Contribution from the Department of Chemistry, Purdue University, West Lafayette, Indiana **47907-3699,** Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A&M University, College Station, Texas **77843,** and Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan **49007**

Molybdenum Complexes of 1,2-Bis(diphenylphosphino) benzene. Mononuclear Molybdenum(I1) Species Formed by Facile Metal-Metal Bond Cleavage of the

 $(Mo⁴Mo)⁴⁺ Core$

Mohammed Bakir,^{1a} F. Albert Cotton,^{1b} Michele M. Cudahy,^{1c} Charles Q. Simpson,^{1b} Thomas J. Smith,*,^{1c} Elizabeth Fiore Vogel,^{1c} and Richard A. Walton*,^{1a}

Received March *3,* 1988

The quadruply bonded dimolybdenum(II) complexes $K_4M_0_2Cl_8$, $(NH_4)_5M_0_2Cl_9$. H₂O, and $(NH_4)_4M_0_2Br_8$ react with 1,2-C₆H₄- $(PPh₂)₂$ (dppbe) in methanol at room temperature to afford α -Mo₂X₄(dppbe)₂ complexes (X = Cl, Br), which do not isomerize to the β isomers. Under more forcing reaction conditions (refluxing 1-propanol), these same reactions give mononuclear trans-MoX₂(dppbe)₂ in good yield (ca. 50%) together with some [MoOX(dppbe)₂]X.nH₂O. An alternative synthetic strategy for the preparation of α -Mo₂X₄(dppbe)₂ involves the reaction of Mo₂(O₂CCH₃)₄ with dppbe and Me₃SiX in THF. The compound MoCl₂(dppbe)₂ forms crystals in space group $P2_1/n$, with the following unit cell parameters: $a = 10.884$ (2) \AA , $b = 12.753$ (2) **A**, $c = 18.141$ (4) **A**, $\beta = 91.43$ (2)^o, $\bar{V} = 2517$ (2) **A**³, and $Z = 2$. The centrosymmetric trans molecule has Mo-CI = 2.410 (1) **A,** Mo-P = **2.481** (l), **2.511** (I) **A,** and P-Mo-P(intra-ring) = **78.68 (4)'.**

Introduction

Bidentate phosphine ligands have been most useful in studying the reactivities of complexes that contain triple and quadruple metal-metal bonds because of the variety of structural types that result from binding these molecules.^{$2,3$} In particular, investigations involving tetrahalodimolybdenum (II) complexes and the Ph_2P - $(CH₂)_nPPh₂$ ligands have shown that the occurrence of chelating and bridging phosphine (L-L) isomers of $Mo₂X₄(L-L)$, is quite common and that they can be selectively prepared under appropriate conditions.⁴⁻⁶ Moreover, we and others have observed that generally the chelating (α) form will isomerize into the thermodynamically more favorable bridging (β) complex but the reverse reaction is uncommon.^{6,7} Although rhenium-rhenium bond Although rhenium-rhenium bond cleavage or lowering of the bond order is frequently encountered with use of these ligands, such outcomes are rare for molybdenum unless strong π -acid ligands are employed in addition.⁸ We now report the results of a study of the reactions between 1,2-bis-**(dipheny1phosphino)benzene** (dppbe) and the octahalodimolybdate(I1) ions in alcohol solvents in which the formation of mononuclear complexes becomes the preferred reaction course under certain conditions. Strategies for preparing α -Mo₂X₄- $(dppbe)_2$ $(X = Cl, Br)$ have also been devised.

Experimental Section

Starting Materials. The following compounds were prepared by standard procedures: $\text{Mo}_2(\text{O}_2\text{CCH}_3)_4, ^9 \text{K}_4\text{Mo}_2\text{Cl}_8, ^{108} \text{ (NH}_4)_5\text{Mo}_2\text{Cl}_9\cdot$ H_2O ,^{10b} and (NH_4) ₄ Mo_2Br_8 .¹¹ The ligand 1,2-bis(diphenylphosphino)benzene was purchased from Strem Chemical Co. and used as received. Solvents used in the preparation of the complexes were of commercial grade and were thoroughly deoxygenated prior to use.

Reaction Procedures. All reactions were performed under a nitrogen

- Cotton, F. **A,;** Walton, R. A. Multiple Bonds Between Metal Atoms; (2) Wiley: New **York, 1982; pp 50-54, 11 1-1 14.** Cotton, F. A.; Walton, R. A. Strucr. Bonding (Berlin) **1985,** *62,* **1.**
-
- Best, *S.* A.; Smith, T. J.; Walton, R. A. Inorg. Chem. **1978,** *17,* **99.** (5)
- Cole, N. F.; Derringer, D. R.; Fiore, E. A.; Knoechel, D. J.; Schmitt, R. K.; Smith, T. J. Inorg. *Chem.* **1985,** *24,* **1978.** Agaskar, **P.** A,; Cotton, F. **A,;** Derringer, D. R.; Powell, G. L.; Root,
- D. R.; Smith, T. J. Inorg. Chem. **1985,** *24,* **2786.** (a) Fraser, **I.** F.; McVitie, A,; Peacock, R. D. *J.* Chem. *Res.* Synop. (7)
- **1984,420.** (b) Agaskar, P. A.; Cotton, F. A. Inorg. Chem. **1986,** *25,*
- **15.** Walton, **R. A.** Reactivity *of* Metal-Metal Bonds; ACS **1972,** *13,* **87.** (8) Chisholm, M. **H.,** Ed.; American Chemical Society: Washington, DC, **1981; p 207.**
- Brignole, A. B.; Cotton, F. A. Inorg. Synth. **1972,** *13,* **87.**
- (10) (a) Brencic, **J.** V.; Cotton, F. A. Inorg. Chem. *1970,9,* **351.** (b) Brencic, **J.** V.; Cotton, F. **A.** Inorg. Chem. **1970,** *9,* **346.**
- Brencic, **J. V.;** Leban, I.; Segedin, P. *Z.* Anorg. Allg. Chem. **1976,** *427,* **85.**

atmosphere with use of standard vacuum line techniques. Chromatographic separations were performed on a silica gel column **(60-200** mesh, Davidson Grade 62)

A. Reactions of K4M02Cls with dppbe. (i) In Methanol. A mixture of K,Mo,CIS **(0.05** g, **0.08** mmol), dppbe **(0.08** g, **0.18** mmol), and methanol **(IO** mL) was stirred at room temperature for **22** h. A green solid was filtered off, washed with water, hexanes, and diethyl ether, and dried; yield 0.045 g (50%). This product was identified as α -Mo₂Cl₄-(dppbe)2 **(see** part D(i)) from its electrochemical properties. When the reaction was carried out in refluxing methanol for 3 days, a mixture of α -Mo₂Cl₄(dppbe)₂ and trans-MoCl₂(dppbe)₂ was isolated.

(ii) In 1-Propanol. A mixture of $K_4Mo_2Cl_8$ (0.10 g, 0.16 mmol), dppbe **(0.16 g, 0.36** mmol), and I-propanol (30 mL) was refluxed for **3** days. The resulting reaction mixture was cooled to room temperature, and the orange solid was filtered off, washed with I-propanol, methanol, hexanes, and diethyl ether, and dried; yield 0.08 g (48%). Anal. Calcd for C60H50C12MoOP4 (Le. MoCI2(dppbe),-H20): C, **66.86;** H, **4.68.** Found: C, **66.05;** H, **5.16.**

The purple filtrate was evaporated to dryness and the residue recrystallized from $CH_2Cl_2/diethyl$ ether. The product was filtered off, washed with water, hexanes, and diethyl ether, and dried. The product was tentatively identified as $[MoOCl(dpbe)_2]Cl·3H₂O$ from its electrochemical properties and IR spectrum (Nujol mull, $\nu(Mo=O)$ at 943 cm^{-1}).

B. Reactions of (NH_4) ₅Mo₂Cl₉·H₂O with dppbe. (i) In Methanol. A suspension of (NH_4) ₅Mo₂Cl₉·H₂O (0.06 g, 0.10 mmol) in methanol (10 mL) was treated with an excess of dppbe **(0.1 1** g, **0.25** mmol) and the mixture brought to reflux. Within **5** min the blue-green suspension had turned dark green. After a reflux of **3** h, the reaction mixture was cooled to room temperature and filtered. The resulting green solid α -Mo₂Cl₄- $(dppbe)_2$ (see section $D(i)$) was washed with methanol, water, ethanol, toluene, and diethyl ether and finally dried under vacuum; yield **59%.**

(u) In 1-Propanol. A reaction similar to that in part B(i) was carried out in 1-propanol **(15** mL) with reflux for **24** h. The resulting reaction mixture was cooled to room temperature, and the orange-brown solid was filtered off, washed with 1-propanol, methanol, water, methanol, hexanes, and diethyl ether, and dried; yield 31%. Anal. Calcd for $C_{60}H_{50}Cl_2$ -MoOP, (Le. M~Cl,(dppbe)~.H,O): C, **66.86;** H, **4.68;** CI, **6.59.** Found: C, 66.52 ; H, 4.86 ; Cl, 7.02 . The presence of $H₂O$ was confirmed by IR spectroscopy (Nujol mull, v(0H) at **3300** cm-').

The purple filtrate was worked up the same as in part A(ii) and purified by chromatography (silica gel column with methanol as eluent) and the purple product recrystallized from $CH_2Cl_2/diethyl$ ether; yield **0.04 g** (22%). Anal. Calcd for $C_{60}H_{54}Cl_2MoO_4P_4$ (i.e. [MoOCI-(dppbe)z]C1*3H20): C, **63.78;** H, **4.82.** Found: C, **63.30;** H, **4.27.** The presence of water was confirmed by IR spectroscopy (Nujol mull), which showed $\nu(OH)$ at \sim 3350 (br) cm⁻¹.

This salt undergoes anion exchange with KPF_6 in methanol to form $[MoOCl(dppbe)_2]PF_6$ as described in the following procedure. A mixture of [M0OCl(dppbe)~]C1.3H~O **(0.05 g, 0.04** mmol), KPF6 **(0.05** g, **0.27** mmol), and methanol **(10** mL) was stirred at room temperature for **2** h. A light purple solid was filtered off, washed with methanol, hexanes, and diethyl ether, and dried; yield 0.04 g (76%). The presence of PF_6^- was confirmed by **IR** spectroscopy (Nujol mull, v(PF) at **841** cm-I).

^{(1) (}a) Purdue University. (b) Texas A&M University. (c) Kalamazoo College.

C. Reaction of (NH4)4M02Br8 with dpphe. (i) In Methanol. With the use of a procedure similar to that described in part A(i), green α -
M₀-**Br** (dnnhe), was isolated in 51% vield. Anal. Calcd for $Mo₂Br₄(dppbe)₂ was isolated in 51% yield. Anal. Calcd for$ $C_{60}H_{48}Br_4Mo_2P_4$: C, 51.31; H, 3.44. Found: C, 50.16; H, 3.70.

(ii) In 1-Propanol. With the **use** of a procedure similar to that described in part A(ii), yellow-orange trans-MoBr₂(dppbe)₂ was isolated in 43% yield. Anal. Calcd for $C_{60}H_{48}Br_2MoP_4$: C, 62.72; H, 4.21; Br, 13.91. Found: C, 61.10; H, 3.96; Br, 13.21.

From the filtrate of this reaction purple $[MoOBr(dpbe)_2]Br·2H₂O$ was isolated. Anal. Calcd for $C_{60}H_{52}Br_2MoO_3P_4$: C, 60.02; H, 4.37. Found: C, 60.20; H, 4.36. The presence of water was confirmed by IR spectroscopy (Nujol mull, $\nu(OH)$ at 3650 and 3380 cm⁻¹).

D. Reaction of $Mo_{2}(O_{2}CCH_{3})_{4}$ with dppbe in the Presence of $Me_{3}SIX$. (i) Preparation of α -Mo₂Cl₄(dppbe)₂. A mixture of Mo₂(O₂CCH₃)₄ (0.10 g, 0.23 mmol), dppbe (0.22 g, 0.49 mmol), THF (10 mL), and Me₃SiCl (0.40 mL) was stirred at room temperature for 20 h. A green solid was filtered off, washed with THF, methanol, CH_2Cl_2 , hexanes, and diethyl ether and dried; yield 0.18 g (63%). Anal. Calcd for $C_{60}H_{48}Cl_4Mo_2P_4$: C, 58.75; H, 3.94. Found: C, 58.48; H, 4.32.

(ii) Preparation of α -Mo₂Br₄(dppbe)₂. A mixture of Mo₂(O₂CCH₃)₄ (0.10 g, 0.23 mmol), dppbe (0.23 g, 0.52 mmol), THF (10 mL), and Me₃SiBr (0.5 mL) was stirred at room temperature for 1 h. A green solid was filtered off, washed with THF, CH₂Cl₂, hexanes, and diethyl ether, and dried; yield 0.23 g (70%). This product was further purified by refluxing a quantity of it in CH_2Cl_2 for 12 h. The suspension was cooled to room temperature and filtered, and the insoluble material was washed and diethyl ether and dried. Anal. Calcd for $C_{60}H_{48}Br_4Mo_2P_4$: C, 51.31; H, 3.44. Found: C, 49.32; H, 3.62. The slightly low carbon microanalysis reflects the difficulty of purifying such an insoluble compound.

(iii) Preparation of trans-MoCl₂(dppbe)₂. A mixture of $Mo_{2}(O_{2}CC-$ H3)4 (0.20 **g,** 0.47 mmol) and dppbe (0.417 g, 0.935 mmol) was placed in a 100-mL round-bottom flask, which was evacuated and filled with argon. Freshly distilled THF (50 mL) was added and the resulting mixture brought to reflux and then cooled. Trimethylsilyl chloride (0.237 mL, 1.87 mmol) was then added and the mixture again brought to reflux and maintained at reflux for 4 h. The mixture was allowed to cool slowly to room temperature, and the solvent was removed under vacuum to leave a crude product, which was washed with two 30-mL portions of diethyl ether; yield 0.45 g (90%). From this crude product single crystals suitable for X-ray crystallography were obtained.

E. Oxidation of $\text{MoX}_2(\text{dppbe})_2$ with NOPF₆. (i) Preparation of $[MoCl₂(dppbe)₂]PF₆$. A mixture of *trans*-MoCl₂(dppbe)₂·H₂O (0.06 g, 0.06 mmol), NOPF₆ (0.01 g, 0.07 mmol), and CH₃CN (10 mL) was stirred at room temperature for 1 h. The solvent was then evaporated to dryness. The product was extracted into CH_2Cl_2 and filtered into a flask that contained diethyl ether. The insoluble blue product that formed was filtered off, washed with hexanes and diethyl ether, and dried; yield 0.06 g (80%). Anal. Calcd for $C_{60}H_{48}Cl_2F_6M_0P_5$: C, 59.82; H, 4.02. Found: C, 59.45; H, 4.34. The presence of PF_6^- was confirmed by IR spectroscopy (Nujol mull, $\nu(PF)$ at 841 cm⁻¹).

(ii) Preparation of $[MoBr_2(dppbe)_2]PF_6$. With the use of a procedure similar to that described in part $E(i)$, the blue complex $[MoBr_2-$ (dppbe)₂]PF₆ was isolated in 63% yield. Anal. Calcd for C₆₀H₅₂Br₂-
F₆MoO₂P₅ (i.e. [MoBr₂(dppbe)₂]PF₆·2H₂O): C, 54.38; H, 3.95. Found: C, 54.41; H, 3.58. The presence of water was confirmed by IR spectroscopy.

F. Reaction of α -Mo₂Cl₄(dppbe)₂ with dppbe. A mixture of α - $Mo_2Cl_4(dppbe)_2$ (0.03 g, 0.03 mmol), dppbe (0.04 g, 0.09 mmol), and THF (10 mL) was refluxed for 4 days. The reaction mixture was allowed to cool to room temperature, and the orange solid was filtered off, washed with THF, hexanes, and diethyl ether, and dried; yield 0.02 g (35%). The product was identifed as trans- $M_0Cl_2(dppbe)_2$ on the basis of its electrochemical properties.

When the complexes α -Mo₂Cl₄(dppbe)₂ and α -Mo₂Br₄(dppbe)₂ were heated in refluxing 1-propanol for periods of 3 and 4 days, respectively, orange $MoCl₂(dppbe)₂$ and $MoBr₂(dppbe)₂$ were isolated in low yields (ca. 20%). These products were identified by IR and electronic absorption spectroscopy. The identities of the dppbe-deficient molybdenum species that are formed in these thermolysis reactions are unknown.

Physical Measurements. IR spectra were recorded as Nujol mulls supported by KBr disks (4000-400 cm⁻¹) and polyethylene disks (400-200 cm-I) with the **use** of Perkin-Elmer 1800 FTIR and Pye-Unicam SP3-300 spectrophotometers. Electronic absorption spectra were recorded as CH_2Cl_2 solutions or Nujol mulls on Perkin-Elmer 330 and HP 8451A spectrophotometers. Electrochemical measurements were made on CH_2Cl_2 solutions of the complexes that contained tetra-n-butylammonium hexafluorophosphate (TBAH) as supporting electrolyte. The $E_{\text{p,a}}, E_{\text{p,c}},$ and $E_{1/2}$ (=($E_{\text{p,a}} + E_{\text{p,c}}$)/2) values were referenced to the silver/silver chloride (Ag/AgCl) electrode at room temperature and are uncorrected for junction potentials. Under **our** experimental conditions

Table I. Crystal Data for MoCl,(dppbe),

 ${}^a R = \sum ||F_0| - |F_c||/\sum |F_0|$. ${}^b R_w = [\sum w(|F_0| - |F_c|)^2/\sum w|F_0|^2]^{1/2}$; w = $1/\sigma^2(\overline{|F_o|})$. Cuality of fit = $\sum w(|F_o| - |F_c|)^2/(N_{\text{observns}})$ N_{params})]^{1/2}.

 $E_{1/2}$ = +0.47 V vs Ag/AgCl for the Cp₂Fe⁺/Cp₂Fe couple. Voltammetric experiments were performed with the use of a Bioanalytical Systems Inc. Model CV-1A instrument in conjunction with a Hewlett-Packard Model 7035 x-y recorder. ³¹P[¹H] NMR spectra were obtained on a Varian XL-200 spectrometer. An internal deuterium lock and an external reference, 85% H₃PO₄, were used. Magnetic measurements were carried out with the **use** of a Cahn/Ventron Faraday magnetic susceptibility balance and $HgCo(NCS)_4$ as the calibrant. Diamagnetic corrections were madc by using Pascal's constants.

Elemental microanalyses were performed by Dr. H. D. Lee of the Purdue University Microanalytical Laboratory.

Crystallographic Study. A suitable crystal of trans-MoCl₂(dppbe)₂ was mounted with epoxy cement in a glass capillary and placed on the diffractometer. Table I records the usual crystallographic and procedural data. The structure was solved from a Patterson function followed by an alternating series of Fourier maps and least-squares refinements. It converged smoothly with all atoms anisotropic. All crystallographic procedures were routine for this laboratory and have been previously $described.¹²$

Results and Discussion

In the ensuing discussion the following ligand abbreviations will be used: dppbe = $1,2-C_6H_4(PPh_2)_2$; dppe = $Ph_2PCH_2CH_2PPh_2$; $\text{dppe} = \text{cis-Ph}_2\text{PCH} = \text{CHPPh}_2$; dmpe = Me₂PCH₂CH₂PMe₂; diars = 1,2- $C_6H_4(AsMe₂)_2$.

A. Preparation and Characterization of α -Mo₂X₄(dppbe)₂ (X $= Cl$, **Br**). The green complexes α -Mo₂X₄(dppbe), were prepared for the first time here from the reactions of dppbe either with the octahalodimolybdate(II) anions $[Mo₂X₈]⁴⁻$ (as present in $K₄$ - Mo_2Cl_8 , (NH_4) ₅ Mo_2Cl_9 -H₂O, and (NH_4) ₄ Mo_2Br_8) in methanol or with $Mo_{2}(O_{2}CCH_{3})_{4}$ in the presence of $Me_{3}SiX$ in THF under mild reaction conditions. The identification of these species as α -Mo₂X₄(dppbe)₂ was based upon a comparison of their electronic absorption spectra (Table I) with those reported for other complexes of the type α -Mo₂X₄(L-L)₂ (L-L = dppe, dppee).^{4-6,13} Most importantly, both exhibit a broad, moderately intense band,

⁽¹²⁾ (a) Bino, **A.;** Cotton, F. **A.;** Fanwick, P. E. *Inorg. Chem.* **1979,18,** 3558. (b) Cotton, F. **A.;** Frenz, B. **A.;** Deganello, *G.;* Shaver, **A.** *J.* Organornet. *Chem.* **1973, 50, 227. (c)** Computing was done on a **VAX-11/780** computer with programs from VAXSDP.

⁽¹³⁾ Bakir, M.; Walton, R. **A,,** unpublished results.

Table 11. Positional Parameters and Their Estimated Standard Deviations for $MoCl₂(dppbe)₂^a$

atom	x	у	\overline{z}	B, \mathbf{A}^2
Mo(1)	0.000	0.000	0.000	2.19(1)
Cl(1)	0.1993(1)	0.0153(1)	0.05997(8)	3.62(3)
P(1)	0.1136(1)	0.0665(1)	$-0.10930(7)$	2.49(3)
P(2)	$-0.0142(1)$	0.1924(1)	0.01810(7)	2.64(3)
C(1)	0.1152(5)	0.2542(4)	$-0.0290(3)$	2.7(1)
C(2)	0.1648(5)	0.2022(4)	$-0.0893(3)$	2.5(1)
C(3)	0.2521(5)	0.2514(5)	$-0.1322(3)$	3.5(1)
C(4)	0.2948(5)	0.3517(5)	$-0.1139(3)$	3.7(1)
C(5)	0.2513(6)	0.4023(5)	$-0.0516(4)$	4.1 (1)
C(6)	0.1603(6)	0.3538(5)	$-0.0093(3)$	3.8(1)
C(7)	0.2599(5)	0.0018(4)	$-0.1276(3)$	2.7(1)
C(8)	0.2623(5)	$-0.0845(4)$	$-0.1752(3)$	3.4(1)
C(9)	0.3755(6)	$-0.1357(5)$	$-0.1862(4)$	4.5(1)
C(10)	0.4827(6)	$-0.1045(5)$	$-0.1485(4)$	4.6(1)
C(11)	0.4777(5)	$-0.0214(5)$	$-0.0996(3)$	4.1(1)
C(12)	0.3666(5)	0.0319(5)	$-0.0884(3)$	3.4(1)
C(13)	0.0430(5)	0.0844(4)	$-0.2020(3)$	2.7(1)
C(14)	0.1133(6)	0.0828(4)	$-0.2658(3)$	3.5(1)
C(15)	0.0571(6)	0.1021(5)	$-0.3343(3)$	4.2(1)
C(16)	$-0.0669(7)$	0.1235(5)	$-0.3406(4)$	4.8(2)
C(17)	$-0.1366(6)$	0.1269(6)	$-0.2770(4)$	5.2(2)
C(18)	$-0.0811(5)$	0.1078(5)	$-0.2076(3)$	4.0 (1)
C(19)	$-0.0068(5)$	0.2529(4)	0.1097(3)	3.3(1)
C(20)	0.0495(6)	0.1968(5)	0.1668(3)	4.4(1)
C(21)	0.0592(7)	0.2405(7)	0.2375(4)	6.2(2)
C(22)	0.0165(7)	0.3389(8)	0.2515(4)	7.3(2)
C(23)	$-0.0413(7)$	0.3979(6)	0.1947(4)	7.0(2)
C(24)	$-0.0540(6)$	0.3544(5)	0.1226(4)	5.1(2)
C(25)	$-0.1462(5)$	0.2605(4)	$-0.0239(3)$	3.0(1)
C(26)	$-0.1340(6)$	0.3389(5)	$-0.0781(4)$	4.5 (1)
C(27)	$-0.2387(7)$	0.3906(6)	$-0.1056(4)$	5.3(2)
C(28)	$-0.3517(6)$	0.3650(5)	$-0.0792(4)$	5.3(2)
C(29)	$-0.3681(6)$	0.2852(6)	$-0.0274(4)$	4.9(2)
C(30)	$-0.2622(5)$	0.2339(5)	0.0002(3)	4.1(1)

"All atoms were refined anisotropically. They are given in the form of the equivalent isotropic displacement parameter defined as $\frac{4}{3}[a^2\beta_{11}]$ $+ b^2 \beta_{22} + c^2 \beta_{33} + ab(\cos \gamma)\beta_{12} + ac(\cos \beta)\beta_{13} + bc(\cos \alpha)\beta_{23}].$

at 680 nm for the chloride and at 694 nm for the bromide in the solid state. The positions, shapes, and relative intensities of these absorptions are entirely consistent with their arising from metal-centered $\delta \rightarrow \delta^*$ transitions. The shift to lower energy when chloride is replaced by bromide is also characteristic of this transition. Thus, the occurrence of this band reveals that the quadruple bond has been retained in these molecules.

The low-frequency IR spectrum of α -Mo₂Cl₄(dppbe), shows bands at 312 **s,** 293 **s,** and 279 sh cm-' that can be assigned to $\nu(Mo-Cl)$; for α -Mo₂Cl₄(dppe), and α -Mo₂Cl₄(dppee), comparable modes are at 307 s and \sim 290 s cm⁻¹, whereas β -Mo₂C₁₄-(dppe)₂ and β -Mo₂Cl₄(dppee)₂ have ν (Mo-Cl) at 350-340 s and 295-290 **s** cm-1.4313

As solution of α -Mo₂Cl₄(dppbe)₂ in 0.1 M TBAH/CH₂Cl₂ exhibits electrochemical properties, as measured by the cyclic voltammetric (CV) technique, in which there is an irreversible oxidation at $E_{p,a} = +0.45$ V and an irreversible reduction at $E_{p,c}$ $= -1.23$ V vs $\stackrel{\frown}{\text{Ag}}$ /AgCl. These processes did not show coupled waves with the use of sweep rates **up** to **700** mV/s. The oxidation at **+0.45 V** is typical of the behavior of mixed halide-phosphine

complexes of $(Mo⁴-Mo)⁴⁺.¹⁴$ The related bromide complex was not very soluble in CH_2Cl_2 , and these solutions gave a poor electrochemical response.

Attempts to isomerize α -Mo₂X₄(dppbe)₂ to β -Mo₂X₄(dppbe)₂ in solution were unsuccessful. The green α isomers were recovered unchanged when refluxed in THF or CH_2Cl_2 for extended periods of time. The mononuclear trans-MoCl₂(dppbe)₂ was isolated when α -Mo₂Cl₄(dppbe)₂ was refluxed in THF in the presence of excess dppbe or when $Mo_{2}(O_{2}CCH_{3})_{4}$ was refluxed with dppbe and Me3SiC1 in THF for **4** h.

Figure 1. Molecular structure of *trans*-MoCl₂(dppbe)₂, with the atomlabeling scheme defined. The carbon atoms of the phenyl rings are represented by arbitrarily small circles for clarity, while the other atoms are represented by their thermal displacement ellipsoids at the 30% probability level.

For the $Mo₂X₄(dppbe)₂ compounds, therefore, we conclude that$ they possess the molecular structure **1** with chelating phosphines and an eclipsed rotational geometry. This particular orientation of the organic ligands, i.e., related approximately by a symmetry inversion operation, presumably minimizes steric repulsions and has been observed through structure determinations of several α -M₂Cl₄(LL)₂ complexes.

B. Preparation and Characterization of trans-MoX $_2$ **(dppbe)** $_2$ **and** $[MoX_2(dppbe)_2]PF_6$ **.** The reactions of the ligand dppbe with $K_4\overline{M_0}_2Cl_8$ or with $(NH_4)_5M_2Cl_9·H_2O$ in refluxing 1-propanol produce the orange complex trans-MoCl₂(dppbe)₂.H₂O in isolated yields of up to \sim 50%. The bromo analogue trans-MoBr₂(dppbe)₂ was obtained in a similar fashion from the reaction of $(NH_4)_4$. $Mo₂Br₈$ with dppbe in refluxing 1-propanol (43% yield). These reactions resemble that reported previously whereby *trans-* $MoBr₂(dppe)₂$ was formed in low yield ($~1\%$ of $(NH_4)_4Mo_2Br_8$ with $Ph_2PCH_2CH_2PPh_2$ for extended periods in ethanol.⁶ We have also found that trans-MoCl₂(dppbe)₂ can be obtained in high yield by reacting $Mo_{2}(O_{2}CCH_{3})_{4}$ with dppbe and Me,SiCl for long periods (ca. **4** h) in refluxing tetrahydrofuran.

These complexes can be assigned a trans geometry, largely on the basis *of* a comparison of their properties with those of the previously characterized trans-MoX₂(dppe)₂ (X = Cl, Br)^{6,15-17}

⁽¹⁴⁾ Zietlow, T. C.; Klendworth, D. D.; Nimry, T.; Salmon, D. J.; Walton,

R. **A.** *Inorg. Chem.* **1981, 20, 941 (15)** Nardelli, M.; Pelizzi, G.; Predieri, G. Guzz. *Chim. Ital.* **1980,120, 375.**

Table **IV.** Spectroscgpic and Electrochemical Properties of Molybdenum(I1) and Molybdenum(II1) Complexes of **1,2-Bis(diphenylphosphino)** benzene

complex	voltammetric half-wave potentials, ^a V	electronic abs spectra, nm ^b
α -Mo ₂ Cl ₄ (dppbe) ₂	$E_{\text{p,a}}$ + 0.45, $E_{\text{p,c}}$ –1.23	680 s, \sim 500 sh, 420 m, \sim 350 sh (A)
		680 (2340), 513 sh, 480 sh, 415 (940), 337 (6700) (B)
α -Mo ₂ Br ₄ (dppbe) ₂		695 s, \sim 550 sh, \sim 500 br, sh, \sim 400 sh, \sim 385 sh (A)
		680 s, 520 sh, 490 sh, 410 sh, 339 vs ^{<i>i</i>} (B)
trans- $MoCl2(dppbe)2·H2O$	$E_{\text{p,a}}$ +1.45, ^d $E_{1/2}(\text{ox})$ -0.10, ^e $E_{\text{p,c}}$ ~-1.8 ^f	\sim 480 br, sh, \sim 380 br, sh, 348 s' (B)
$trans-MoBr2(dppbe)2$	$E_{\text{p,a}}$ +1.48, ^d $E_{1/2}(\text{ox})$ -0.09, ^e $E_{\text{p,c}}$ ~-1.9 ^f	346 $s^{i,j}$ (B)
$trans.[MoCl2(dppbe)2]PF6$	$E_{\text{p,a}}$ +1.45, ^d $E_{1/2}$ (red) -0.10, ^e $E_{\text{p,c}}$ ~-1.8 ^f	583 (3800), 480 (600), 376 (4300) (B)
trans- $[MoBr2(dppbe)2]PF6·2H2O$	$E_{\rm p,a}$ +1.45, ^d $E_{1/2}$ (red) -0.09, ^e $E_{\rm p,c}$ ~-1.9 ^f	602 (5200), 384 (2020) (B)
$[MoOCI(dppbe)2]Cl·3H2O$	$E_{\text{p,a}} \sim +1.8$, $E_{\text{p,a}} +1.15$, $E_{1/2}$ (red) -1.17	546 (120), 315 (\sim 4400) (B)
$[MoOBr(dppbe)2]Br·2H2O$	$E_{\text{p,a}} \sim$ +1.9, $E_{\text{p,a}}$ +1.05, ^{<i>n</i>} $E_{\text{p,a}}$ +0.80, <i>^h</i> $E_{1/2}$ (red) -1.10	562 (90), 322 (4500) (B)

⁴ Vs. Ag/AgCl; recorded on solutions in 0.1 M TBAH/CH₂Cl₂ using a Pt-bead electrode. Data were obtained at $v = 200$ mV/s. For the reversible
couples the ΔE_p values (= $E_{p,a} - E_{p,c}$) are in the range 90–130 mV. ^b Couples the ΔE_p values ($-\Sigma_{p,q} - \Sigma_{p,r}$) are in the range 50–150 film. A_{max} values with molar extinction coefficients in parentheses. Spectra were
recorded as Nujol mulls (A) or solutions in CH₂Cl₂ (B). ^cLow so molar extinction coefficients. *I* Pronounced low-energy tail that did not reveal any resolvable structure.

and trans-MoCl₂(dmpe)₂.¹⁸ For MoCl₂(dppbe)₂ the trans geometry has been conclusively demonstrated by X-ray crystallography. The molecular structure is shown in Figure 1, and the positional parameters and principal molecular dimensions are collected in Tables I1 and 111. The molecule has a rigorous center of inversion.

Although centrosymmetric, the structure shows a number of significant deviations from the highest symmetry (D_{4h}) that might be envisioned for a *trans*- MX_2L_4 type of molecule. Some of these have to do with the requirements of the chelating ligands. Thus, the P-Mo-P angles are of two distinct types: intraring angles are 78.68 (1)^o while those between phosphorus atoms in different rings are 101.32 (4)°. The MoP₄ set of atoms is, as a whole, completely planar, however. **On** the other hand, the five-mem- $21(dppbe)_2$]PF₆. *h*Electrochemical
xtinction coefficients. *l*Pronounces
*Ins-MoCl*₂(dmpe)₂.¹⁸ For Moto
has been conclusively demonstriffer molecular structure is sh
nal parameters and principal r
d in Tables II an

bered MoPCCP rings are far from planar. There is a torsion angle of 9.0 (6)^o around the C(1)–C(2) bond; thus, the relative rigidity of the benzene ring is still not sufficient to enforce complete planarity of the P-C-C-P portion of the ring, although the deviations are not large. The C atoms lie ± 0.05 Å above and below the mean plane, while the P atoms lie ± 0.02 Å out of the mean plane. The major deviation from planarity within the chelate rings is the dihedral angle of 24.8 (2)^o between the plane of the $MoP₂$ group and the mean plane of the $P(1)-C(2)-C(1)-P(2)$ group.

The nonplanarity of the chelate rings causes steric forces to act upon the chlorine atoms in such a way that the linear C1- Mo-CI unit is considerably tilted from the perpendicular to the $MoP₄ plane. Thus, the atom Cl(1) learns toward P(1) and P(2),$ making angles of 82.7 and 85.3 \degree to these Mo-P bonds, and away from $P(1)'$ and $P(2)'$, making angles of 97.3 and 94.7° to these Mo-P bonds.

The low-frequency IR spectrum (Nujol mull) of trans- $MoCl₂(dppbe)₂·H₂O$ shows a single $\nu(MoCl)$ mode at 314 cm⁻¹ while for the bromide the $\nu(MoBr)$ mode is probably at 247 cm⁻¹. The ratio of these frequencies is 0.78, which is an acceptable figure.I9 Similar results have been reported for trans-MoClz- $(d$ ppee)₂,¹³ trans-MoCl₂(diars)₂,²⁰ and isoelectronic trans- $[ReLU_2(dppee)_2]^{+.21}$ The magnetic properties of the *trans*- $MoX₂(dppbe)₂ compounds are consistent with their mononuclear$ structures,^{16,18} with the assumption that the d-orbital splitting pattern gives an energy order of $d_{xz} \approx d_{yz} > d_{xy}$, leading to a $d_{xy}^2d_{xz}d_{yz}$ electron configuration. The value of μ_{eff} for MoCl₂- $(dppbe)₂·H₂O$ is 2.9 \pm 0.1 μ_B and for MoBr₂(dppbe)₂ is 3.0 \pm 0.1 μ_B , which are in accord with two unpaired electrons. We have previously reported a value of 2.8 μ_B for trans-MoBr₂(dppe)_{2.}⁶

The electronic absorption spectra of these complexes (Table IV) exhibit intense LMCT bands (probably $X(\pi) \rightarrow Mo$) at \sim 350 nm $(X = Cl)$ and \sim 370 nm $(X = Br)$, as seen previously in the spectrum of trans-MoBr₂(dppe)₂ (λ_{max} 360 nm in CH₂Cl₂). Note that a similar shift has been reported by Deutsch and co-workers²² in the spectra of $[TCl_2(dppe)_2]^+$ (480 nm, $\epsilon = 2500$) and $[TcBr_2(dppe_2]^+$ (504 nm, $\epsilon = 4200$), where halogen-to-metal charge transfer was proposed. Related features are seen in the spectra of trans- $[ReX_2(dppee)_2]^+$ $(X = \text{Cl}, \text{Br})$.²¹

Like other complexes of the type MoX_2 (bidentate phosphine)₂, the related dppbe species display well-defined redox chemistry. The CV's of solutions of these complexes in 0.1 M TBAH/CH₂Cl₂ display processes associated with the $Mo(IV)/Mo(III)$, Mo- $(III)/Mo(II)$, and $Mo(II)/Mo(I)$ couples (Table IV). These electrochemical properties are similar to those described for *trans*-MoX₂(dppe)₂¹⁷ and *trans*-Mo(SR)₂(dppe)₂²³ In the case of trans- $\text{MoCl}_2(\text{dppe})_2$, the $\text{Mo(III)}/\text{Mo(II)}$ and $\text{Mo(II)}/\text{Mo(I)}$ couples are at $E_{1/2} = -0.05$ V and $E_{1/2} = -1.68$ V vs SCE, respectively, for solutions in 0.2 M $(n-Bu_4N)BF_4/THF$. Interestingly, for *trans*-MoCl₂(dmpe)₂ this potential is much lower $(E_{1/2} = -0.51$ V vs SCE in CH₃CN),¹⁸ reflecting the ease of oxidation to trans- $[MoCl₂(dmpe)₂]⁺$.

The accessibility of the $Mo(III)/Mo(II)$ couple in these complexes has been demonstrated by chemical oxidation to the blue salts trans- $[MoX₂(dppbe)₂]PF₆$ with NOPF₆ as the oxidizing agent in CH₃CN. These ionic species display cyclic voltammetric behavior (in 0.1 M TBAH/CH₂Cl₂ solutions) similar to that of their neutral cogeners trans-MoX₂(dppbe)₂, with the exception that the process at \sim 0.1 V now corresponds to a reduction. These complexes behave as 1:1 electrolytes in acetonitrile solutions $(\Lambda_M =$ 120 Ω^{-1} cm² mol⁻¹ for X = Cl and 142 Ω^{-1} cm² mol⁻¹ for X = Br). The electronic absorption spectra of these complexes in CH_2Cl_2 (Table IV) show λ_{max} at 588 nm (X = Cl) and 602 nm (X = Br), features that are characteristic of such mononuclear Mo(II1) species. These complexes are also ESR-active., **.A** sharp signal in the X-band spectrum at $g = 1.93$ was observed for a frozen CH_2Cl_2 solution of $[MoCl_2(dppbe)_2]PF_6$. This behavior is similar to that observed for $[MoCl₂(dppe)₂]PF₆¹³$ and the ESR-active thiolato derivatives *trans*- $[Mo(SR)₂(dppe)₂]+²³$

C. Preparation and Characterization **of** [MoOX(dppbe),]X. Workup of the purple filtrates from the reactions of dppbe with the octahalodimolybdate(II) anions $[Mo₂X₈]⁴$ (X = Cl, Br) in refluxing 1 -propanol affords the purple species [MoOX- $(dppbe)_2[X\cdot nH_2O$. These oxo complexes are air-stable and behave as 1:1 electrolytes in CH₃CN solutions (Λ_M = 123 Ω^{-1} cm² mol⁻¹ for $X = Br$). The IR spectra (Nujol mull) show a strong band at 943 cm⁻¹ (X = Cl) and 942 cm⁻¹ (X = Br) assigned to the v(Mo=O) mode. This assignment was based upon a comparison of the IR spectra of these complexes with the spectrum reported

⁽¹⁶⁾ Anker, **M.** W.; Chatt, J.; Leigh, G. J.; Wedd, **A.** G. *J. Chem. SOC., Dalton Trans.* **1915,** 2639.

⁽¹⁷⁾ Al-Salih, T. I.; Pickett, C. J. *J. Chem. Soc., Dalton Trans.* **1985,** 1255. (18) Fong, L. K.; Fox, J. R.; Foxman, B. M.; Cooper, N. J. *Inorg. Chem.* **1986, 25,** 1880.

⁽¹⁹⁾ Clark, R. J. H.; Williams, C. S. *Inorg. Chem.* 1965, 4, 350.
(20) Lewis, J.; Nyholm, R. A.; Rodley, G. A. J. *Chem. Soc.* 1965, 1483.
(21) Bakir, M.; Fanwick, P. E.; Walton, R. A. *Polyhedron* 1987, 6, 907.

⁽²²⁾ Libson, K.; Burnett, B. L.; Deutsch, E. L. *Inorg. Chem.* **1983,** *22,* 1695. (23) Povey, D. C.; Richards, R. L.; Shortman, C. *Polyhedron* **1986.5,** 369.

for the structurally characterized complex trans-[MoOCl-(dppe)₂]Cl (ν (Mo=O) at 942 cm⁻¹).²⁴

CV's of solutions of these complexes in 0.1 M TBAH/CH₂Cl₂ revealed the presence of a reversible one-electron reduction at $E_{1/2}$ $= -1.17$ V (X = Cl) and $E_{1/2} = -1.10$ V (X = Br) and an irreversible oxidation at $E_{p,a} = +1.8 \text{ V}$ (X = Cl) and $+1.9 \text{ V}$ (X $=$ Br) vs Ag/AgCl. Irreversible processes associated with the oxidation of the outer-sphere halide ion are also seen (Table IV).

The $31P{1H}$ NMR spectra of these complexes recorded in CD₂Cl₂ exhibit a singlet at δ +48.8 (X = Cl) and δ +47.6 (X = Br). These chemical shifts are characteristic of five-membered rings formed by chelating phosphines.²⁵ The ¹H NMR spectra of $[M_0OX(dppbe)_2]X_1H_2O$ (X = Cl, Br) recorded in CD₂Cl₂ showed the expected phenyl ring resonances between δ +8.8 and *+6.5.* These spectra are almost identical with one another.

The low-frequency IR spectrum (Nujol mull) for [MoOCl- $(dppbe)_2$]Cl-3H₂O exhibits a strong absorption at 293 cm⁻¹, which is probably due to the ν (MoCl) mode. A similar band (at \sim 290 cm⁻¹) is seen the spectrum of the analogous PF_6^- salt.

D. Consideration **of** Reactivities. In view of previous observations concerning the occurrence of chelating (α) and bridging (β) isomers for $Mo_{2}X_{4}(LL)$, compounds, the lack of evidence for the bridging form when $LL =$ dppbe was unexpected. The recovery of the α -Mo₂X₄(dppbe)₂ species from methanol after brief reactions suggests that these isomers result from a kinetically favored pathway, behavior typical of other α -Mo₂X₄(LL)₂ complexes formed in this solvent.^{4,5} In addition, the conversion of these products to the mononuclear compounds trans-MoX₂(dppbe)₂ further substantiates kinetic reaction control for dinuclear complex formation. Isolation of trans-MoX₂(dppbe)₂ as the major products from both $[Mo_2X_8]^4$ and α -Mo₂X₄(dppbe)₂ reactants in the higher boiling 1-propanol solvent indicates greater thermodynamic stability for these mononuclear complexes. Thus, the principal question regarding the observed reactivities involves the ready breakage of the metal-metal quadruple bond in preference to α $\rightarrow \beta$ isomerization. Interestingly, while the formation of *trans*- $MoBr₂(dppe)₂$ does accompany the rearrangement reaction of α -Mo₂Br₄(dppe)₂ to its β isomer, this mononuclear species is formed as a *minor* side product only.⁶

We are unable to say at present whether the bridging (β) dppbe isomer cannot be generated because of the inability of this ligand to bridge two metal centers in this type of complex or whether this form is accessible through an alternative synthetic route. However, we note that in the case of the analogous dirhenium(I1) systems only the α isomers have been isolated, the β forms having defied our attempts to prepare them.¹³

The isolation and characterization of the mononuclear oxo species $[MoOX(dppbe)_2]X_nH₂O$ from the reactions of octahalodimolybdate(I1) anions with dppbe in refluxing l-propanol marks the first time that oxo-molybdenum(IV) species have been isolated from reactions of this type. Whether the oxygen is derived from 1-propanol or from adventitious water has not been established.

Acknowledgment. Support from the National Science Foundation (Grant Nos. CHE85-06702 to R.A.W. and CHE85-14588 to F.A.C.), the Research Corp., and the donors of the Petroleum Research Fund, administered by the American Chemical Society (to T.J.S.), is gratefully acknowledged. We also thank the National Science Foundation for a Research in Undergraduate Institutions Award (to Kalamazoo College) for the acquisition of the Perkin-Elmer 330 spectrophotometer. M.M.C. is grateful for the award of a Kurt D. Kaufman Scholarship.

Supplementary Material Available: Tables of bond distances, bond angles, and thermal displacement parameters **(4** pages); a list of observed and calculated structure factors (20 pages). Ordering information is given on any current masthead page.

Contribution from the Anorganisch Chemisch Laboratorium, J. H. van't Hoff Instituut, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institut fur Anorganische Chemie der Universitat Munchen, Meiserstrasse 1, 8000 Munich **2,** FRG

Bonding Mode Variations in Palladium(II) and Platinum(II) Azaphosphole Complexes: Identification by 'H, 31P, and 195Pt NMR of N- and P-Coordination, Pt-Cl Addition to P, and Dimerization

Johanna G. Kraaijkamp,^{1a} David M. Grove,^{1a,b} Gerard van Koten,*^{,1a,b} and Alfred Schmidpeter^{1c}

Received January 13, 1988

The 1,2,3-diazaphosphole $\overline{P} = C(H)C(Me) = NNMe$ (L_A) and the 1,2,4,3-triazaphospholes $\overline{P} = NC(Ph) = NNMe$ (L_B) and $P=NN(Me)C(Me)$ =N (L_C) react with the halo-bridged dimers $[MX_2(PEt_3)]_2$ (M = Pt^{II}, Pd^{II}) to afford a variety of products with $MX_2(PEt_3)L$ (L = di- or triazaphosphole) stoichiometry. With $[PGC_1(PEt_3)]_2$ these azaphospholes produce trans- $[PdCl_2(PEt_3)L]$ with σ -N-bonded L. From $[PtBr_2(PEt_3)]_2$ is obtained $[PtBr_2(PEt_3)L]$ as a mixture of the cis σ -P coordination isomer with lesser amounts of the trans σ -N isomer. These azaphospholes all afford different products with $[PLC]_2(PEt_3)]_2$; the diazaphosphole L_A produces mononuclear cis- $[PLC_1(PEt_3)L_A]$ (σ -P bound) whereas the triazaphospholes L_B and L_C produce dinuclear species that have symmetric and asymmetric structures, respectively. The new air-sensitive complexes have been principally characterized by a combination **of 'H,** 31P, and 195Pt NMR solution spectroscopy.

Introduction

The azaphospholes² are heteratomic aromatic ring systems which contain a two-coordinate trivalent phosphorus atom that is doubly bonded to carbon or nitrogen. Normally, i.e. in the acyclic nonconjugated case, such bonds readily undergo addition reactions, but in azaphospholes these bonds are stabilized by the cyclic delocalization. Complex formation **can** modify the tendency of an azaphosphole to give additions^{$2-4$} to the various bonds depending on the coordination mode present.

The 1,2,3-diazaphosphole L_A and the 1,2,4,3-triazaphospholes L_B and L_C (see Figure 1) have a variety of potential ligating sites available, Of which the lone pair of phosphorus is common to all

- (2) Schmidpeter, A.; Karaghiosoff, **K.** *Nachr. Chem., Tech. Lab.* **1985,** *33,* **793-799.**
- **(3)** Schmidpeter, **A.;** Tautz, H,; von Seyerl, J.; Huttner, G. *Angew. Chem.* **1981,** *93,* **420;** *Angew. Chem., Int. Ed. Engl.* **1981,** *20,* **408.**
- **(4)** Kraaijkamp, J. G.; Ernsting, J.-M.; Grove, D. M.; van Koten, G.; Schmidpeter, **A.,** manuscript in preparation.

⁽²⁴⁾ Bishop, **M.** W.; Chatt, J.; Dilworth, J. R.; Hursthouse, **M.** B.; Motevalli, M. *J. Chem.* **Soc.,** *Dalron Trans.* **1979, 1603.**

⁽²⁵⁾ Garrou, P. E. *Chem. Rev.* **1981,** *81,* **229.**

^{*}To whom correspondence should be addressed.

⁽¹⁾ (a) University of Amsterdam. (b) Present address: Laboratory of Organic Chemistry, Department of Metal-Mediated Synthesis, Univ-ersity of Utrecht, Padualaan **8, 3584** CH Utrecht, The Netherlands. (c) Universität München.