signment of the chemisorbed cluster to structure 1.

Acknowledgment. This work was supported by National Science Foundation Grants DMR 86-40075 (E.O.) and DMR 86-12860 through the Materials Research Laboratory (J.R.S). We thank Dr. C. T. G. Knight for helpful discussions.

Registry No. Os₃(CO)₁₂, 15696-40-9; silica, 7631-86-9.

School of Chemical Sciences and Materials Research Laboratory University of Illinois Urbana, Illinois 61801

Thomas H. Walter Greg R. Frauenhoff John R. Shapley* Eric Oldfield*

Received February 24, 1988

Electrochemical Redox Behavior of the Mononuclear Rhenium Heptahydride Complexes ReH₇(PR₃)₂: Evidence for the η^2 -H₂ Ligand in This Class of Complex

Sir:

The question of the formulation of transition-metal hydrides as molecular hydrogen complexes $(M(\eta^2-H_2))$ or "classical" hydrides (H-M-H) has generated much interest and many important discoveries^{1,2} since the isolation and structural characterization of the first molecular hydrogen complex by Kubas et al.³ However, in spite of the existence of an extensive array of nonorganometallic mixed polyhydride-phosphine complexes of rhenium,⁴ which are perhaps of a greater variety than for any other transition metal, the possibility that some of these might be formulated as containing the η^2 -H₂ ligand has scarcely been addressed. The one very important exception is the study of $ReH_7(PPh_3)_2$ by Crabtree,² in which convincing evidence has been provided (via ¹H NMR spectroscopy) for its formulation as $Re(H_2)H_5(PPh_3)_2$. In contrast, the species $[ReH_8(PPh_3)]^-$ and $ReH_{4}(PPh_{3})_{3}$ can be regarded as classical polyhydrides.² Upon examining the electrochemical properties of several complexes of the type $\operatorname{ReH}_7(\operatorname{PR}_3)_2$, we find evidence that they can all be formulated as $Re(H_2)H_5(PR_3)_2$. Furthermore, we believe that the electrochemical properties of such polyhydrides can, in certain instances, provide a quick and easy means of pointing to the presence of the $\eta^2 - H_2$ ligand.

In an earlier report⁵ we described the cyclic voltammetric (CV) properties of the complexes $\text{ReH}_5(\text{PPh}_3)_2\text{L}$ (L = PPh₃, PEt₂Ph, pyridine, piperidine, cyclohexylamine). Solutions of these complexes in 0.2 M TBAH-CH2Cl2 were found to exhibit an oxidation in the potential range +0.10-0.40 V vs SCE, with a coupled reduction wave $(E_{\rm p,a} - E_{\rm p,c} \simeq 70-140 \text{ mV}, i_{\rm p,c}/i_{\rm p,a} < 1)$. Bulk electrolysis at a potential of +0.60 V led to decomposition of the complexes. A more recent reinvestigation of such systems in our laboratory has focused on the electrochemical properties of the complexes $\text{ReH}_5(\text{PPh}_3)_3$, $\text{ReH}_5(\text{PMe}_2\text{Ph})_3$, $\text{ReH}_5(\text{PMePh}_2)_3$, and $\text{ReH}_5(\text{PCyPh}_2)_3$ (Cy = cyclohexyl).⁶⁻⁹ A single-scan CV of

- (1) See, for example: (a) Kubas, G. J.; Ryan, R. R.; Unkefer, C. J. J. Am. Chem. Soc. 1987, 107, 8113. (b) Crabtree, R. H.; Lavin, M.; Bennevoit, L. J. Am. Chem. Soc. 1986, 108, 4032. (c) Crabtree, R. H.; Hamilton, D. G. J. Am. Chem. Soc. 1986, 108, 3124. (d) Morris, R. H.; Sawyer, D. G. J. Am. Chem. Soc. 1960, 100, 5124. (a) Informs, N. H., Garger,
 J. F.; Shiralian, M.; Zubkowski, J. D. J. Am. Chem. Soc. 1985, 107, 5581. (e) Bautista, M.; Earl, K. A.; Morris, R. H.; Sella, A. J. Am. Chem. Soc. 1987, 109, 3780. (f) Clark, H. C.; Hampden Smith, M. J. J. Am. Chem. Soc. 1986, 108, 3829. (g) Bianchini, C.; Mealli, C.; Peruzzini, M.; Zanobini, F. J. Am. Chem. Soc. 1987, 109, 5548.
- (2)Crabtree, R. H.; Hamilton, D. G. Adv. Organomet. Chem. 1988, 28, 299 and references cited therein.
- Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J. J. Am. Chem. Soc. 1984, 106, 451. (3)
- Conner, K. A.; Walton, R. A. In Comprehensive Coordination Chem-istry; Pergamon: Oxford, England, 1987; Chapter 43, pp 125-213. Allison, J. D.; Cameron, C. J.; Wild, R. E.; Walton, R. A. J. Organomet. (4)
- (5) Chem. 1981, 218, C62.

Figure 1. Single-scan cyclic voltammograms in 0.1 M TBAH-CH₂Cl₂: (a) $\text{ReH}_{5}(\text{PPh}_{3})_{3}$ with a switching potential of +1.6 V; (b) $\text{ReH}_{5}(\text{PPh}_{3})_{3}$ with a switching potential of +0.6 V; (c) ReH₃(PPh₂)₃ following bulk electrolysis at +0.5 V. All measurements are at a scan rate of 200 mV s⁻¹.

Figure 2. Single-scan cyclic voltammograms in 0.1 M TBAH-CH₂Cl₂: (a) ReH₇(PPh₃)₂; (b) PPh₃. All measurements are at a scan rate of 200 mV s⁻¹.

 $\text{ReH}_5(\text{PPh}_3)_3$ in 0.1 M TBAH-CH₂Cl₂ is shown in Figure 1a^{10,11} and reveals that there are two oxidation processes ($E_{p,a} = +0.35$ and +1.0 V vs Ag/AgCl), the first of which possesses a coupled reduction wave at $E_{p,c} = +0.22$ V vs Ag/AgCl. The process at

- (8) Chem. Soc. 1984, 106, 8128.
- (10) Cyclic voltammetric measurements were made by using the instrumentation described elsewhere.¹¹ Potentials are referenced to the Ag/AgCl electrode, and measurements were conducted with the use of a Pt-bead electrode on 0.1 M tetra-n-butylammonium hexafluorophosphate (TBAH)-dichloromethane solutions of the complexes. Under and the state of the s

These complexes were prepared by the usual methods $^{7-9}$ and their $^1\mathrm{H}$ (6) NMR and IR spectral properties found to be in agreement with liter-ature data.⁷⁻⁹ A sample of $ReH_5(PCyPh_2)_3$, which has not been re-A sample of $ReH_5(PCyPh_2)_3$, which has not been reactive data. A sample of Refs(FCyFig), which has not been reported before, was obtained as a product in the reaction of ReOCl₃-(PCyPh₂)₂ with NaBH₄ in ethanol: yield 17%; IR (Nujol) 2388 (vw), 2294 (m-w), 2226 (w) cm⁻¹; ¹H NMR (CD₂Cl₂) δ -6.44 [quartet, J(P-H) = 18 Hz, Re-H]; ³¹P[¹H] NMR (CD₂Cl₂) δ +35.8 (singlet). Chatt, J; Coffey, R. S. J. Chem. Soc. A 1969, 1963. Teller, R. G.; Carroll, W. E.; Bau, R. Inorg. Chim. Acta 1984, 87, 121. Skupinski, W. A.; Huffman, J. C.; Bruno, J. W.; Caulton, K. G. J. Am.

 $E_{\rm p,a}$ = +1.0 V is attributed to a chemical product wave. With a switching potential of +0.6 V the $i_{\rm p,c}/i_{\rm p,a}$ ratio for the couple at $E_{1/2}$ = +0.29 V becomes unity at $v = 200 \text{ mV s}^{-1}$. This is shown by trace b in Figure 1. Similar behavior is exhibited by ReH₅-(PMe₂Ph)₃, ReH₅(PMePh₂)₃, and ReH₅(PCyPh₂)₃ with $E_{1/2}$ = +0.27, +0.33, and +0.16 V vs Ag/AgCl, respectively, and product waves at +0.83, +1.02, and ~+0.95 V, respectively.

When a solution of $\text{ReH}_5(\text{PPh}_3)_3$ in 0.1 M TBAH-CH₂Cl₂ is bulk-electrolyzed at +0.5 V, the pentahydride complex decomposes as evidenced by the CV of the electrolyzed solution that results (Figure 1c). This is the same as the CV of a solution of an authentic sample of the complex [$\text{ReH}_6(\text{PPh}_3)_3$]BF₄¹² in 0.1 M TBAH-CH₂Cl₂, a result which signifies that the [$\text{ReH}_6(\text{PPh}_3)_3$]⁺ cation is formed as the only identifiable electrochemically active species. It is formed, presumably, through the release of protons in the decomposition of unstable [$\text{ReH}_5(\text{PPh}_3)_3$]⁺ and their subsequent reaction with unoxidized $\text{ReH}_5(\text{PPh}_3)_3$. A similar reaction ensues upon chemically oxidizing $\text{ReH}_5(\text{PPh}_3)_3$ with [$(\eta^5$ -C₅H₅)₂Fe]PF₆ in THF.

One formulation of $[\text{ReH}_6(\text{PPh}_3)_3]^+$ is as a classical 18-electron hydride complex of Re(VII). However, the presence of the electrochemical oxidation at $E_{p,a} = +1.64$ V (presumably metal-based) argues against this and suggests the alternative η^2 -H₂ formulation $[\text{Re}(\text{H}_2)\text{H}_4(\text{PPh}_3)_3]^+$ (i.e. it is a derivative of Re(V)). This being the case, we might expect to see an accessible metal-based oxidation in the CV of the complex ReH₇(PPh₃)₂, if as suggested by Crabtree,² it is in reality Re(H₂)H₅(PPh₃)₂. This is indeed found to be the case, as shown by CV measurements on solutions of ReH₇(PPh₃)₂ in 0.1 M TBAH-CH₂Cl₂ (Figure 2a). A single-scan CV shows an oxidation at $E_{p,a} = +1.15$ V vs Ag/AgCl when v = 200 mV s⁻¹. Note the hysteresis effect on the return scan due to the decomposition of the complex; this effect is probably caused by the evolution of H₂(g). For the heptahydride complexes $\text{ReH}_7(\text{PMePh}_2)_2$, $\text{ReH}_7(\text{PMe}_2\text{Ph}_2)_2$, $\text{ReH}_7(\text{PCy}_3)_2$, and $\text{ReH}_7(\text{dppe})$ (dppe = $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{Ph}_2)^{13.14}$ similar well-defined oxidation processes are seen at $E_{\text{p,a}} = +1.25$, +1.27, +1.10, and +1.37 V, respectively. For none of these complexes did we see evidence for a coupled reduction wave within the sweep rate range 100–900 mV s⁻¹. In the case of $\text{ReH}_7(\text{PPh}_3)_2$ this oxidation process is quite different from the oxidation of the free PPh₃ ligand at $E_{\text{p,c}} = +1.35$ V vs Ag/AgCl (Figure 2b). When $\text{ReH}_7(\text{PPh}_3)_2$ is admixed with an approximately equimolar amount of PPh₃, the resulting CV shows the process at $E_{\text{p,a}} =$ +1.15 V, together with a product wave at $E_{\text{p,a}} \simeq +1.7$ V due, we believe, to the formation of $[\text{ReH}_6(\text{PPh}_3)_3]^+$. We suggest that the generation of $[\text{Re}(\text{H}_2)\text{H}_5(\text{PPh}_3)_2]^+$ is followed by the loss of H₂ from the kinetically labile 17-electron cation and the capture of PPh₃ by $[\text{ReH}_5(\text{PPh}_3)_2]^+$ to give $[\text{ReH}_5(\text{PPh}_3)_3]^+$, which in turn abstracts H[•] from one of several hydrogen sources in the solution to form stable $[\text{ReH}_6(\text{PPh}_3)_3]^+$.

The preceding results not only point to the formulation of other members of the series $\text{ReH}_7(\text{PR}_3)_2$ (besides $\text{ReH}_7(\text{PPh}_3)_2$)² as the Re(V) complexes $\text{Re}(\text{H}_2)\text{H}_5(\text{PR}_3)_2$ but also suggest that the electrochemical behavior of "high"-oxidation-state transition-metal polyhydrides can be used as a guide to the presence of the η^2 -H₂ ligand. Further work along these lines is in progress.

Acknowledgment. Support from the National Science Foundation (Grant No. CHE85-06702) is gratefully acknowledged. We thank Malee Leeaphon for her help in conducting some of these experiments.

Department of Chemistry Purdue University West Lafayette, Indiana 47907

Michael T. Costello Richard A. Walton*

Received March 24, 1988

⁽¹²⁾ This complex is prepared by reacting ReH₃(PPh₃)₃ with HBF₄·Et₂O in CH₂Cl₂; see: Moehring, G. A.; Walton, R. A. J. Chem. Soc., Dalton, Trans. 1987, 715.

⁽¹³⁾ The heptahydride complexes were prepared by literature methods $^{7-9,14}$

<sup>and identified on the basis of their ¹H NMR and IR spectral properties.
(14) Kelle Zeiher, E. H.; DeWit, D. G.; Caulton, K. G. J. Am. Chem. Soc.</sup> 1984, 106, 7006.