section 3) 
are  given. Y is the seniority quantum number. 

parameters in the energy expressions for a_ll the terms of maximum 
spin multiplicity. The new operator QB” of (16) can then by 

analogy with functions bê  constructed by a Schm(dt orthogo- 
nalization as the part of Q,. that is orthogonal to Qc,. 

We illustrafe the operator overlap concept by calculating the 
coefficient to Qc, using the d2 configuration as our example. This 
configuration embodies (io) = 45 states, sometimes called mic- 
rostates. In Russell-Saunders coupling these states are classified 
as multiplet terms =+‘L, each having a degeneracy (Russell- 
Saunders weight) of ( 2 s  + 1)(2L + 1) .  This classification is a 
symmetry property. The d2 configuration gives rise to the terms 
3P, 3F, IS, ID, and IG whose degeneracies are 9, 21, 1, 5 ,  and 9, 
respectively, adding up to 45 and thereby comprising all the states 
of d2. The relevant operators act on this 45-dimensional two- 
electron space and the dummy indices! and j p f  (1 3) both run 
over the 45 functions. The matrices of Q, and Qc of (4) are both 
diagonal in d2 and consist of elements that are integers. These 
numbers define the operators and are given in Table I in the 
Russell-Saunders basis so that the energies of the multiplet terms 
are in units of the Racah parameters B and C, which have t_he 
dimension of energy. The matrices of the traceless operators Qp 

and Qct of ( 5 )  are also given. In this case the energies are in units 
of the parameters B’ and C’ of the barycentered parametrization 
(eq 5 ;  see eq 9 and 10 though). Let us now find the value of the 
coefficient to Qc, in (16). 

First we look at the denominator (Qc.lQcl), which is the squared 
“length” of Qc. or the overlap of this operator with itself.’ This 
overlap is found from Table I as 

(Qc,lQcr) = 9(-7/9)’ + 21(-7/9)2 + (56/9)2 + 
5(11/9)* + 9(11/9)’ = 6300/81 (17) 

where the coefficients to the squared matrix elements are the 
Russell-Saunders weights required to form the scalar product in 
the 45-dimensional function space. 

Second we look at  the-numerafor ( QBrlQcr),  which is the op- 
erator overlap between QB, and Qc.. This is found analogously 
to (17) as 
(QplQct) = 9(77/9)(-7/9) + 21(-58/9)(-7/9) + 

(140/9)(56/9) + 5(-13/9)(11/9) + 9(50/9)(11/9) = 
15750/81 (18) 

Taking the ratio between the numbers of (18) and (171, one 
obtains 5/2, which is minus one times the coefficient to Qc, of 
0 6 ) .  This coefficient is the same for all d* configurations, and 
Q,,, can therefore quite generally be rewritten as 
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QB,, = QBr - (5/2)Qc, (19) 

The invariance of this coefficient can be induced from the general 
rulell that two traceless operators that are orthogonal when acting 
on the space of the dq configuration are also orthogonal when 
acting on the d@’ coqfiguratiqn. 

The operators Q,,,, Qsr, and Q,,. represent with their associated 
parameters a third way (eq 20) of expressing Hrep of (4) and ( 5 ) .  

Hrep = QA”A)t + QB”Btt + QC”C” (20) 

Quite generally the parametrical Hamiltonian consists of terms 
that are products of symmetry operators and their associated 
parameters. It is illustrative of the formalism to derive relations 
between the parameters of the different parametrizations. The 
right-hand sides of (5) and (20) have to be equal for all values 
of the parameters. Equating these right-hand sides while using 
(14), (15), and (19) to insert the single primed operators in (20), 
we obtain 
&,,A’ + Q , B ’ + Q , C  = 

which can be rearranged to give (22). Since the coefficients to 
QAA’ + +Q,C’ = 

QAA” + QBtB” + QCt(C” - (5/2)B”) (22) 

the operators must be the same on both sides of the equality sign 
in (22) we thus have 

QA,A”+ ( Q p  - (5/2)Qct)B”+ QcfC’’ (21) 

A ” =  A ’ =  A - (14/9)B + (7/9)C 

C”= (5/2)B’+ C’= (5/2)B + C 

(23) 

(24) 

(25) 

B” = B’ = B 

where the relations to the traditional Racah parameters ar_e also 
given (cf. (9)-( 1;)). Notice that while in operator space Qc,, = 
Qc, (eq 15) and QBN # Q, (eq 19), the corresponding relationships 
in parameter space are the reverse, C” # C’and B” = B’. Apart 
from two different constants of proportionality (see section 5) B” 
and C” are the parameters proposed in the present paper for 
measuring the multiplet separations in dq systems. The parameter 
C” happens to be equal to the average exchange integral Kay of 
the usual real d functions. 

In a rarely cited paper’? Racah presented a parametrization 
of the repulsion in the d shell based on Ek parameters. This 
parametrization was, contrary to the A, B, and C parametrization, 
constructed on the basis of group-theoretical considerations. 
Racah’s Ek parameters are extremely similar to ours, even though 
ours have been constructed by the orthogonalization procedure 
just discussed. However, contrary to our Parametrization, Racah’s 
Ek parametrization is not orthogonal. These similarities and 
differences will be discussed further in the Appendix. 
5. Normalization, Comparison of Hamiltonian Terms, and 
Spin-Pairing Energy 

An orthogonal set of operttors is said to be normalized if the 
operator lengths, defined for A in (26), are equal. The advantage 

length(2) = +((AIA))1/2 (26) 

of using normalized ~perators l -~ in connection with parametrical 
Hamiltonians lies in the fact that the relative magnitudes of the 
Hamiltonian terms thereby are directly reflected in the relative 
magnitudes of their parameters. The magnitude of a Hamiltonian 
term is here not to be understood in the usual absolute sense, i.e. 
as the term’s contribution to the total energy of the system. 
Rather, since the dq model is not concerned with absolute energies 
but with energy differences within the dq configuration, the relative 
magnitude of a Hamiltonian term is its contribution to the total 
splitting of this configuration. The square of this total splitting 
is defined as the sum of the squared energy deviations of all the 
states of the configuration from its barycenter, and this squared 
sum is in an orthonormal parametrization proportional to the sum 

(17) Racah, G. Bull. Res. Counc. Isr. 1953, 3, 290-298. 
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of the squared  parameter^.'-^ Since the nontraceless operator Q,,, 
does not describe a splitting of the dq configuration and since its 
parameter cannot be experimentally determined in the dq model 
we shall here only discuss the normalization of the traceless re- 
pulsion operators Qp and e,,,. 

J@rgensenl2 has defined a so-called spin-pairing energy pa- 
rameter D (eq 27), which is a measure of the average spin-pairing 
energy of a dq configuration. The energy difference between the 

barycenter of the terms with spin S and the barycenter of the terms 
with spin (S - 1) is equal to 2SD.I8 The particular linear com- 
bination of the traditional Racah parameters B and C that occurs 
in (27) is, apart from the factor (7/6), identical with that of our 
parameter C” (eq 25). Since the parameter D is already in the 
literature and since it can be given the simple interpretation 
mentioned, we choose to use it in our orthonormal operator for- 
malism and the operator QD of (28) is therefore chosen to be one 

(28) 
of the operatots of the orthonormal set so that Q f l  = Qc8P. 
The length of Q, varies with the dq space on which the operator 
acts. When the dimension of the dq space is increased together 
with q (up till q = 5), the length is also increased. This increase 
is described by (29) and (30). 

D = (7/6)[(5/2)B + cl (27) 

QD = (6/7)Qcn = (6/7)Qc, 

($DIQD)Iq = (QDlQD)12(:!>2) (29) 

( Q D J Q D ) ~ ~  = 400/7 (30) 
Equation 29 is a general formula that applies not only to QD 

but to all traceless two-electron operators acting on 14 configuration 
spaces.I9 Since our orthogonal repulsion operators are both 
two-electron operators, a common normalization for one particular 
dq configuration will thus hold for any other one. -Having fixed 
the standard of normalization by the definitio? of QD (eq 28), we 
can therefore norm?lize the other operator, Q p ,  so as to give it 
the same length as QD By a procedure analogous to that of (17), 
the operator (eq 31) and its associated parameter (eq 32) are 

= (4/21)Qp = (4 /21) [Q,  - (5/2)Qc,] (31) 
E = (21/4)B (32) 

obtained. In Table IJhe paymeters D and E of our new or- 
thonormal operators QD and QE have been used to parametrize 
the energies of all the multiplet terms of all relevant dq configu- 
rations. The parametrization is identical for dq and d’O-4. 

The parameter E measures the energy separation between the 
terms of the highest spin multiplicity for the configurations that 
contain more terms of this kind. This is the case for d2, d3, d7, 
and d8 configurations, which each give rise to a P and an F term 
whose energy difference is (20/7)E. The spin-pairing energy 
parameter D is a measure of the energy differences between the 
barycenters of the different spin multiplicities of a configuration. 
6. Least-Squares Fits of Parameters to Atomic Energy Levels 

Hitherto we have been concerned with what was called in the 
introduction the theoretical or symmetry-determined part of the 
parametrical dq model for atoms. We shall now confront the model 
with experimental data and thereby obtain a collection of empirical 
values for the repulsion parameters associated with our ortho- 
normal set of symmetry operators. 

Experimental atomic energy levels are determined on the basis 
of atomic spectra and are traditionally found in the tables of 
Moore.20 For the metals of the first transition period an updated 
and revised set of tables has been published in the course of the 
seventies by Sugar and Corliss. These tables, which comprise Sc?’ 
Ti?’ V,23 Cr,24 Mn,Z5 Fe,z6 Co?? and Ni,28 are much more complete 

(18) Notice the similarity in form with the Land6 interval rule: If S is 
replaced by J and 2 0  by A, this rule is obtained. 

(19) Judd, B. R.; Leavitt, R. C. J .  Phys. B 1986, 19, 485-499. 
(20) Moore, C. E. Atomic Energy Leuels; National Bureau of Standards: 

Washington, DC, 1949, 1952, 1958; Vol. 1-3. 
(21) Sugar, J.; Corliss, C. J .  Phys. Chem. ReJ Data 1980, 9,  473-511. 
(22) Corliss, C.; Sugar, J. J .  Phys. Chem. Ref. Dura 1979, 8,  1-62. 
(23) Sugar, J.; Corliss, C. J .  Phys. Chem. Ref. Dura 1978, 7, 1191-1262. 
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than the Moore tables: Highly ionized atoms are included, and 
for a given atomic species usually all but a few terms of its dq 
configuration have been observed. With regard to the second and 
third transition period, the data in ref 20 seldom comprise more 
than very incomplete dq configurations for the neutral and singly 
ionized atoms. We have therefore here focused mainly on the 
3dq configurations. 

In the atomic energy level tables the multiplet terms 2s+IL 
appear with fine structures due to spin-orbit coupling, which splits 
the terms into J levels. The levels of a particular =+lL multiplet 
term are associated with J quantum numbers which extend from 
IL - SI to L + S with intervals of unity. Since S is always an 
integer for q even and half an odd integer for q odd, it follows 
that J follows S as far as these qualitative properties are concerned. 
Since it is J levels (of degeneracy 2 J  + 1)) rather than the =+IL 
Russell-Saunders terms that are the observed quantities, fitting 
of the repulsion parameters to the experimental energy levels of 
an atom or an ion must necessarily involve a codetermination of 
the spin-orbit coupling parameter {. 

In the least-squares fitting we have also included the parameter 
E,,, which measures the average energy of the dq configuration 
relative to the ground level of the atomic species examined. This 
ground level may belong to the dq configuration itself or to another 
configuration (e.g. 3dpl4s). The parameter Ea, is included in order 
to account for the fact that it is the ground level and not the dq 
configuration barycenter that defines the zero point of energy in 
the atomic energy tables. It is customary among atomic spec- 
troscopists to include E,, in  the fitting, but contrary to e.g. ref 
9, which weights all J levels equally, our E,, expresses a true dq 
configuration barycenter since we weight the J levels by ( 2 J  + 
1) (see below). 

According to this discussion the parametrical Hamiltonian 
which we have used is that of eq 33. 

fi = !E,, + Q f l +  QEE + Qr{ (33) 
The use of orthogonal operators in parametrical Hamiltonians 

like (33) has besides the advantages mentioned above also the 
statistical advantage that the relative errors of the fitted parameters 
are smaller than those of parametefs associated with nonorthogonal 
 operator^.^-".^^ The fact that QD and QE are orthlogonal both 
to each other and to the spin-orbit coupling operator Qr only when 
the weight factors of the J levels are W + 1, dictates this weighting 
and at the same time sees to it that our fitted parameters obtain 
minimal errors within the dq model. It is consistent with this 
discussion that the purpose of using the least-squares procedure 
here is to confront the model with experiment, not in order to test 
the model in light of the experimental uncertainty but in order 
to determine the best model parameters, given the particular 
experiments. Thus, the use of the least-squares regression analysis 
does not involve an assumption about the data being distributed 
normally; the experimental errors are in fact small enough to 
require that the model be rejected. When the model is used 
anyway, its justification lies in the fact that it is used as a data 
reduction model for series of independent experiments. This is 
frequently the situation in chemistry.30 

Brorson and Schaffer 

(24) Sugar, J.; Corliss, C. J .  Phys. Chem. Ref. Data 1977, 6, 317-383. 
(25) Corliss, C.; Sugar, J. J .  Phys. Chem. Ref. Data 1977, 6, 1253-1329. 
(26) Corliss, C.: Sugar, J. J .  Phys. Chem. Ref. Data 1982, 11, 135-241. 
(27) Sugar, J. Corliss, C. J .  Phys. Chem. Ref. Data 1981, 10, 1097-1174. 
(28) Corliss, C.; Sugar, J. J .  Phys. Chem. Ref Data 1981, 10, 197-289. 
(29) If the same data and the same data wecghting are used for two re- 

gression analyses, bas5d upon operators spanning the same space, for 
example, QB Qc) or (QE Q,}, then the results of the fitting procedure 
will be identical. However, the parameters expressing the data reduction 
will have smaller relative errors if the parameters belong to orthogonal 
operators. A simple numerical example can illustrate this. For Ni2+ 
the fitted values of the traditional Racah parameters are E = 0.104 k 
0.005 pm-' and C = 0.459 f 0.031 pm-'. A similar fit usin the 

D = 0.841 f 0.026 p d .  As far as E and E are concerned, their relative 
errors are the same (5.0%) since the parameters only differ by a constant 
of proportionality (eq 32). However, D has a relative error of 3.070, 
which is less than half that of C (6.8%). 
Glerup, J.; Mansted, 0.; Schaffer, C. E. Inorg. Chem. 1976, I S ,  

orthonormal parameters gives the values E = 0.547 f 0.027 pm- f and 

1399-1 407. 

The quality of the fit may be described by the weighted mean 
deviation (eq 34). The summations here run over all J levels that 

belong to the dq configuration in question and whose energies are 
listed in the tables of Sugar and Corliss. It should be noted that 
the weighting used in (34) is equivalent to weighting Russell- 
Saunders multiplet terms 2s+lL by ( 2 s  + 1)(2L + 1). 

The results of the least-squares fittings are given in Table 11. 
We point out several regularities in the variation of the parameters 
together with their usual dq model explanations. For a given 
element the magnitude of the total interelectronic repulsion may 
be measured by the accumulative parameter p (p = Greek r ,  r 
for repulsion) defined in (35). The parameter p decreases with 

(35) 
decreasing ionic charge, indirectly due to the concomitant ex- 
pansion of the d shell. By this expansion the average distance 
between the d electrons is increased while the average reciprocal 
distance, which directly reflects the repulsion, is decreased. This 
is nephelauxeti~m,~'.~~ which will be discussed quantitatively below. 
Similarly, and for the same reason, p increases (decreases) with 
increasing (decreasing) atomic number 2 when the number q of 
d electrons is kept constant. Keeping the ionic charge constant 
and moving across the transition period, i.e. toward higher atomic 
numbers, an increase of p is observed. This increase is accounted 
for by the incomplete mutual screening ability of the d electrons, 
which brings about a contraction of the d shell, when the nuclear 
charge 2 is increased by one simultaneously with an increase in 
the number q of d electrons, also by one. 

Let us now briefly discuss the empirical basis for the inter- 
pretation of nephelauxetism: if K is the number of electrons so 
that q = K - 18 for the 3dq configurations, then the charge of 
the ion is z = 2 - K.  Table I1 shows that p decreases almost 
linearly with decreasing z (or with Z )  for constant q (or K ) .  This 
is, as mentioned above, nephelauxetism qualitatively. The poly- 
n o m i a l ~ ~ ~  shown in (36)-(41) express the quantitative relationships 

p = (D2 + E 2 ) ' i 2  

3d2: z = 1 . 8 7 ~ ~  + 2 . 9 2 ~  - 0.61 (36) 

3d3: z = 0 . 7 3 ~ ~  + 4 . 8 4 ~  - 1.65 (37) 
3d4: z = 2.1 lp2 + 2 . 4 0 ~  - 0.93 

3d': z = 2 . 5 0 ~ '  + 1 . 5 3 ~  - 0.83 (39) 

3d6: z = 2 . 1 3 ~ '  + 2 . 1 1 ~  - 1.36 (40) 

3d': z = 5 . 1 7 ~ ~  - 3 . 4 8 ~  + 0.73 (41) 
between p and z and allows an empirical p value for a metal 
complex to be associated with a (fractional) z value. This is the 
parametrical dq model's wonderful demonstration of the concept 
of the prepondenant dq configuration (q integer), which determines 
the number and types of energy levels whose relative positions 
depend on the value of z, which in general is fractional. 

A new striking regularity in Table I1 is the constancy of the 
ratio between the repulsion parameters D and E. If the few atomic 
species that have the 4s shell populated in their ground state or 
low-lying excited states and for which configuration interaction 
may thus be assumed to be large are disregarded, the ratio DIE 
is always very close to 1.50. It is not possible by a simple criterion 

Schaffer, C. E.; Jargensen, C. K. J .  Inorg. Nucl. Chem. 1958, 8, 

Jwgensen, C. K. Prog. Inorg. Chem: 1962, 4 ,  73-124. 
These polynomials that express the relations between z and p for the 
different 3dq configurations have been found by polynomial regressions 
using the p values of Table 11. The p value of Table I1 for Sc" does not 
agree with the p value one can obtain by a reasonable nonlinear ex- 
trapolation from the other 3d3 species, and Sc" was therefore not in- 
cluded in the fit that produced eq 37. The other five polynomials are 
based upon all the atomic species of the particular configuration. For 
the 3d8 configuration, which is represented by only two atomic species 
in Table 11, no polynomial can be given. Equations 36-41 have no 
theoretical content but simply express the empirical relation between 
z and p in a convenient way. 

143-148. 
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to point out the atomic species with large configuration interac- 
tions, but in Table I1 the atoms/ions that have non-d9 ground terms 
have been marked by a dagger. This may give some indication 
of where the configuration interaction is likely to be large. The 
empirical value D I E  -- 1.50 generally found corresponds to a 
Racah C / B  ratio of 4.25. Section 8 is concerned with the operator 
corresponding to the parameter p of (35 )  and with an operator 
corresponding to the generally found empirical D I E  ratio. 

Although the data on which Table I1 is based are plentiful, the 
model Hamiltonian (eq 33) is not good enough to define the value 
of the spin-orbit coupling parameter {satisfactorily. Accordingly 
a discussion of the variation of {with q and with ionic charge is 
apparently not justified here even though the expected trends can 
be observed in the {values of Table 11. In a forthcoming paper34 
we shall show that addition of two extra orthonormal symmetry 
operators to our effective Hamiltonian allows a much better de- 
termination of {, at  least for d2 systems.35 
7. Comparison of the Magnitudes of Hamiltonian Terms 
Including Terms Containing Nonnormalized Operators 

As mentioned in section 5 ,  one of the advantages of an or- 
thonormal parametrization is that the values of the empirical 
parameters directly reflect the importance of the Hamiltonian 
terms to which they are associated. The fact that D I E  = 1.50 
for most first transition period ions can be used>o mak? general 
s!atements about the relative splitting effects of Q ,  and QP Since 
Q,  and QE are orthogonal, the squared length of the traceless part 
of the repulsion op_erator is q u a l  to the sum of the squared lengths 
of the two terms Q& and QEE.  The nofmalizatjon implies that 
the lengths of the symmetry operators Q, and QE are equal, so 
that it is the squared parameters which are to be compjred. For 
DIE = 1.50, the contribution of the spin-pairing term Q& to the 
squared splitting of a d4 configuration can be calculated by (42 )  

x ( D )  = D 2 / ( D 2  + E2)  = [ l  + ( D / E ) - 2 ] - ’  = 70% ( 4 2 )  

to be approximately 70% of the total squared splitting of the 
configuration. -The remaining 30% of the total squared splitting 
is due to the QEE term. 

Comparison of the relative dq configuration splitting effects of 
the interelectronic repulsion and the spin-orbit coupling is also 
possible since Q r  is orthogonal to Q ,  and QE. However, Q r  and 
the repulsion operators do not have the same lecgth. A renor- 
malization of the spin-orbit coupling operator Qr so as to give 
it the same length as the repulsion operators cannot be done 
simulJaneously for all d4 configurations. The reason for this is 
that Q ,  is a one-electron operator whereas the repulsion operators 
are two-electron operators. The squared length of a two-electron 
operator acting on an I4 configuration was given in ( 2 9 ) .  For 
traceless one-electron operators (43 ) ,  here exemplified by using 

cQrlQr)lq = (QrlQ,)rl(gl) (43 )  

Qr, is generally valid.Ig Th: squared length of the spin-orbit 
coupling symmetry operator Qr on the 1’ spin-orbital space is given 
by ( 4 4 ) .  Since the lengths of one- and two-electron operators 

do not increase in the same way with the number of electrons q 
in the 1 shell, a q-independent normalization of the two kinds of 
operators is not possible. A comparison of the repulsion and the 
spin-orbit coupling terms will therefore be made by inclusion of 
the squared lengths of the symmetry operators for the configu- 
ration in question. 

(34) Brorson, M.; Schaffer, C. E., to be submitted for publication. 
(35) The high relative standard deviation on (is mainly caused by insuffi- 

ciencies in that part of the parametrical model that describes the energy 
differences between multiplet terms, unsplit by spin-orbit coupling. 
These differences are here described by the interelectronic repulsion 
parameters D and E,  but the description may be improved by including 
sc-called effective parameters in order to account for all observed energy 
differences between Russell-Saunders terms. If, for example, a four- 
parameter model is used to describe the four term energy differences 
within the d2 system V”, ( turns out to have a relative error of only 1%. 
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For V3+ as an example, the contribution x( {) of the spin-orbit 
coupling term in the Hamiltonian (eq 33)  to the total squared 
splitting of the d2 configuration may, by using (30) ,  (43) ,  and (44) ,  
be calculated by ( 4 5 )  to be 0.2%. It is interesting to compare 

( 4 5 )  
x ( n  = ( 4 0 0 / 7 ) [ D 2  + E 2 ]  + 120C2 

this value of x({) with those of the heavier analogues of V3+: Le. 
Nb3+ and Ta3+. Although energy level data are usually scarce 
for atoms and ions of the second and third transition period, 
complete sets of energy levels e ~ i s t ~ ~ , ~ ’  for these two ions. On the 
basis of the fitted parameters of Table I11 and ( 4 5 )  one obtains 
x ( { )  = 2.9% and x({) = 28.4% for Nb3+ and Ta3+, respectively. 
The dramatic increase in the importance of the spin-orbit coupling 
with increasing nuclear charge Z is qualitatively well-known, but 
the present analysis expresses this quantitatively probably for the 
first time. 

The parametrical Hamiltonian (eq 33)  embodies only two 
perturbations, the repulsion, summarized by the parameter p (eq 
35)  and the spin-orbit coupling, parametrized by {. The con- 
tributions from { of 0.2%, 2.9%, and 28.4% therefore implies p 
contributions x ( p )  of 99.8%, 97.1%, and 71.6%, respectively, in 
agreement with the obvious definition 

120{2 

( 4 0 0 / 7 ) ( D 2  + E2)  

( 4 0 0 / 7 ) ( D 2  + E 2 )  + 120f  ( 4 6 )  X ( P )  = 

so that x ( p )  + x({) = 1 .  This means that gaseous V3+ and Nb3+ 
are quite close to Russell-Saunders coupling (x({) = 0) while Ta3+ 
is nearly one-third on the way toward j j  coupling ( x ( p )  = 0). 

8. One Empirically Based Repulsion Operator and One 
Empirical Parameter 

In Table I1 the empirical values of the repulsion parameters 
are given in two alternative ways for each spectrum, first as the 
parameters D and E of the orthonormal symmetry operators Q ,  
and Q, and second as the “root square sum” repulsion parameter 
p = (D2 + E2)’I2 and the ratio DIE of the two positive parameters. 
p is an invariant of the operator space in the s p s e  that every set 
of two orthonormal linear combinations of Q ,  and QE will be 
associated with parameters whose square sum is p2.  If 

.QD + PQE (47 )  

4QD - f f Q E  ( 4 8 )  

are two such orthonormal operators (a2 + P2 = l), it is a property 
of the orthonormal operators’ f~rmal i sml-~  that their associated 
parameters are 

CUD + BE ( 4 9 )  

PD - CUE ( 5 0 )  

respectively. This makes it possible to construct an operator whose 
associated parameter is p and whose orthogonal operator 
counterpart obtains a vanishing associated parameter. These two 
operators are 

Q, = P-’(DQD + E&,) 

Q,’ = p-’(EQ, - DQ,) 

( 5 1 )  

( 5 2 )  

Meinders, E.; Meijer, F. G.; Remijn, L. Phys. Scr. 1982, 25, 527-535. 
Meijer, F. H.; Metsch, B. C. Physica B+C (Amsterdam) 1978, 94B+C, 

Nielson, C. W.; Koster, G. F. Spectroscopic Coefficientsfor thepn9 d”, 
a n d f ’  Configurations; MIT  Press: Cambridge, MA, 1963. 
In the atomic energy level tablez6 for Fe3+ an error of assignment, not 
present in the original source, seems to have been introduced. The upper 
one of the two zF d5 terms is denoted zF1 while the lower one is denoted 
2F2. As far as the Slater model is concerned these labels should be 
interchanged since 2F1 is below 2F2 for D I E  < 7/3 (cf. Table I). 
However, these two 2F dS terms form the only set of repeated dq terms 
for which the energies of the terms do not increase with decreasing 
seniority for all reasonable D I E  ratios. 

259-269. 
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Table 111. Interelectronic Repulsion and Spin-Orbit Coupling 
Parameters' for the Heavy-Transition-Metal Ions Nb" and Ta3' 

. 4d2 5d2 
Nb3+ [9/9] dW = 0.0231 Ta3+ [9/9] u', = 0.0522 

E,, = 0.720 (9), 
< = 0.067 (8) 

D = 0.466 (13), 
E = 0.317 (13) 

DIE = 1.47 (9), 
p = 0.564 (9) 

E,, = 1.118 (18), 
< = 0.234 (16) 

D = 0.449 (30), 
E = 0.295 (29) 

DIE = 1.52 (22), 
p = 0.537 (21) 

The parameters are found by least-squares fittings to the energy 
level data of ref 36 and 37. Notice (cf. Table 11) that while p(V3') >> 
p(Nb3+) the lanthanide contraction makes p(Nb") = p(Ta'+). All 
energy parameters are given in units of gm-'. 

which according to (47)-(50) have the associate$ param@ers in 
(53) and (54), respectively. The operators Qp and Q,,' are 

(53) 

(54) 

p = p-I(D' + E') 
p' = p-'(ED - DE) = 0 

empirical operators since they depend on the empirical parameters 
D and E. However, since the lengthspf the operators are fixed 
by the normalization, their content of QD and QE does not depend 
on the magnitudes of D and E but only on their ratio DIE. 

This whole discussion would have been only a formal exercise, 
had it not been for the fact that, as discussed in sections 6 and 
7, the ratio DIE is close to 1.50 for the vast majority of 3d9 
transition-metal ions. In (55) and (56) the Qp and Q,' operators 

QR = (3.25)-1/2[1.50QD + $ E ]  

QR' = (3.25)-'/'[$, - 1.50QEI 
(55) 

(56) 
corresponding to DIE-= 1.50 _are given. These two operators, 
which we have called QR and QR' (R for repulsion), give iden- 
tically the same description of the dq-term eyergies as any other 
orthonormal linear combination of Q, and QE. For the atomic 
species where the DIE ratio has been found empirically to be 
exactly 1.50 the parameter R will be equal to p and R' will be 
zero. What makes the operators 55 and 56 interesting is that it 
will always be exactly true that p2 = R2 + (RI) '  so the ratio 
(R1)'/p2 will therefore be a quantitative measure of the fraction 
o,f the squared splitting that is not accounted for by the operator 
QR. This fraction turns out to be very small for almost all the 
atomic species analyzed here. 

We take the gaseous d2 ion V3+ as an example. Here D = 0.669 
km-', E = 0.465 wm-', p = 0.815 Mm-', and DIE = 1.44. Using 
now (49), (50), (55), and (56), i.e. a = (1.50)/(3.25)l/' and 0 
= 1/(3.25)'12, we obtain 

R = [ 1.50/(3.25)'/']0.669 + [1/(3.25)'/*]0.465 = 
0.815 pm-l (57) 

-0.016 Mm-' (58) 

Whenever the best fit yields DIE less than 1.50, RL will come 
out negative, as here. Equations 57 and 58 imply that only 
100(RL)2/p2% = 0.04% of the toial squared splitting has in this 
case not been accounted for by QR. The worst case among the 
d9 ground level examples, that of the d8 ion Co' with DIE = 1.78, 
gives R = 0.851 pm-', and even here, RL = 0.064 pm-' is only 
0.6% of p (in the squares). This suggests that one can basethe 
repulsion description on the operator Q R  alone and leave out Q R L  
altogether. 

Such a single-operator repulsion description turns out to be 
surprisingly good. Whereas thus a least-squares description of 
the repulsion of V3+ using the parameters R and RL (or, equiv- 
alently, D and E) gives dW = 0.0471 pm-', a description based 
on the parameter R alone gives d, = 0.0535 Mm-', i.e. only a slight 
increase in the mean deviaGon. The reason for this good repulsion 
description by means of QR alone is that R is very close to the 
parameter p expressing the total interelectronic repulsion. Only 
for the atomic species where the DIE ratio deviates markedly from 

R' = [1/(3.25)'/']0.669 - [1.50/(3.25)'/']0.465 = 
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1.50 will the one-parameter repulsion description not be good. 
These atomic species are, however, also those where configuration 
interaction is important and where the use of the d4 model is 
questionable anyway. This may actually be the reason for the 
D I E  ratios being far from 1.50 in many of these cases. The two 
4d and 5d transition metal ions of Taj le  111 have D I E  = I .50, 
which may indicate that the operator QR may be applied equally 
well for the heavy transition elements. 
9. Conclusion 

The Slater-Condon-Shortley model for the interelectronic 
repulsion within dq configurations has been reparametrized by 
using the two parameters D and E to describe the energy dif- 
ferences between the terms. The parameter D is the average 
spin-pairing energy parameter because the energy difference 
between the mean energy of all terms with spin S and the mean 
energy of all terms with spin (S - 1) is equal to 2SD. Least- 
squares fittings of D, E, and { to the experimental energy levels 
of all first transition period atoms and ions (Sc-Ni), whose dq 
configurations have been observed, were presented. It was found 
empirically that DIE always is close to 1.50. This fact made it 
possible to fix the D I E  ratio and parametrize the 3d4 interelec- 
tronic repulsion almost equally well by using only one parameter 
R = (0' + E2)'/2. Since D and E are associated with orthonormal 
operators, their magnitudes directly reflect the importance of their 
Hamiltonian terms. Using the above mentioned empirical result 
for the D I E  ratio, we may say that close to 70% of the squared 
splitting of each of the dq configurations studied is due to the D 
term of the model Hamiltonian while the remaining 30% is due 
to the E term. Comparison of the splitting effects of the spin-orbit 
coupling and the interelectronic repulsion can also be made, and 
we find that the contribution of the spin-orbit coupling to the 
squared splitting of the d2 configurations amounts to 0.2%, 2.9%, 
and 28.4% for V3+, Nb3+, and Ta3+, respectively. Monotonic 
relationships between the accumulative repulsion parameter p and 
the metal ion charge z were obtained for different 3d4 configu- 
rations. These relationships allow interpolation between integer 
z values and form the basis for the empirical interpretation of 
nephelauxetism in ligand-field theory. 

Acknowledgment. M.B. thanks the Danish Natural Science 
Research Council for financial support (Grant No. 11-4894). 
Appendix 

The interelectronic repulsion Hamiltonian of the parametrical 
dq model can be expressed in terms of Racah's Ek parameters,]' 
which, though rarely used for d electrons, have dominated the 
parametrization of the f shell repulsion. 

Brorson and Schaffer 

(59) 

Racahl' gives the following relations between the parameters of 
his two d shell parametrizations. 

(60) 

(61) 

E* = (1 /2)B (62) 

By translating these relations into our double primed Racah pa- 
rameters (eq 23-25) and by equating the Racah Hamiltonian (eq 
59) with our Hamiltonian (eq 20), one obtains the operator 
equations (63)-(65). Since our double primed operators form 

Eo = A - (7/2)B 

El = C + (5/2)B 

Q E 0  = QA!, (63) 

Q E 2  = 2Q8" (65) 

Q E l  = (7/9)QA,, + Qc.. (64) 

an orthogonal set, (63)-(65) reveal t i a t  the Racah Ek ojer?tors 
are mutually orthogonal apart from (QplQEi) = (7/9) (QA,,lQA,i). 
However, if Q€I is made traceless by subtraction of (7/9)QA,,, a 
new orthogonal set spanning the same operator space is obtained 
and this set consists of members tha: are identical with ours apart 
from a factor of 2 in the case of e,,,. 

For the fq configurations Racah's Ek parametrization is the basis 
for the orthogonal f shell operators of Judd and Crosswhite." They 
found that the Ek parametrization scheme is close to being an 
orJhogona1 one since the only nonvanishing operator overlap is 
(QplQp).  The f shell Ek parametrization is thus in this respect 
similar to the d shell parametrization. 

Furthermore, for the fq configurations the spin-pairing energy 
parameter is given12 by the expression D = (9/8)E'. Since for 
the d shell D = (7/6)E1, it would seem that the spin-pairing 
parameter for an 1 shell generally is [(21+ 3)/(21+ 2 ) ] P  when 
expressed in terms of the Ek parametrization for the 1 shell in 
question (cf. also ref 12, pp 22-23). 
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