Comparative Study of Tris(trifluoromethyl)phosphine Oxide, Tris(nonafluorobutyl)phosphine Oxide, and Fluorobis(nonafluorobutyl)phosphine Oxide with Ammonia and Amines

Tariq Mahmood, Jian-Ming Bao, Robert L. Kirchmeier, and Jean'ne M. Shreeve*

Received February 9, 1988

Under identical reaction conditions, the behavior of $(R_f)_3 PO(R_f = CF_3, C_4F_9)$ or $(R_f)_2 P(O)F(R_f = C_4F_9)$ with ammonia or amines is different, e.g., $(CF_3)_3PO$ with NH₃, CH₃NH₂, or $(CH_3)_2NH$ gives $(CF_3)_3P(NH_2)_2$, $(CF_3)_2P(O)(NHCH_3)$ or $(CF_3)P(O)(N-H_2)_2$ HCH_{3}_{2} (excess $(CH_{3})_{2}NH$), or $(CF_{3})_{2}P(O)N(CH_{3})_{2}$, respectively. However, with the same reactants, $(C_{4}F_{9})_{3}PO$ forms $(C_4F_9)_2P(O)NH^-NH_4^+$ or $C_4F_9P(O)(NH_2)_2$ (excess NH₃), $C_4F_9P(O)(NHCH_3)_2$ (excess CH₃NH₂), or $(C_4F_9)_3P(OH)[N(CH_3)_2]$, $(C_4F_9)_3P[N(CH_3)_2]_2$, and $(C_4F_9)_2P(O)N(CH_3)_2$. Similar products are found with $(C_4F_9)_2P(O)F$ except with $(CH_3)_2NH$ where $(C_4F_9)PF(O)[N(CH_3)_2]$ is the major product. In addition, new routes to $(C_4F_9)_3PO$, $(C_4F_9)_2PF_3$, and $(C_4F_9)_2P(O)F$ are described. These products and conditions are compared with those for analogous hydrolysis reactions.

Introduction

Although Burg earlier demonstrated that tris(trifluoromethyl)phosphine oxide gave (dimethylamino)bis(trifluoromethyl)phosphine oxide with dimethylamine,¹ little has been reported since that time on the interactions of bis- or tris(perfluoroalkyl)phosphine oxides with ammonia or amines. This may have been in part to the lack of easy availability of the appropriate precursors. We were particularly interested in the hydrolytic stability of these highly fluorinated materials that contain phosphorus-nitrogen-hydrogen bonds. Unfortunately no evidence for stability in aqueous solutions was found.

However, we did find quite striking differences in behavior between the title compounds and ammonia or organic bases in some cases. As a result of our study, we have synthesized a variety of tris-, bis-, and mono(perfluoroalkyl)phosphorus(V) derivatives.

Results and Discussion

Iodobis(trifluoromethyl)phosphine, (CF₃)₂PI, and tris(trifluoromethyl)phosphine were prepared by the Emeléus method² of causing white phosphorus to react with CF₃I

$$P_4 + 6CF_3I \xrightarrow{220 \circ C} (CF_3)_3P + (CF_3)_2PI + CF_3PI_2 + PI_3$$

The relative amounts of the respective phosphines that form are a function of the stoichiometry used-a large excess of phosphorus enhances the yields of the iodophosphines, while larger amounts of CF_3I improve the yield of $(CF_3)_3P$. Starting with 61 mmol of CF_3I and 120.9 mmol of phosphorus, the yields of $(CF_3)_3P$, (CF₃)₂ PI, and CF₃PI₂ were 7, 10, and 8 mmol, respectively. The iodobis(trifluoromethyl)phosphine was converted to the chloro analogue³ by using dry AgCl. Antimony (III) chloride has been used to chlorinate $C_2F_5PI_2$ to $C_2F_5PCl_2$ but we find a high yield of $(CF_3)_2PCl$ (~100%) when AgCl is the chlorinating reagent with $(CF_3)_2$ PI. The oxidation of $(CF_3)_2$ PCl occurs easily with NO₂ at -20 °C to give $(CF_3)_2P(O)Cl$ (80%) as well as [(C- $F_3)_2P(O)$]₂O and NOCl.^{1,2,5,6} Tris(trifluoromethyl)phosphine oxide^{7,8} can be obtained similarly from $(CF_3)_3P$ with NO₂

$$(CF_3)_3P + NO_2 \xrightarrow{25 \circ C} (CF_3)_3PO + NO \sim 100\%$$

- (1) Burg, A. B. Acc. Chem. Res. 1969, 2, 353.
- (2) Mahmood, T.; Shreeve, J. M. Inorg. Chem. 1986, 25, 3128 and references therein.
- (3) Cowley, A. H.; Furtsch, T. A.; Diedorf, D. S. J. Chem. Soc., Chem. Commun. 1970, 525.
- (4) Maslennickov, I. G.; Laurent'ev, A. N.; Khovanskaya, N. V.; Lebedev, V. B.; Sochilin, E. G. Zh. Obshch. Khim. 1979, 49, 1498.
- Griffith, J. E. Spectrochim. Acta, Part A 1968, 24A, 303. Dobbie, R. C. J. Chem. Soc. A 1971, 2894.
- (6)
- (7) Emeléus, H. J.; Haszeldine, R. N.; Paul, R. C. J. Chem. Soc. 1955, 563.

Burg¹ observed that the reaction between tris(trifluoromethyl)phosphine oxide and dimethylamine results in carbon-phosphorus bond breaking with concomitant formation of fluoroform. This is, of course, also the case when such compounds are hydrolyzed with aqueous base or even on heating of aqueous solutions.

$$(CF_3)_3PO + (CH_3)_2NH \xrightarrow{-78 \circ C} (CF_3)_2P(O)N(CH_3)_2 + CF_3H$$

The product results from addition of (CH₃)₂NH across the phosphorus-oxygen double bond followed by loss of CF₃H. The analogous reaction does not occur between (CF₃)₃P and dimethylamine,⁹ but interestingly $(CF_3)_3P$ can be caused to react slowly with ammonia.

$$(CF_3)_3P + NH_3 \xrightarrow{-70 \circ C} (CF_3)_2PNH_2 + CF_3H$$

We commenced our work by examining the reactions of ammonia with several phosphine oxides, and the products varied widely; e.g., for equivalent amounts of reactants the yield of the diaminophosphorane is

$$(CF_3)_3PO + NH_3 \xrightarrow[+25]{-78 \text{ to}} (CF_3)_3P(NH_2)_2 + CF_3H + (CF_3)_2P(O)OH$$

80% based on the ammonia available. Unreacted $(CF_3)_3PO$ was recovered. The new phosphorane is a slightly volatile liquid that is stable at 25 °C. With the exception of (alkylamino)phosphoranes¹⁰ and $PF_3(NH_2)_2$, which results from the gas-phase reaction of PF5 with NH3,11

$$PF_5 + NH_3 \rightarrow PF_3(NH_2)_2 + NH_4PF_6 + solids$$

no other pentasubstituted diaminophosphoranes have been reported.

With $(C_4F_9)_3PO$, two quite different products were obtained with ammonia depending on the relative amounts of reactants utilized. In both cases the products were not analogous to those obtained with $(CF_3)_3PO$. For equimolar amounts of reactants, $(C_4F_9)_3PO$ and NH₃, $(C_4F_9)_2P(O)NH^-NH_4^+$ was the major product with equal amounts of of C_4F_9H and unreacted $(C_4F_9)_3PO$ being isolated. When the ratio of reactants was $(C_4F_9)_3PO:NH_3$ = 1:2, all of the reactants were consumed at 25 °C and 1 part of C_4F_9H was recovered. The white solid, $C_4F_9P(O)(NH_2)_2$, remaining was formed in 80% yield based on the ammonia available. The same product is obtained with $(C_4H_9)_2P(O)F$ and ammonia, although in lower yield. The products obtained are

- (9) Harris, G. S. J. Chem. Soc. 1958, 512.

0020-1669/88/1327-2913\$01.50/0 © 1988 American Chemical Society

Burg, A. B.; Sarkis, A. J. J. Am. Chem. Soc. 1965, 87, 238. (8)

 ⁽¹⁰⁾ Schmutzler, R. Angew. Chem., Int. Ed. Engl. 1964, 3, 753.
 (11) Lustig, M.; Roesky, H. W. Inorg. Chem. 1970, 9, 1289. Marsden, C. J.; Hedberg, K.; Shreeve, J. M.; Gupta, K. D. Inorg. Chem. 1984, 23, 3659.

analogous to those obtained from the reactions of $(C_4F_9)_3PO$ and $(C_4F_9)_2P(O)F$ with water with the exception that because water is less basic than ammonia, slightly higher temperatures are required.²

$$(C_4F_9)_3PO + H_2O \xrightarrow{44 \ ^{\circ}C} (C_4F_9)_2P(O)OH + C_4F_9H$$
$$(C_4F_9)_2P(O)OH + H_2O \xrightarrow{150 \ ^{\circ}C} C_4F_9P(O)(OH)_2 + C_4F_9H$$

Raising the temperature to 195 °C causes complete hydrolysis of the phosphonic acid to form H_3PO_4 and C_4F_9H . In order to synthesize $(C_4F_9)_3PO$ and $(C_4F_9)_2P(O)F$, advantage was taken of the fluorinating action of sulfur tetrafluoride on bis(nonafluorobutyl)phosphinic acid to form the new bis(nonafluorobutyl)trifluorophosphorane.^{12,13} Depending upon the ratio of reactants used, sulfur tetrafluoride also was useful as a reagent to dehydrate the acid starting material.

$$(C_4F_9)_2P(O)OH \cdot H_2O + SF_4 \rightarrow (C_4F_9)_2P(O)OH + SOF_2 + 2HF$$

$$2[(C_4F_9)_2P(O)OH \cdot H_2O] + excess SF_4 \rightarrow 2(C_4F_9)_2PF_3 + 6SOF_2 + 6HF_{85\%}$$

The hydrogen fluoride was readily removed by allowing the volatile product mixture to contact anhydrous CsF briefly. Conversion of $(C_4F_9)_2PF_3$ to $(C_4F_9)_2P(O)F$ occurred in the reaction with $(Me_3Si)_2O$.

$$(C_4F_9)_2PF_3 + (Me_3Si)_2O \xrightarrow{-Me_3SiF} (C_4F_9)_2P(O)F + (C_4F_9)_2PF_2(OSiMe_3) \xrightarrow{75 \circ C} (C_4F_9)_2P(O)F + Me_3SiF$$

overall yield $\sim 90\%$

Since $(C_4F_9)_2P(O)F$ is more volatile than $(C_4F_9)_2PF_2(OSiMe_3)$, it can be removed easily from the reaction mixture. Reaction with $(Me_3Si)_2O$ also allows the conversion of $(C_4F_9)_3PF_2$ to $(C_4F_9)_3PO$ in 88% yield. It is not possible to hydrolyze $(C_4F_9)_3PF_2$ to give $(C_4F_9)_3PO$ since invariably carbon-phosphorus bond breaking occurs to form the corresponding acid.²

$$(C_4F_9)_3PF_2 + 2H_2O \rightarrow (C_4F_9)_2P(O)OH + C_4F_9H + 2HF$$

Hydrolysis reactions of $(R_f)_n PF_{5-n}$ (n = 1, 2) also only result in acid formation and not phosphine oxide. It is interesting to note that the behavior of $(Me_3Si)_2O$ varies. While Schmutzler^{14,15} reported ready synthesis of $(C_6H_5)_2P(O)F$, $C_6H_5P(O)F_2$, and $C_2H_3P(O)F_2$ using $(Me_3Si)_2O$ and the appropriate fluorophosphoranes, Cavell¹⁶ has demonstrated that $(Me_3Si)_2O$ with $(CF_3)_3PO$ gives $(CF_3)_3P(OSiMe_3)_2$. The latter when heated rearranged to form $(CF_3)_2P(O)(OSiMe_3)$, identical with the product obtained when $(CF_3)_2P(O)Cl$ is reacted with $(Me_3Si)_2O$. Our yield of $(C_4F_9)_3PO$ was high, and we observed no Arbuzov rearranged product that could have come from subsequent reaction between $(C_4F_9)_3PO$ and $(Me_3Si)_2O$.

Further dissimilarity of the products obtained is demonstrated by the reactions of $(CF_3)_3PO$ and $(C_4F_9)_3PO$ or $(C_4F_9)_2P(O)F$ with $(CH_3)_2NH$. As Burg has shown¹ and we have duplicated, $(CF_3)_2P(O)N(CH_3)_2$ is formed quantitatively when $(CF_3)_3PO$ is reacted with $(CH_3)_2NH$. However, in the nonafluorobutyl case, we were able to isolate and characterize the intermediate acid that slowly loses C_4F_9H to form $(C_4F_9)_2P(O)[N(CH_3)_2]$, the analogue of which was the only product isolated with $(CF_3)_3PO$. It is interesting to note that after a reaction time of 14 h the products as identified by ³¹P{¹H} NMR were (relative amounts based on peak areas) $(C_4F_9)_2P(O)[N(CH_3)_2]$ (A, 63%) $(C_4F_9)_3P[N(C H_3)_2]_2$ (B, 15%), $(C_4r^9)_3P(OH)[N(CH_3)_2]$ (C, 12%), and $(C_4-$

- (14) Schmutzler, R. Inorg. Chem. 1964, 3, 410.
- (15) Schmutzler, R. J. Chem. Soc. 1964, 4551.
- (16) Cavell, R. G.; Leary, R. D. J. Chem. Soc., Chem. Commun. 1970, 1520.

 $F_{9}_{2}P(OH)[N(CH_{3})_{2}]_{2}$ (D, 10%). After a reaction time of 42 h, the relative amounts of A, B, C, and D were reduced to 38, 9.6, 8.1, and 11.1% with the additional compounds $C_{4}F_{9}P(O)$ - $[N(CH_{3})_{2}]_{2}$ (E, 16.5%) and $C_{4}F_{9}P(OH)[N(CH_{3})_{2}]_{3}$ (F, 16.2%). An appropriate additional amount of $C_{4}F_{9}H$ was observed. The formation of these products may occur as follows:

It is surprising that the P-F bond in $(C_4F_9)_2P(O)F$ is stable toward attack by $(CH_3)_2NH$ but succumbs to NH_3 , CH_3NH_2 , and H_2O . $(C_4F_9)_2P(O)F + (CH_3)_2NH \rightarrow$

 $(C_4F_9)P(O)F[N(CH_3)_2] + C_4F_9H$

However, with CH_3NH_2 the products obtained are analogous to those from $(CF_3)_3PO$. No intermediates were isolated.

$$(CF_3)_3PO + CH_3NH_2 \rightarrow (CF_3)_2P(O)(NHCH_3) + CF_3H$$
$$(CF_3)_3PO + 2CH_3NH_2 \rightarrow CF_3P(O)(NHCH_3)_2 + 2CF_3H$$

and

$$(C_{4}F_{9})_{3}PO$$
or + excess CH_{3}NH_{2} - C_{4}F_{9}P(O)(NHCH_{3})_{2} + C_{4}F_{9}H
$$(C_{4}F_{9})_{2}P(O)F$$

$$C_{4}F_{9}P(O)(NHCH_{3})_{2} + C_{4}F_{9}H$$

$$C_{4}F_{9}P(O)(NHCH_{3})_{2} + C_{4}F_{9}H$$

Experimental Section

Materials. Commercially available reagents were used as received: NH_3 , CH_3NH_2 , and $(CH_3)_2NH$ (Matheson); $(Me_3Si)_2O$ (Aldrich); SF_4 and CF_3I (PCR). Phosphorus (Alfa) was dried under vacuum, and CsF (Baker) was dried and powdered at 150 °C.

General Procedure. A conventional Pyrex glass vacuum line equipped with Heise Bourdon tube and Televac thermocouple gauges was used for manipulation of volatile materials. Trap-to-trap distillation was employed to separate components in volatile mixtures. Reactions between -80 and +25 °C were carried out in 100-mL round-bottomed Pyrex flasks that were equipped with Chem Glass Teflon stopcocks. Fluorination reactions requiring temperatures ≥75 °C were run in 150-mL Hoke stainless-steel reactors that were equipped with Hoke valves. Hydrogen fluoride was removed by condensing product mixtures into a 150-mL Hoke stainless reactor that contained dry CsF and was equipped with a Hoke valve. Infrared spectra were obtained on a Perkin-Elmer 599B or a Perkin-Elmer 1710 FT spectrometer by using a 10-cm cell equipped with KBr windows. ¹⁹F, ³¹P, and ¹H NMR spectra were recorded on a JEOL FX 90Q FT NMR spectrometer with CCl₃F or H₃PO₄ as external reference and CDCl₃ or CFCl₃ as internal reference and solvent. Negative values were assigned to signals upfield from the reference. Mass spectra were recorded with a VG HS7070 mass spectrometer. Elemental analyses were performed by Beller Mikroanalytisches Laboratorium, Göttingen, FRG.

Reaction of Phosphorus with CF₃I. Trifluoromethyl iodide (11.95, 61 mmol) was treated with white phosphorus (15 g, 120.9 mmol) in a 75-mL Hoke stainless-steel reactor for 48 h at 220 °C.⁴ Upon trap-to-trap (t-t-t) distillation, CF₃PI₂ (8 mmol) was retained at -40 °C, (CF₃)₂PI (10 mmol) at -78 °C, and (CF₃)₃P (7 mmol) at -110 °C. ¹⁹F NMR: CF₃PI₂, ϕ -59.30 d (J_{P-CF₃} = 50.3 Hz); (CF₃)₂PI, ϕ -54.15 d (J_{P-CF₃} = 68.36 Hz); (CF₃)₃P, ϕ -49.67 d (J_{P-CF₃} = 83.01 Hz). ³¹P NMR: δ 57.99 a. 0.97 sent. -3.06 dectet, respectively.

q, 0.97 sept, -3.06 dectet, respectively. **Oxidation of (CF₃)₃P with NO₂**.^{10,11} Tris(trifluoromethyl)phosphine (5 mmol, 1.19 g) and NO₂ (4.9 mmol, 0.22 g) were condensed into a 250-mL Pyrex round-bottomed flask at -196 °C. After the mixture was allowed to warm to and remain at 25 °C for 10 h, the (CF₃)₃PO (~5 mmol) was isolated in a trap at -100 °C (t-t-t). ¹⁹F and ³¹P NMR resonances: ϕ -64.35 d (J_{P-CF_3} = 117.2 Hz); δ 4.2 dectet, respectively.

⁽¹²⁾ Smith, W. C. J. Am. Chem. Soc. 1960, 82, 6176.

Boswell, G. A., Jr.; Ripka, W. C.; Scribner, R. M.; Tullock, C. W. Org. React. (N.Y.) 1974, 21, 1.

Reactions of Substituted Phosphine Oxides

Reaction of (CF₃)₃PO with NH₃ To Form (CF₃)₃P(NH₂)₂. Tris(trifluoromethyl)phosphine oxide (5 mmol, 1.27 g) and anhydrous ammonia (5 mmol, 0.085 g) were condensed into a 50-mL Pyrex flask equipped with a Kontes Teflon stopcock at -196 °C. After the mixture was warmed slowly from -78 to +25 °C over 10 h, CF₃H (1 mmol) was found at -120 °C and (CF₃)₃P(NH₂)₂ (2.0 mmol) at -78 °C (t-t-t). Fluoroform was identified by using NMR: ¹⁹F, \phi -78.45 d (J_{CF-H} = 78.13 Hz); ¹H, \delta 6.44 q. NMR spectra for (CF₃)₃P(NH₂)₂: ¹⁹F, \phi -68.07 d, pentet (J_{P-CF₃} = 63.47 Hz; J_{CF₃-H} = 11.96 Hz); ³¹P, \delta -94.4 pentet, dectet (J_{P-NH₂} = 12 Hz); ³¹P i¹H dectet. MS (CI) (*m/e* **(species), %): 254 (M⁺ - NH₂), 1.4; 201 (M⁺-CF₃), 6.9; 151 (C₂HF₃P⁺), 4.5; 131 (CH₃F₃N₂P⁺), 1.1; 100 (CF₃P⁺), 7.2; 69 (CF₃⁺), 100; 63 (H₄N₂P⁺), 2.0. IR: 3530 s, 3430 s (\nu_{NH₇m}), 1595 m (\delta_{NH₄₀₇m}), 1215 s, 1175 s, 1160 w, 1140 w, 1110 s, 1040 s, 998 m, 900 w, 800 w, 749 w, 768 w, 611 w, 589 w, 511 m, 498 m, 388 m cm⁻¹. Anal. Calcd for C₃H₄F₃N₂P: (C, 13.35; H, 1.48; P, 11.48. Found, C, 13.84; H, 1.50; P, 11.05.**

Preparation of $(C_4F_9)_2PF_3$. Sulfur tetrafluoride (40 mmol, 4.32 g) and $(C_4F_9)_2P(O)OH \cdot H_2O$ (10 mmol, 5.20 g) were transferred into a 150-mL stainless-steel Hoke vessel equipped with a Hoke valve.² The mixture was warmed to 25 °C, where an exothermic reaction occurred, after which the reaction mixture was agitated for 2 h. All of the volatile materials were then transferred into a second Hoke vessel that contained dry CsF. After the reaction mixture was found in a trap at -35 °C (85% yield). ¹⁹F NMR: ϕ -53.02 d (PF, $J_{P-F} = 1177$ Hz), -83.86 s (CF₃), -114.6 (CF₂, $J_{P-CF_2} = 131.8$ Hz), -121.8 (CF₂), -128.3 (CF₂). ³¹P NMR: δ -37.32 pentet of quartets. IR: 1352 s, 1251 s, 1222 s, 1149 s, 1037 s, 1015 m, 993 s, 891 s, 796 m, 747 m, 697 m, 660 w, 616 s, 589 m, 530 s cm⁻¹. MS (EI) (m/e (species), %): 507 (M⁺ - F), 0.4; 307 ($C_4F_12P^+$), 53.2; 119 ($C_2F_4^+$), 17.3; 169 ($C_2F_6P^+$), 7.2; 131 ($C_2F_4P^+$), 33.2; 119 ($C_2F_5^+$), 13.1; 100 ($C_2F_4^+$, CF₃P⁺), 9.4; 81 (CF₂P⁺, C₂F₃⁺), 1.9; 69 (CF₃⁺), 100. Anal. Calcd for C₈F₂₁P: C, 18.25; F, 75.85; P, 5.89. Found: C, 18.20; F, 75.4; P, 5.92.

Preparation of $(C_4F_9)_2P(O)F$. In a dry atmosphere, $(C_4F_9)_2PF_3$ (10) mmol, 5.26 g) was transferred into a thick-walled Pyrex tube equipped with a ChemGlass Teflon stopcock. After the vessel was cooled to -196 °C and evacuated, (Me₃Si)₂O (10 mmol, 1.6 g) was condensed into it. The mixture was held at 25 °C for 24 h and separated by t-t-t distillation. The Me₃SiF was found at -78 °C, and $(C_4F_9)_2P(O)F$ (3 mmol) was found at -30 °C. Remaining in the glass vessel was an involatile compound (C₄F₉)₂PF₂(OSiMe₃) that upon heating at 75 °C for 24 h gave 6 mmol each of $(C_4F_9)_2P(O)F$ and Me_3SiF . Spectral data for Me_3SiF : ¹H NMR, δ 2.01 d $(J_{CH_3-F} = 7.32 \text{ Hz})$; ¹⁹F NMR, ϕ -160.5 dectet. ¹⁹F NMR for $(C_4F_9)_2P(O)F$: ϕ -80.53d (PF, $J_{P-F} = 1211 \text{ Hz})$, -83.5 (CF₃) -119.6 d (CF₂, $J_{P-CF_2} = 107.6$ Hz), -122.0 (CF₂), -127.8 (CF₂). ³¹P NMR: δ 16.69 doublet of pentets. IR: 1350 s (ν_{P-O}), 1251 s, 1224 s, 1150 s, 1016 m, 991 m, 909 w, 873 m, 823 w, 796 m, 746 m, 556 w cm⁻¹. MS (CI⁺) (m/e (species), %): 505 (M⁺ + 1), 19.9; 485 (M⁺ - F), 4.5; 285 (C₄F₁₀OP⁺), 1.0; 219 (C₄F₉⁺), 8.1; 169 (C₃F₇⁺), 14.0; 147 $(C_2F_4OP^+)$, 1.8; 119 $(C_2F_5^+)$, 20.4; 100 $(C_2F_4^+)$, 3.3; 69 (CF_3^+) , 100. Anal. Calcd for $C_8F_{19}OP$: C, 19.05; F, 71.62; P, 6.15. Found: C, 18.93; F, 71.3; P, 6.11. ¹⁹F NMR for $(C_4F_9)_2PF_2(OSIMe_3)$: ϕ -34.95 d (PF, $J_{P-F} = 1206 \text{ Hz}$, -83.39 s (CF₃), -117.2 d (CF₂, $J_{P-CF_2} = 122.1 \text{ Hz}$), -121.9 (CF₂), -128.2 (CF₂). ³¹P NMR: δ 53.4 triplet of pentets. MS 563 (C₁₀H₇F₁₉OPSi⁺), 2.2; 547 (EI) (m/e (species), %): (C₉H₃F₁₉OPSi⁺), 0.7; 219 (C₄F₉⁺), 1.5; 169 (C₂F₆P⁺), 8.0; 150 (C₂F₅P⁺), 3.4; 143 (C₂H₆F₂OPSi⁺), 1.3; 131 (C₂F₄P⁺), 71.7; 119 (C₂F₅⁺), 17.2; 113 (F_2OPSi^+) , 3.2; 100 $(C_2F_4^+)$, 31.7; 85 (F_2OP^+) , 4.9; 69 (CF_3^+) , 100. Total yield of $(C_4F_9)_2P(O)F$ was 90%.

Preparation of $(C_4F_9)_3$ **PO.** Into a thick-walled Pyrex glass vessel equipped with a Kontes stopcock was placed $(C_4F_9)_3$ PF₂ (10 mmol, 7.26 g), and then (Me₃Si)₂O (10 mmol, 1.62 g) was added at -196 °C under vacuum. After 48 h at 25 °C, Me₃SiF was distilled away leaving involatile (C₄F₉)₃PO (8.8 mmol). ¹⁹F NMR for (C₄F₉)₃PO: ϕ -83.57 s (CF₃), -113.9 d (CF₂, J_{P-CF₂ = 83 Hz), -120.2 (CF₂), -128.0 (CF₂). ³¹P NMR: δ 22.67 septet. IR: 1349 s (ν_{P-O}), 1311 m, 1235 br, s, 1211 br, s, 1143 br, s, 1009 s, 987 s, 967 m, 947 w, 916 w, 856 br, m, 807 s, 751 m, 739 s, 696 s, 639 w, 609 w, 575 w, 555 w, 489 br, s cm⁻¹. MS (EI) (*m/e* (species), %): 685 (M⁺ - F), 1.0; 485 (C₈F₁₈OP⁺), 1.0; 219 (C₄F₉⁺), 16.0; 200 (C₄F₈⁺), 1.0; 119 (C₂F₅⁺), 16.0; 97 (CF₂OP⁺), 3.0; 69 (CF₃⁺), 100; 47 (OP⁺), 7.0.}

Reaction of (CF_3)_2P(O)Cl with NH₃. Anhydrous ammonia (5 mmol, 0.085 g), triethylamine (5 mmol, 0.50 g), and $(CF_3)_2P(O)Cl^6$ (5 mmol, 1.1 g) were condensed into a 50-mL Pyrex flask at -196 °C. A white solid formed on warming to 25 °C. It was sublimed at 55 °C (1 Torr) to give 1 mmol of $[(CF_3)_2P(O)]_3NH^+Cl^-NEt_3$. ¹H NMR: δ 11.9 s (NH), 2.6 q $(CH_2, J_{CH_2-CH_3} = 7.34 \text{ Hz})$, 1.0 tr (CH_3) . ¹⁹F NMR: ϕ -74.03 d $(J_{CF_3-P} = 112.3 \text{ Hz})$. ³¹P ¹H} NMR: δ -13.82 septet. ³¹P (species), %): 707 (M⁺ + 1), 0.96; 689 (M⁺ + 2 - F), 9.6; 638 (M⁺ +

 $\begin{array}{l} 1-CF_3), 1.12; 506 \ (M^++1-(CF_3)_2PO_2), 4.90; 338 \ (C_4F_9P_2ON_2CH^+), \\ 2.86; \ 272 \ (C_3F_7P_2N_2CH^+), \ 8.96; \ 222 \ (C_2F_5P_2N_2CH^+), \ 4.81; \ 100 \ (CF_3P^+), \ 19.9; \ 86 \ (HPOF_2^+), \ 100; \ 72 \ (C_4H_{10}N^+), \ 7.28; \ 69 \ (CF_3^+), \\ 13.25. \end{array}$

Reaction of $(C_4F_9)_3PO$ **with NH**₃. Ammonia (5 mmol, 0.085 g) and $(C_4F_9)_3P(O)$ (5 mmol, 3.52 g) were condensed into a 100-mL Pyrex flask equipped with a ChemGlass Teflon stopcock at -196 °C. The temperature was raised from -78 to +25 °C over 4 h. Upon t-t-t distillation, C_4F_9H (2.5 mmol) was found at -98 °C, unreacted $(C_4F_9)_3PO$ (2.5 mmol) was found at 0 °C and $(C_4F_9)_2P(O)NH^-NH_4^+$ (40% yield) remained in the reaction vessel. Spectral data for C_4F_9H (2.5 mMR, ϕ -82.0 (CF₃), -128.5 (CF₂), -130.1 (CF₂) -138.1 d (J_{CF_2-H} = 4.88 Hz) ¹H NMR, δ 6.02 tr of tr (CH). Spectral data for $(C_4F_9)_2P(O)NH^-NH_4^+$: ¹H NMR, δ 7.66, 7.09, 6.5 (NH₄⁺), 7.2 d (NH, J_{P-NH} = 9.16 Hz); ¹⁹F NMR, ϕ -81.6 (CF₃), -121.7 d (CF₂P, J_{P-CF_2} = 79.18 Hz), -121.5 (CF₂), -126.5 (CF₂); ³¹P [¹H] NMR, δ 13.7 p. MS (CI) (*m/e* (species), %): 519 (M⁺ + 1), 0.7; 517 (C_8F_{18}P(O)N_2H_3^+), 1.3; 516 (C_8F_{18}P(O)N_4H_3^+), 49.2; 485 (C_8F_{18}OP^+), 0.5; 482 (C_8F_{17}P(O)NH_2^+), 7.1; 433 (C_7F_{15}P(O)NH_3^+), 0.5; 283 (C_4F_9P(O)NH_3^+), 0.5; 282 (C_4F_9P(O)-NH_2^+), 1.4; 181 (C_2F_4PON_2H_6^+), 8.8; 163 (C_2F_4PON_2H_7^+), 1.3; 131 (CF_2PON_2H_6^+), 42.9; 119 (C_2F_3^+), 14.6; 100 (C_2F_4^+), 13.6; 85 (F_2PO^+), 20.6; 69 (CF_3^+), 100; 63 (PONH_2^+), 3.3.

Reaction of $(C_4F_9)_2P(O)F$ with NH₃. This reaction was carried out as with $(C_4F_9)_3PO$. Ammonium fluoride is sublimed out of the reaction vessel, leaving behind $(C_4F_9)_2P(O)NH^-NH_4^+$ (70%). It was characterized as above.

Reaction of $(C_4F_9)_3PO$ or $(C_4F_9)_2P(O)F$ with Excess NH₃. These reactions were carried out as above except the molar ratio of $(C_4F_9)_3PO$ or $(C_4F_9)_2P(O)F$ to NH₃ was 1:3.5. The solid product that remained after removing C₄F₉N, NH₃, and NH₄F was solid C₄F₉P(O)(NH₂)₂ (80%). ¹⁹F NMR for C₄F₉P(O)(NH₂)₂: ϕ -81.78 (CF₃), -121.0 (CF₂), -123.1 d (CF₂, $J_{CF_2-P} = 75.11$ Hz), -125.5 (CF₂). ³¹P {¹H} NMR: δ 10.67 tr. ¹H NMR, δ 4.9 br. MS (CI) (m/e (species), %): 299 (M⁺ + 1), 5.14; 282 (C₄F₉PON₄D⁺), 0.57; 279 (C₄F₈PON₂H₅⁺), 0.67; 266 (C₄F₉PO⁺), 0.58; 248 (C₄F₈POM⁺), 2.46; 219 (C₄F₉⁺), 25.37; 200 (C₂F₄⁺), 1.09; 179 (C₂F₄PON₂H₄⁺), 0.57; 119 (C₂F₅⁺), 10.75; 100 (C₂F₄⁺), 11.25; 85 (PF₂O⁺), 22.08; 79 (PON₂H₄⁺), 20.33; 69 (CF₃⁺), 100; 63 (PONH₂⁺), 2.0.

Reaction of $(C_4F_9)_3$ PO or $(C_4F_9)_2$ P(O)F with Excess CH₃NH₂. These reactions were accomplished as above. After C₄F₉H and CH₃NH₃+F⁻ were removed, a solid that was characterized to be C₄F₉P(O)(NHCH₃)₂ (60%) remained. ¹⁹F NMR for C₄F₉P(O)[NHCH₃]₂: ϕ =81.54 (CF₃), -121.5 d (CF₂, J_{CF2-P} = 74.78 Hz), -121.7 (CF₂), -126.4 (CF₂). ³¹P NMR: δ 10.06 tr. ¹H NMR: δ 6.8 (NH), 2.72 (CH₃). IR: 3439 (ν_{N-H}), 3011 (ν_{C-H}), 1471 w, 1350 s (ν_{P-O}), 1235 br, s, 1134 s, 1030 m, 1011 m, 868 w, 797 w, 748 m, 731 m, 641 m, 614 w, 589 w, 530 m cm⁻¹. MS (CI) (m/e (species), %): 327 (M⁺ + 1), 33.9; 307 (C₆F₈PON₂H₈⁺), 3.3; 219 (C₄F₉⁺), 7.5; 127 (CF₂PON₂H₂⁺), C₂F₂PONH₄⁺), 1.1; 119 (C₂F₅⁺), 17.2; 107 (C₂PON₂H₈⁺), 95.7; 92 (CPON₂H₅⁺), 3.9; 77 (CPONH₄⁺), 1.7; 69 (CF₃⁺), 100.

Reaction of $(C_4F_9)_2P(O)F$ with $(CH_3)_2NH$. This reaction was carried out as above $((C_4F_9)P(O)F:(CH_3)_2NH = 1:1)$. After C_4F_9H was removed, slightly volatile $C_4F_9P(O)F[N(CH_3)_2]$ was removed under dynamic vacuum (70% yield). ¹⁹F NMR for $C_4F_9P(O)F(N(CH_3)_2)$: ϕ -79.19 d (PF, $J_{F-P} = 1069$ Hz), -82.1 (CF₃), -122.8 (CF₂), 122.9 d (CF₂, $J_{CF_2-P} = 87.89$ Hz), -127.0 (CF₂). ³¹P NMR: δ 14.7 tr of d. IR: 2940 w, 2820 w (ν_{C-H}), 1472 m, 1400 w, 1350 m (ν_{P-O}), 1290 s, 1228 s, 1208 s, 1190 s, 1131 s, 1110 m, 1080 m, 1028 m, 1005 w, 750 m, 740 m (ν_{P-F}), 695 w, 511 s, 490 m, 462 m cm⁻¹. MS (EI) (m/e (species), %): 329 (M⁺), 6.6; 310 (M⁺ - F), 1.8; 244 (M⁺ - C_2H_4F_3), 2.0; 169 (C_3F_7⁺), 0.9; 128 (?), 9.0; 119 (C₂F₅⁺), 5.4; 110 (M⁺ - C_4F_5), 100; 100 (C₂F₄⁺), 8.7; 69 (CF₃⁺), 33.6.

Reaction of $(C_4F_9)_3$ **PO with** $(CH_3)_2$ **NH.** This reaction was carried out as above $(C_4F_9)_3$ **PO**: $(CH_3)_2$ **NH** = 1:1). After 14 h, ~1.21 mmol of C_4F_9 H was recovered when 2.6 mmol of each reactant was used. The nonvolatile liquid that remained when all of the volatile material (C_4F_9H) had been removed was a mixture of $(C_4F_9)_2$ P(O)N(CH₃)₂ (A, 63%), $(C_4F_9)_3$ P[N(CH₃)₂]₂ (B, 15%), $(C_4F_9)_3$ P(OH)[N(CH₃)₂] (C, 12%) and $(C_4F_9)_2$ P(OH)[N(CH₃)₂]₂ (D, 10%). The ³¹P[⁴H] NMR spectral data for these compounds is as follows: A, δ 13.2 pentet $(J_{P-F} = 79.2 \text{ Hz})$; B, δ -40.4 septet $(J_{P-F} = 70.4 \text{ Hz})$; C, δ -69.9 septet $(J_{P-F} = 70.4 \text{ Hz})$; D, δ 1.21 pentet $(J_{P-F} = 70.4 \text{ Hz})$. The fluorine α -CF₂ chemical shifts, as well as the other fluorine resonances, are relatively invariant, and the former fall in the ϕ -115 to -119 region. Resonances for CF₃ are at approximately ϕ -81, and those for the other difluoromethylene groups lie between ϕ -118 and -127. A single OH proton shift was observed at δ 8.2. When the solution is allowed to stand, new resonances attributed to C_4F_9 P(O)[N(CH₃)₂]₂ and C_4F_9 P(OH)[N(CH₃)₂]₃ with ³¹P[⁴H] at δ 20.5 tr (J_{P-F} = 88.0 Hz) and -9.2 tr (J_{P-F} = 92.4 Hz) appeared.

Reaction of (CF₃)₃PO with CH₃NH₂. One millimole of CH₃NH₂ was condensed into a 50-mL Pyrex flask that contained 3 mmol of (CF₃)₃PO. The mixture was allowed to warm overnight from -78 °C to room temperature. After volatile CF₃H (~1 mmol) and CH₃NH₂ were removed, a light yellow solid, (CF₃)₂P(O)NHCH₃, remained. ¹H NMR: δ 7.67 s; br (NH), 2.43 s (CH₃). ¹⁹F NMR: ϕ -73.35 d (CF₃, J_{P-F} = 102.5 Hz). ³¹P[¹H] NMR: δ -2.67 septet. IR: 3050 s, br, 2900 w, 2800 w, 2610 w, 2510 w, 1658 w, 1645 w, 1550 w, br, 1475 w, 1395 w, 1295 s, 1252 m, 1212 s, 1140 s, 1105 s, 1070 m, 980 m, 755 m, 585 vs, 510 s cm⁻¹. MS (EI) (*m*/*e* (species), %): 218 ((CF₃)₂PONH₃+), 7.36; 198 ((CF₃)₂PNCH₃⁺), 1.72; 157 (C₂F₃PONCH₃⁺), 5.24; 146 (CF₃PONCH₄⁺), 1.1; 133 (CF₃PONH⁺), 4.25; 119 (CF₄P⁺), 11.0; 100 (CF₃P⁺), 6.59; 81 (CF₂P⁺), 3.53; 78 (P(O)NCH₄⁺), 3.7; 69 (CF₃⁺), 100.

Reaction of (CF₃)₃PO with Excess CH₃NH₂. Six millimoles of CH₃NH₂ as condensed into a 50-mL Pyrex flask that contained 2 mmol of (CF₃)₃PO. The mixture was allowed to warm overnight from -78 °C to room temperature. After volatile CF₃H (3.45 mmol) and CH₃NH₂ were removed, 0.34 g of a light yellow viscous liquid, CF₃P(O)[NHC-H₃]₂, remained. ¹H NMR: δ 5.52 s, br (NH), 2.69 dd (CH₃, $J_{CH_3-P} = 11.7$ Hz, $J_{CH_3-NH} = 4.4$ Hz). ¹⁹F NMR: ϕ -72.41 d (CF₃, $J_{P-F} = 107.4$ Hz); ³¹P¹H} NMR: 10.56 q. IR: 3250 m, br, 2940 w, 1390 s, br (ν_{P-O}), 1293 m, 1235 s, 1210 s, 1110 s, br, 975 w, 890 m, 825 w, 810 m, 585 m, 565 m, 510 m cm⁻¹. MS (EI) (m/e (species), %): 175 (M⁺ - 1), 1.43; 125 (FPON₂HC₂H₆⁺), 1.42; 107 (PON₂H₂C₂H₆⁺), 100; 96 (CF₂PNH⁺),

8.48; 93 (PON₂H₃CH₃⁺), 3.29; 78 (PONH₂CH₃⁺), 35.71; 69 (CF₃⁺), 7.06.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, to NSF Grants CHE-8404974, CHE-8703790, and CHE-8504253, to AFOSR Grant 87-0067, and to the Gas Research Institute for support of this work. We thank Dr. Fred Behr of 3M for $(C_4F_9)_3PF_2$ and the Monsanto Co. for supplying elemental phosphorus.

Registry No. CF₃I, 2314-97-8; CF₃PI₂, 421-59-0; (CF₃)₂PI, 359-64-8; (CF₃)₃P, 432-04-2; (CF₃)₃PO, 423-01-8; CF₃H, 75-46-7; (CF₃)₃P(NH₂)₂, 115421-79-9; SF₄, 7783-60-0; (C₄F₉)₂P(O)OH, 52299-25-9; (C₄F₉)₂PF₃, 115421-80-2; (Me₃Si)₂O, 107-46-0; (C₄F₉)₂PF₂(OSiMe₃), 115421-81-3; (C₄F₉)₂P(O)F, 115421-82-4; Me₃SiF, 420-56-4; (C₄F₉)₃PF₂, 91543-34-9; (C₄F₉)₃PO, 58431-34-8; (CF₃)₂P(O)Cl, 115421-83-5; [(CF₃)₂P-(O)]₃NH⁺Cl⁻·N(Et)₃, 115436-91-4; C₄F₉H, 375-17-7; (C₄F₉)₂P(O)-NH⁻NH₄⁺, 115421-84-6; NH₄F, 12125-01-8; C₄F₉P(O)(NHCH₃)₂, 115421-87-7; C₄F₉P(O)(N(CH₃)₂), 115421-88-0; (C₄F₉)₃P(ON)(CH₃)₂, 115421-87-9; (C₄F₉)₃P[N(CH₃)]₂, 115421-88-0; (C₄F₉)₃P(OH)[N(CH₃)₂], 115421-87-9; (C₄F₉)₃P[N(CH₃)₂]₂, 115421-88-0; (C₄F₉)₃P(OH)[N(CH₃)₂]₂, 115436-92-5; C₄F₉P-(O)[N(CH₃)₂]₂, 115421-90-4; C₄F₉P(OH)[N(CH₃)₂]₃, 115436-93-6; (CF₃)₂P(O)NHCH₃, 31411-29-7; CF₃P(O)[NHCH₃]₂, 115421-91-5; C₄F₉P(O)(NH₂)₂, 115421-92-6.

> Contribution from the Department of Chemistry, Portland State University, Portland, Oregon 97207

A New Pentafluorothio (SF₅) Sultone: Rearrangement and Pathway to $SF_5CH_2SO_3H$. New Pentafluorothio Fluoro Esters

Robin J. Terjeson, Javid Mohtasham, and Gary L. Gard*

Received October 14, 1987

The new fluorosultone $SF_5CHCF_2OSO_2$ has been prepared along with its rearranged isomer ($SF_5CH(SO_2F)COF$) and hydrolysis product ($SF_5CH_2SO_2F$); further reaction of $SF_5CH_2SO_2F$ with base and acid affords the corresponding sulfonic acid and salt: $SF_5CH_2SO_3H \cdot H_2O$ and $Ca(SF_5CH_2SO_3)_2$. New pentafluorothio (SF_5) esters, $SF_5CX(SO_2F)C(O)OR_f$ ($R_f = CF_3CH_2$, (CF_3)₂CH; X = H, F), have been synthesized by using the fluorosultones $SF_5CFCF_2OSO_2$ and $SF_5CHCF_2OSO_2$ with appropriate polyfluoro alcohols in the presence of sodium fluoride. In a like manner, the diester [$SF_5CF(SO_2F)C(O)OCH_2CF_2$]₂CF₂ was prepared from HOCH (CF_2) CH OH and $SECFCFCOSO_2$. These new seters, unlike fluorinated esters with fluoring at the alknew or carbon

HOCH₂(CF₂)₃CH₂OH and SF₅CFCF₂OSO₂. These new esters, unlike fluorinated esters with fluorine at the alkoxy α -carbon atoms, are stable in the presence of fluoride ion at 25 °C or higher temperature. The new compounds are characterized by their IR, NMR (¹H, ¹⁹F, ¹³C), and mass spectra.

Introduction

Fluorinated sultones are occupying an ever-increasing importance in the synthesis of new sulfonyl fluorides (RSO₂F, R = hydrocarbon or fluorocarbon moieties). The incorporation of the sulfonyl fluoride group into molecular systems can lead to compounds useful as ion-exchange resins, surface-active agents, and thermally stable and strong sulfonic acids.¹⁻⁵ Since fluorinated sultones lead to new RSO₂F systems, it is of considerable interest that new sultones with unique structural features be prepared. While there are a number of fluorocarbon sultones, only one sultone with the unique pentafluorothio group (SF₅) exist.³ We wish to present our success in preparing the second SF₅-containing sultone and its rearrangement, hydrolysis, and reaction chemistry leading to SF₅CH₂SO₃H; in addition, results obtained by using both SF₅-containing sultones in preparing new SF₅-containing fluorosulfonyl fluoro esters will be reported.

(1) Haszeldine, R. N.; Kidd, J. M. J. Chem. Soc. 1954, 4228.

- (2) Gramstad, T.; Haszeldine, R. N. J. Chem. Soc. 1957, 2640.
- Canich, J. M.; Ludvig, M. M.; Gard, G. L.; Shreeve, J. M. Inorg. Chem. 1984, 23, 4403.
 England, D. C.; Dietrich, M. A.; Lindsey, R. V. J. Am. Chem. Soc.
- 1960, 82, 6181. (5) Knunyants, I. L.; Sokolskii, G. A. Angew. Chem., Int. Ed. Engl. 1972, 11, 583.

Results and Discussion

The new pentafluorothio β -sultone 2-hydroxy-1-(pentafluoro-

 λ^6 -sulfanyl)-2,2-difluoroethanesulfonic acid sultone, SF₅CHC-F₂OSO₂, was prepared via the reaction of SF₅CH=CF₂ with monomeric sulfur trioxide in a Carius tube under autogeneous pressure at 100 °C:

$$SF_5CH = CF_2 + SO_3 \rightarrow SF_5CH - CF_2 \qquad (1)$$

The SF₅CHCF₂OSO₂ product is a stable crystalline solid with a vapor pressure of 9 Torr at 22 °C; it melts at 47-48 °C.

The SF₅ sultone undergoes rearrangement in the presence of NaX (X = I, F), giving the isomeric bifunctional fluoride 2-(fluorosulfonyl)-2-(pentafluoro- λ^6 -sulfanyl)acetyl fluoride:

$$SF_{5}CH-CF_{2} \xrightarrow{NaX} SF_{5}CH-C-F (2) \\ | | | | | 0_{2}S-O FSO_{2}$$

In the presence of water, $SF_5CHCF_2OSO_2$ undergoes rearrangement, followed by a concerted hydrolysis-decarboxylation reaction: