+ H₂ mixture. In the presence of metallic or zerovalent ruthenium atoms, CO ligands from the neighboring Ru(CO)₂ species can easily migrate to the free ruthenium sites, on which they dissociate and form methane.

The metallic ruthenium site is also a center for hydrogen dissociation and is a necessary requirement for the methanation reaction.

When decomposition takes place at high temperature (up to 773 K), all CO ligands which were required to stabilize single ruthenium atoms in dicarbonyl species are removed and the ruthenium particles tend to migrate on the surface to form large aggregates. On large particles the mode of CO chemisorption is changed; in particular, only a negligible amount of dicarbonyl species is produced.

In conclusion, it can be established that free ruthenium sites

are a necessary requirement for the CO hydrogenation reaction. Initially, the presence of dicarbonyl species in the temperature range in which the reaction takes place is important to stabilize the high dispersion of ruthenium. As soon as free ruthenium sites are also present, the CO molecules from the ruthenium dicarbonyl species indicated by the IR bands at 2072 and 2001 cm⁻¹ easily migrate to the free ruthenium sites due to their high mobility and react with hydrogen to produce methane. Since these molecules are already in an activated form, it explains their higher reactivity compared to those chemisorbed from the gas phase, i.e. ¹³CO. This ultimately leads to the initial ${}^{12}CH_4$ formation when $H_2 + {}^{13}CO$ is used.

Registry No. Ru₃(CO)₁₂, 15243-33-1; Ru(CO)₂, 106960-32-1; Ru, 7440-18-8; CH₄, 74-82-8; H₃C(CH₂)₃CH₃, 109-66-0.

Contribution from the Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Cyclotriphosphazenes with Geminal (Trimethylsilyl)methyl and Alkyl or Aryl Side Groups¹

Harry R. Allcock,* David J. Brennan, Beverly S. Dunn, and Masood Parvez

Received November 3, 1987

The synthesis of a series of organosilyl cyclophosphazenes of formula gem- $N_3P_3Cl_4(CH_2SiMe_3)(R)$, where $R = C_2H_5$, i- C_3H_7 , n-C4H9, t-C4H9, neo-C5H11, and C6H5, via organometallic reactions, is described. The chlorine atoms in the cyclic trimers were replaced by trifluoroethoxy groups by reactions that led to either retention of the (trimethylsilyl)methyl units or replacement of them by methyl groups, depending on the reaction conditions. The crystal and molecular structures of gem-N₃P₃Cl₄- $(CH_2SiMe_3)(t-C_4H_9)$ and the related derivative gem-N₃P₃Cl₄(CH₂SiMe₃)₂ were determined by single-crystal X-ray diffraction methods. Steric hindrance involving the organosilyl units results in a widening of the external angle at the supporting phosphorus atom and a narrowing of the corresponding ring angle at that site. Crystals of gem-N₃P₃Cl₄(CH₂SiMe₃)(t-C₄H₉) are orthorhombic with space group Pbca, with a = 14.884 (4) Å, b = 15.815 (4) Å, c = 16.615 (4) Å, V = 3910.9 Å³, and Z = 8. Crystals of gem-N₃P₃Cl₄(CH₂SiMe₃)₂ are monoclinic with space group $P_{2_1/n}$, with a = 10.145 (4) Å, b = 11.060 (5) Å, c = 19.999 (6) Å, $\beta = 103.56 (3)^\circ$, $V = 2181.4 \text{ Å}^3$, and Z = 4.

Introduction

Cyclic and linear high-polymeric phosphazenes are now known that bear a wide variety of inorganic, organic, or organometallic side groups.^{2,3} A recent development has been the synthesis of phosphazenes with organosilicon side units.⁴⁻⁷ At the highpolymeric level⁶ these species are hybrid systems with characteristics that resemble those of both poly(organophosphazenes) and poly(organosiloxanes).

The main method for the preparation of phosphazene high polymers involves the ring-opening polymerization of smallmolecule cyclic phosphazenes. Thus, the synthesis of phosphazene cyclic trimers or tetramers that bear organosilicon side groups is an essential first step in the assembly of hybrid organosiliconorganophosphazene macromolecules. A second reason for the study of small-molecule phosphazene ring systems is that they provide excellent reaction models for the more complex substitution reactions carried out on the corresponding high polymers. The small-molecule cyclic species also provide structural models for the high polymers since their molecular geometries can be deduced

- (2)Allcock, H. R. Phosphorus-Nitrogen Compounds; Academic: New York, 1972
- (3) Allcock, H. R. Chem. Eng. News 1985, 63(11), 22.
 (4) Allcock, H. R.; Brennan, D. J.; Allen, R. W. Macromolecules 1985, 18, 139.
- (5) Allcock, H. R.; Brennan, D. J.; Graaskamp, J. M.; Parvez, M. Organometallics 1986, 5, 2434.
- Allcock, H. R.; Brennan, D. J.; Graaskamp, J. M. Macromolecules (6) 1988, 27
- Wisian-Neilson, P.; Neilson, R. H. J. Am. Chem. Soc. 1980, 102, 2848.

more easily by X-ray diffraction techniques.

In earlier work⁵ at the cyclic trimer level, we developed a series of organometallic pathways that allowed access to small-molecule cyclotriphosphazenes with siloxane or (trimethylsilyl)methyl units linked to the phosphazene ring. In several cases, two identical organosilicon units were attached to one skeletal phosphorus atom. In other examples, a ring phosphorus atom bore one organosilicon unit and either a chlorine atom or a methyl group. The remaining four side groups were either chlorine atoms or trifluoroethoxy groups introduced by nucleophilic replacement of chlorine.

In the present work, we have extended the number of accessible structures to the 12 compounds depicted as species 1a-f and 2a-f. The compounds of formula 1 and 2, where $R = CH_3$, were reported earlier.⁵ Species 3a-f are compounds formed during the conversion of 1 to 2 by a pathway that will be discussed.

In this study, we have attempted to answer the following questions: (a) What reaction pathways are available for the sequential replacement of two chlorine atoms in hexachloro-

⁽¹⁾ This is the fourth paper from our laboratory on organosilicon-organophosphazene chemistry. For the first three papers, see ref 4-6.

Scheme I

cyclotriphosphazene (4) by the organosilyl group and the organic unit and, in particular, which substituent group should be introduced first? (b) What reaction conditions are needed to allow the chlorine atoms in 1 to be replaced by trifluoroethoxy groups without cleavage of the CH_2 -Si bonds? This question is of particular importance with respect to the replacement of chlorine atoms by organic units in the corresponding linear high polymers. (c) Do organosilyl cyclophosphazenes possess any structural peculiarities that might influence their thermal stability, their polymerization behavior, or their reactivity?

In the following sections, we discuss first the organometallic pathways used for the synthesis of species 1, followed by the behavior of these species in the presence of trifluoroethoxide ion and the characterization of the products by microanalytical, mass spectrometric, and NMR methods. Finally, the results of two single-crystal X-ray structure determinations are discussed.

Results and Discussion

Synthesis of Chlorocyclophosphazenes 1a-f. As shown in earlier work,⁵ hexachlorocyclotriphosphazene (4) reacts with ((trimethylsilyl)methyl)magnesium chloride to yield species 5 (Scheme I). Compound 5 was found in the earlier study to react with methylmagnesium chloride to replace the geminal chlorine atom by a methyl group. In the present work, we have shown that 5 reacts in a similar manner with ethyl-, isopropyl-, *n*-butyl-, or phenylmagnesium chloride to yield the geminally disubstituted species 1a-c and 1f in moderate to high yields (see Table I). Further halogen replacement appeared to be difficult under these reaction conditions.

However, the *tert*-butyl and neopentyl derivatives, **1d**,**e**, could not be prepared by this route. Instead, compound **4** was converted to an organocopper intermediate, **6**, by reaction with *tert*-butyl-⁸ or neopentylmagnesium chloride⁶ in the presence of the tributylphosphine complex of copper iodide. Species **6** then reacted with (trimethylsilyl)methyl iodide to give the appropriate geminally disubstituted species, **1d**,**e**.

Replacement of the Chlorine Atoms in 1 by Trifluoroethoxy Groups. The replacement of chlorine atoms in hexachlorocyclotriphosphazene (4) by reaction with sodium trifluoroethoxide is one of the best known and longest established methods for the conversion of a hydrolytically unstable chlorocyclophosphazene to a hydrolytically stable derivative.⁹ The same substitution Scheme II

reaction was used to prepare the first stable high-polymeric phosphazene from poly(dichlorophosphazene).^{10,11} This reaction is, therefore, of considerable significance whenever hydrolytic stability in phosphazenes is an important consideration.

Treatment of the six compounds of formula 1 with excess sodium trifluoroethoxide resulted in a clean replacement of chlorine by trifluoroethoxy to yield species 2, provided toluene was used as a reaction solvent at 110 °C. However, if a more polar solvent, such as THF, is used even at lower temperatures, chlorine replacement is accompanied by CH₂-Si bond cleavage and the replacement of a (trimethylsilyl)methyl unit by a methyl group. These two pathways are summarized in Scheme II. These alternative pathways were detected in earlier work, when phosphazene cyclic trimers with a chloro or methyl group geminal to a (trimethylsilyl)methyl unit were treated with trifluoroethoxide ion.⁵ The present work indicates that the presence of bulkier organic groups at the geminal site in no way changes this pattern. Thus, solvent polarity has a much more profound influence on this mechanism than does the steric size or electron-directing influence of the group at the geminal position. It is assumed that sodium trifluoroethoxide is more ionized in THF than in toluene and that the trifluoroethoxide ion is, therefore, more active in nucleophilic attack on silicon. The methyl group in the final product is formed by protonation of the P-CH₂⁻ residue left after carbon-silicon bond cleavage.

Properties and Characterization of Species 1-3. Species of formula 1 are stable in the absence of moisture. All six compounds are colorless crystalline solids (Table I). Replacement of the chlorine atoms in 1 to yield species 2 yielded compounds that were stable to water. However, the trifluoroethoxy groups lowered the melting points markedly, in some cases to below room temperature (Table I). Compounds of structure 3 are low-melting solids or oils that are stable to moisture.

The structural characterization data are listed in Tables I–III. In each case, the elemental analysis, mass spectrometric, infrared, and NMR data were compatible with the proposed structures. The nonsilylated products (3) were also identified by comparisons with the same compounds prepared by the reaction of trifluoroethoxide with gem-N₃P₃Cl₄(CH₃)R, obtained from previous studies.^{6,12,13}

X-ray Crystal Structures. X-ray crystal structure determinations have been carried out on the two compounds depicted as 1d and 7. Species 7 was prepared in earlier work.⁵ It provides a comparison between the structural influences of *tert*-butyl and (trimethylsilyl)methyl groups on a geminal (trimethylsilyl)methyl unit.

The molecular structures of 1d and 7 are shown in Figures 1 and 2, respectively. Bond lengths (Tables IV and V), bond angles

- (11) Allcock, H. R.; Kugel, R. L.; Valan, K. J. Inorg. Chem. 1966, 5, 1709.
- (12) Allcock, H. R.; Harris, P. J.; Connolly, M. S. Inorg. Chem. 1981, 20, 11.

⁽⁸⁾ Allcock, H. R.; Harris, P. J. J. Am. Chem. Soc. 1979, 101, 6221.
(9) Reference 2, Chapter 6.

⁽¹⁰⁾ Allcock, H. R.; Kugel, R. L. J. Am. Chem. Soc. 1965, 87, 4216.

⁽¹³⁾ Allcock, H. R.; Connolly, M. S.; Whittle, R. R. Organometallics 1983, 2, 1514.

(Tables VI and VII), and positional parameters (Tables VIII and IX) for the two compounds are also given.

The most significant features of the molecular structures of 1d and 7 are the wide exocyclic C-P(1)-C bond angles in both compounds, which undoubtedly reflect steric repulsions between the geminal organic/organometallic side groups. This angle is 108.85 (9)° in 1d and 107.9 (1)° in 7. Both are significantly wider than the angle of 101.4 (2)° found for the Cl-P-Cl angles in (NPCl₂)₃,¹⁴ and both are wider than the average Cl-P-Cl angles in 1d [99.59 (3)°] and 7 [100.1 (2)°].

This widening of the exocyclic angle at P(1) becomes translated into a narrowing of the internal (ring) angle at that same atom. Thus, the ring angles in 1d and 7 are 113.94 (7) and 113.09 (8)°, respectively. These can be compared to the value of 118.4 (1)° found for $(NPCl_2)_3$.¹⁴ Such a narrow ring angle at P(1) inevitably results in a puckering of the phosphazene ring and a separation of the skeletal bonds into unequal lengths. In 1d the ring is moderately puckered in a chair conformation. Specifically, a plane passes through P(2), P(3), N(1), and N(3), while P(1) and N(2)deviate from this plane by 0.111 (1) and -0.087 (3) Å, respectively. In 7, the ring is even more highly puckered in a chair distortion, with P(1) and N(2) deviating from the plane of the other four skeletal atoms by 0.163 (1) and -0.152 (2) Å, respectively. In 1d, the two longest skeletal bonds [average 1.620 (1) Å] are connected to P(1), the shortest [average 1.551 (1) Å] are N-(1)-P(2) and N(3)-P(3), and the two bonds furthest from P(1) have an average length of 1.575 (5) Å. A similar pattern is found in 7. Other examples of this type of ring distortion are known.13,15-18

Experimental Section

Materials. Hexachlorocyclotriphosphazene was kindly provided by Ethyl Corp. and was recrystallized from hexane and sublimed at 50 °C/0.05 mmHg. (Chloromethyl)trimethylsilane was obtained from Petrarch Systems, Inc., and was dried over molecular sieves before use. Neopentyl chloride was obtained from Alfa Products and was used as received. The Grignard reagents CH₃MgCl, C₂H₅MgCl, *i*-C₃H₇MgCl, n-C4H9MgCl, t-C4H9MgCl, and C6H5MgCl were obtained from Alfa Products as 2-3 M solutions in THF. Neopentylmagnesium chloride was prepared by a previously described procedure.⁶ (Iodomethyl)trimethylsilane was prepared by the reaction of (chloromethyl)trimethylsilane with sodium iodide in acetone.¹⁹ Methyl iodide was obtained from Aldrich and was used as received. Trifluoroethanol (Halocarbon Products) was dried over 3-Å molecular sieves before use. The reagent $[(n-Bu)_3PCuI]_4$ was prepared by standard methods.²⁰ Resublimed magnesium was obtained from Alfa Products and was used as received. Sodium hydride (Aldrich) was washed several times with dry THF to remove mineral oil and was stored in a drybox before use. Tetrahydrofuran (THF) and toluene were dried over sodium benzophenone ketyl and were distilled under an atmosphere of dry nitrogen before use. All reactions were

carried out under an atmosphere of dry nitrogen. Analytical Techniques. ³¹P NMR (¹H decoupled) spectra were obtained with a JEOL FX90Q NMR spectrometer operating at 36.2 MHz. ³¹P NMR chemical shifts are relative to 85% H₃PO₄ at 0 ppm with positive shift values downfield from the reference. ¹H NMR spectra were recorded with the use of a Bruker WP-200 spectrometer operating at 200 MHz. Chemical shifts are relative to tetramethylsilane at $\delta 0$. ¹³C NMR

(14) Bullen, G. J. J. Chem. Soc. A 1971, 1450.

- Whittle, R. R.; Desorcie, J. L.; Allcock, H. R. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1985, C41, 546.
- (16) Allcock, H. R.; Suszko, P. R.; Wagner, L. J.; Whittle, R. R.; Boso, B. Organometallics 1985, 4, 446.
- (17) Ritchie, R. J.; Harris, P. J.; Allcock, H. R. Inorg. Chem. 1980, 19, 2483.
- (18) Mani, N. V.; Ahmed, F. R.; Barnes, W. H. Acta Crystallogr. 1965, 19, 693.
- (19) Whitmore, F. C.; Sommer, L. H. J. Am. Chem. Soc. 1946, 68, 481.
 (20) Kauffman, G. B.; Teter, L. A. Inorg. Synth. 1963, 7, 9.

Figure 1. Molecular structure of 1d.

Figure 2. Molecular structure of 7.

(¹H decoupled) spectra were recorded with the use of a JEOL FX90Q spectrometer operating at 22.5 MHz. All ¹³C spectra are referenced to internal tetramethylsilane at 0 ppm. Infrared spectra were obtained with the use of a Perkin-Elmer 283B grating spectrometer. X-ray crystallographic data were collected on an Enraf-Nonius CAD4 diffractometer controlled by a PDP 11/44 computer. The structures were solved by SDP²¹ installed on the PDP 11/44. Elemental analyses were obtained by Galbraith Laboratories, Knoxville, TN.

Synthesis of gem-N₃P₃Cl₄(CH₂SiMe₃)(R) (1) [R = C_2H_5 (1a), *i*- C_3H_7 (1b), $n - C_4 H_9$ (1c), $C_6 H_5$ (1f)].²² ((Trimethylsilyl)methyl)magnesium chloride, Me₃SiCH₂MgCl, was prepared by the addition of (chloromethyl)trimethylsilane (12.3 g, 0.100 mol) to magnesium (3.65 g, 0.150 mol) in dry THF (200 mL), as described previously.⁵ The Grignard solution was transferred to an addition funnel under nitrogen and added dropwise to a solution of (NPCl₂)₃ (30.0 g, 0.0865 mol) in dry THF (500 mL) at 66 °C. On completion of addition, the reaction mixture was refluxed at 66 °C for 24 h and then allowed to cool to 25 °C. A THF solution of RMgCl (0.100 mol) ($R = C_2H_5$, *i*- C_3H_7 , *n*- C_4H_9 , C_6H_5) was added dropwise over 1 h, and the solution was stirred at 25 °C for 24 h. Solvent was removed under reduced pressure, and diethyl ether (500 mL) was added to the residue. This mixture was washed with 3×250 mL portions of 5% HCl (chilled to 0 °C), and the ether layer was dried over MgSO₄. Suction filtration through fuller's earth yielded a clear filtrate from which the ether was removed under reduced pressure to yield gem- $N_3P_3Cl_4(CH_2SiMe_3)(R)$ as a white solid. Recrystallization from hexane (twice) followed by two sublimations at approximately 100 °C/0.05 mmHg gave pure 1. (See Tables I-III for complete characterization data.)

Synthesis of gem-N₃P₃Cl₄(CH₂SiMe₃)(*t*-C₄H₉) (1d) and gem-N₃P₃Cl₄(CH₂SiMe₃)(*neo*-C₅H₁₁) (1e). Neopentylmagnesium chloride was prepared from neopentyl chloride (42.8 g, 0.400 mol) and magnesium (14.4 g, 0.59 mol) in dry THF (150 mL), as described previously.⁶

⁽²¹⁾ Structure Determination Package (SDP), B. A. Frenz and Associates, Inc., College Station, Texas 77840, and Enraf-Nonius, Delft, Holland, 1982.

⁽²²⁾ In these reactions the organosilyl Grignard reagent was added first to reduce the possibility that bicyclophosphazenes would be formed, a reaction known to occur when (NPCl₂)₃ reacts with some non-silyl Grignard reagents.²⁶

Table I. Cyclotriphosphazene Characterization Data

Table II. Cyclotriphosphazene ³¹ P NMR Da
--

			mass s	pectral	el	emental	anal.
		%	data,	m/e		%	%
R	mp, °C	yield	found	calcd		found	calcd
	gem-N	P ₂ Cl ₄	CH ₂ SiM	e_1 (R) ^a			
$C_{2}H_{\epsilon}(1a)$	143-144	76	3936	393	С	18.45	18.33
- 2 5 ()					H	3.73	4.11
					Ν	10.32	10.69
<i>i</i> -C ₃ H ₇ (1b)	86-87	35	407 ^b	107	С	20.51	20.65
					н	4.78	4.47
					Ν	10.41	10.32
$n-C_4H_9$ (1c)	84-85	45	421 ^b	421	С	22.91	22.82
					Н	4.81	4.80
					Ν	10.00	9.98
$t-C_4H_9$ (1d)	113-114	25	421 ^b	421	С	23.07	22.82
					н	4.80	4.80
					Ν	10.19	9.98
$neo-C_5H_{11}$ (1e)	93–94	23	435 ⁶	435	С	24.92	24.84
					Н	5.07	5.11
					Ν	9.73	9.66
$C_{6}H_{5}$ (1f)	102-103	50	44 1 ^{<i>b</i>}	441	С	27.11	27.23
					н	3.45	3.66
					Ν	9.50	9.53
~	www.NID((E) (CH	SiMe)(D۱4		
С.Н. (2 9)	oil	СП ₂ С	647	647	к) С	26.12	25 97
$C_{2115}(2a)$	UII	05	04/	04/	ŭ	20.12	374
					N	6.50	6 4 9
<i>i</i> -C.H. (2 b)	38-39	76	661	661	ĉ	27 20	27.24
1-03117 (20)	50 57	70	001	001	й	3 66	3 07
					N	6 33	6 35
$n \cdot C \cdot H \cdot (2c)$	oil	71	675	675	ĉ	28.64	28.45
n 04119 (20)	011	• 1	0.5	0.5	й	4 18	4 19
					N	6.08	6.22
t-C.H. (2d)	65-66	70	675	675	ĉ	28 34	28 45
· • • • • • • • • • • • • • • • • • • •	00 00		0.5	0.5	й	4 03	4 19
					N	6.31	6.22
$neo-C_eH_{11}$ (2e)	oil	71	689	689	Ċ	29.77	29.61
			•••	•••	Ĥ	4.53	4.39
					Ň	6.06	6.10
$C_{\epsilon}H_{\epsilon}(2f)$	oil	70	695	695	Ċ	31.39	31.08
-05 (7					Ĥ	3.50	3.49
					N	6.06	6.04
C II (3-)	gem-N ₃ l	-3(UCE	12CF3)4((∠H3)(K)'		22.21	22.07
$C_2 \Pi_5 (38)$	011	40	515	515	U U	23.21	22.9/
					H	2.95	2.81
10 H (24)	oil	40	590	500	N	1.11 10 10	7.51
$I-C_{3}H_{7}(30)$	011	40	269	287		24.48	24.40
					n N	5.1Z	5.09
	24-25	70	603	602	IN C	26.07	1.13
<i>n</i> -C4rig (3C)	34-33	19	003	005	с п	20.0/	23.00
					N	5.55	5.33
t-C.U. (24)	oil	70	603	603	C	26 07	25.99
1-C4R9 (30)	OII	/0	003	005	ц	20.07	23.00
					л N	3.39	5.55
100.C.H (20)	oil	70	617	617		1.00	17.0 17.74
neo-C3n11 (3e)	UII	70	01/	017	ч	21.34	27.24
					л N	5.00	5.00
<u>сц</u> (35)	oil	67	622	672	C	20.24	28 00
C6H5 (3I)	JII	07	023	023	ч	27.00	20.90 250
					N	6.67	674

^{*a*} Infrared spectroscopic analysis of compounds 1-3 detected characteristic vibrations for P-N (1250-1150 cm⁻¹), P-O (970 cm⁻¹), P-Cl (600-580, 520-500 cm⁻¹), Si-CH₃ (1260-1250, 850-800 cm⁻¹), C-H (aliphatic, 3000-2900 cm⁻¹), and C-H (aromatic, 3100-3000 cm⁻¹) where applicable. ^{*b*} Cl₄ isotope pattern detected.

Hexachlorocyclotriphosphazene (20.0 g, 0.0576 mol) and $[(n-Bu)_3PCuI]_4$ (16.0 g, 0.0100 mol) were dissolved in dry THF (600 mL) and cooled to -78 °C. The THF solution of $neo-C_3H_{11}MgCl$ or $t-C_4H_9MgCl$ (150.0 mL of 2.0 M solution in THF, 0.300 mol) was added dropwise over a period of 1 h. The reaction mixture was then stirred for 16 h as the temperature was allowed to rise to 25 °C. The reaction mixture was then cooled to 0 °C, and Me_3SiCH_2I (69.4 g, 0.324 mol) was added dropwise over a 1-h period. The reaction mixture was refluxed at 66 °C for 18 h. The products, gem-N_3P_3(CH_2SiMe_3)(R) (R = neo-C_5H_{11}, t-C_4H_9), were isolated and purified, as described above, but with the use of toluene

		chem shift,	coupling const,
R (no.)	signal	ppm	$J_{\rm PNP}, {\rm Hz}$
2	em-N ₂ P ₂ Cl	(CH ₂ SiMe ₂)(R	.)
$C_{2}H_{3}(1a)$	$P(Cl)_{2}$	17.3	unres ^b
-23 (/	$P(C)_{2}$	44.7	
<i>i</i> -C ₃ H ₇ (1b)	$P(Ci)_{2}$	17.0	unres
5 , (, ,	$P(C)_2$	49.5	
n-C4H9 (1c)	$P(Cl)_2$	17.0	unres
	$P(C)_2$	42.9	
$t - C_4 H_9$ (1d)	$P(Cl)_2$	16.7	unres
	$P(C)_2$	53.8	
$neo-C_5H_{11}$ (1e)	$P(Cl)_2$	15.6	unres
	$P(C)_2$	38.4	
$C_{6}H_{5}$ (1f)	$P(Cl)_2$	17.1	7.5
	$P(C)_2$	31.5	
aem-N	.P.(OCH.	CF.).(CH.SiM	-)(P)
C.H. (29)	P(O).	14.8	26 7
C2115 (20)	$P(C)_{2}$	44 9	20.7
<i>i</i> -C ₂ H ₂ (2h)	$P(O)_{2}$	14.6	25.1
(1 0)	$P(C)_{2}$	49.3	20.1
$n-C_{1}H_{0}$ (2c)	$P(O)_{2}$	14.7	26.7
	$P(C)_{2}$	43.6	2011
$t-C_4H_9$ (2d)	$P(O)_{2}$	11.7	23.4
	$P(C)_{2}$	50.8	
neo-C ₅ H ₁₁ (2e)	$P(O)_{2}$	13.5	27.3
5 11 ()	$P(C)_{7}$	40.7	
$C_6H_5(2f)$	$P(O)_{2}$	14.6	31.3
	$P(C)_2$	33.8	
			(D)
CH (3a)	P(O)	$n_2 C r_3 / 4 (C n_3) (157)$	κ) 26.4
$C_{2}\Pi_{5}(3\mathbf{a})$	$P(O)_2$	13.7	20.4
i-C H (3b)	P(O)	42.3	24.4
<i>PC</i> ₃₁₁₇ (50)	$P(C)_2$	15.7	24.4
$n (\mathbf{C}, \mathbf{H}, (3))$	P(O)	15.5	27.3
<i>n=</i> C4119 (3C)	$P(C)_{2}$	41.2	27.5
$t - C \cdot H_{\alpha}$ (3d)	P(O)	15.8	22.8
(3u)	P(C)	50.8	44.0
neo-C.H. (3e)	$P(O)_{2}$	144	27 3
	$P(C)_2$	38.4	ب. ، 2
C/H, (3f)	$P(O)_{2}$	15.2	32.9
C0113 (51)	$P(C)_{1}$	31.2	J /
	1 (0)2	J 1 . M	

^{*a*} CDCl₃ solution. ^{*b*} Unres = unresolved.

instead of diethyl ether as the extraction solvent. Complete characterization data are given in Tables I-III.

Synthesis of gem-N₃P₃Cl₄(CH₃)(R) (8) [R = C₂H₅ (8a), *i*-C₃H₇ (8b), *n*-C₄H₉ (8c), *t*-C₄H₉ (8d), *neo*-C₅H₁₁ (8e), C₆H₅ (8f)]. These compounds were prepared by synthetic techniques described previously.^{6,12,13}

Synthesis of gem-N₃P₃(OCH₂CF₃)₄(CH₂SiMe₃)(R) (2) [R = C₂H₅ $(2a), i-C_3H_7 (2b), n-C_4H_9 (2c), t-C_4H_9 (2d), neo-C_5H_{11} (2e), C_6H_5 (2f)].$ Trifluoroethanol (3.30 g, 0.0330 mol) was added dropwise to a slurry of NaH (0.72 g, 0.0300 mol) in dry toluene (150 mL). The reaction mixture was then refluxed at 110 °C for 4 h to ensure complete formation of CF₃CH₂ONa and then cooled to 25 °C. Compound 1 (0.005 mol) was added to the reaction mixture, which was then refluxed at 110 °C for 24 h (in the case of 2d, a reaction time of 72-96 h was usually required). When cooled, the reaction mixture was poured into 5% aqueous HCl (250 mL) and then extracted with three 100-mL portions of diethyl ether. The ether layer was dried over MgSO4 and filtered through fuller's earth, and the ether was removed under reduced pressure to yield an oil. The oil was vacuum-distilled twice at 90-130 °C/0.05 mmHg to yield pure 2 as an oil or a solid. The compounds where $\mathbf{R} = i - C_3 H_7$ (2b) and $t - C_4 H_9$ (2d) were recrystallized from hexane to yield white solids. Complete characterization data are given in Tables I-III.

Synthesis of gem $\cdot N_3P_3(OCH_2CF_3)_4(CH_3)(R)$ (3) [R = C_2H_5 (3a), *i*- C_3H_7 (3b), *n*- C_4H_9 (3c), *t*- C_4H_9 (3d), *neo*- C_3H_{11} (3e), C_6H_5 (3f)]. A THF solution CF₃CH₂ONa was prepared by the careful dropwise addition of CF₃CH₂OH (5.50 g, 0.0550 mol) to NaH (1.20 g, 0.0500 mol) in dry THF (100 mL). On completion of hydrogen evolution, compound 1 or 8 (0.0050 mol) was added to the CF₃CH₂ONa solution. The reaction mixture was stirred at 25 °C for 1 h, followed by reflux at 66 °C for 24 h (in the case of 3d, a reaction time of 72–96 h was usually required), and then cooled to 25 °C. The reaction mixture was poured into 5% aqueous HCl (100 mL) and extracted with three 100-mL portions of diethyl ether. The ether layer was dried over MgSO₄ and suction-filtered through fuller's earth, and the solvent was then removed

Table III. Cyclotriphosphazene ¹H NMR and ¹³C NMR Data

		gem-N ₃ P ₃ Cl ₄ (CH ₂ Si	$Me_3)(R)$		
<u> </u>		· · · · ·		coupling	; const, Hz
R (no.)	signal	¹ H NMR, $\delta^{a,b}$	¹³ C NMR, ppm ^{a,b}	PCH ₂ SiMe ₃	PR
$\overline{C_2H_5(1a)}$	PCH ₂ Si(CH ₃) ₃	1.26 (dt), 2 H	19.03 (dt)	$J_{\rm PCH} = 16.0$	$J_{\rm PCCH} = 21.2$
	$PCH_2Si(CH_3)_3$	0.23 (s), 9 H	0.06 (d)	$J_{\rm PNPCH} = 3.9$	$J_{\rm HCCH} = 7.9$
	PCH_2CH_3	1.83 (m), 2 H	29.00 (dt)	$J_{\rm PC} = 91.6$	$J_{\rm PC} = 90.3$
	PCH ₂ CH ₃	1.20 (dt), 3 H	5.70 (d)	$J_{\rm PNPC} = 5.5$	$J_{\rm PNPC} = unres^{\circ}$
i-C.H. (1b)	PCH-Si(CH-)	1 23 (dt) 2 H	17.87 (dt)	$J_{\text{PCSiC}} = 3.7$ $J_{\text{PCSiC}} = 15.0$	$J_{PCC} = 0.1$
	$PCH_{2}Si(CH_{3})_{3}$	0.25 (s), 9 H	0.15 (d)	$J_{\rm PNPCH} = 4.2$	$J_{\rm HOCH} = 6.9$
	$PCH(CH_3)_2$	1.89 (m), 1 H	33.68 (dt)	$J_{\rm PC} = 83.8$	$J_{\rm PC} = 88.9$
	$PCH(CH_3)_2$	1.21 (dd), 6 H	15.55 (s)	$J_{\rm PNPC} = 5.1$	$J_{\rm PNPC} = unres$
				$J_{\text{PCSiC}} = 3.4$	
$n-C_4H_9$ (1c)	$PCH_2Si(CH_3)_3$	1.25 (dt), 2 H	21.28 (dt)	$J_{\rm PCH} = 16.2$	$J_{\rm HCCH} = 7.2$
	$PCH_2SI(CH_3)_3$	0.22 (s), 9 H	-0.07 (d)	$J_{\text{PNPCH}} = 3.9$	$J_{PC} = 89.1$
	PCH ₂ CH ₂ CH ₂ CH ₂ CH ₃	1.85-1.38 (m), 6 H	23.43 (d)	$J_{PC} = 04.2$	$J_{PNPC} = 2.1$
	PCH ₂ CH ₂ CH ₂ CH ₃	1.00 1.00 (), 0 11	23.60 (d)	$J_{\rm PNPC} = 5.2$	$J_{\rm BCC} = 17.7$
	PCH ₂ CH ₂ CH ₂ CH ₃	0.93 (t), 3 H	13.54 (s)	$J_{\text{PCSiC}} = 3.1$	$J_{\rm PCCC} = 5.5$
t-C4H9 (1d)	$PCH_2Si(CH_3)_3$	1.16 (dt), 2 H	14.03 (dt)	$J_{\rm PCH} = 13.9$	$J_{\rm PCCH} = 17.6$
	$PCH_2Si(CH_3)_3$	0.23 (s), 9 H	1.10 (d)	$J_{\rm PNPCH} = 4.7$	$J_{\rm PC} = 87.2$
	$PC(CH_3)_3$	1.17 (d), 9 H	23.75 (s)	$J_{\rm PC} = 81.8$	$J_{\rm PNPC} = unres$
	$PC(CH_3)_3$		30.40 (dt)	$J_{\rm PNPC} = 5.1$	
neo-C.H., (1e)	PCH-Si(CH-)	1.31 (dt), 2 H	24.87 (dt)	$J_{\text{PCSiC}} = 4.4$	$J_{\rm DOM} = 12.7$
(10) Ojiin (10)	$PCH_{3}Si(CH_{3})_{3}$	0.24 (s), 9 H	0.10 (d)	$J_{\rm PNPCH} = 3.2$	$J_{\text{PNPCH}} = 2.6$
	$PCH_2C(CH_3)_3$	1.88 (dt), 2 H	48.94 (dť)	$J_{\rm PC} = 82.4$	$J_{\rm PC} = 87.9$
	$PCH_2C(CH_3)_3$	1.17 (s), 9 H	31.08 (d)	$J_{\rm PNPC} = 4.3$	$J_{\rm PNPC} = unres$
0				$J_{\text{PCSiC}} = 3.7$	$J_{\rm PCCC} = 7.9$
$C_{6}H_{5}$ (1f)	$PCH_2Si(CH_3)_3$	1.23 (dt), 2 H	23.90 (dt)	$J_{\rm PCH} = 17.4$	$J_{\rm PC} = 125.2$
	$PCH_2SI(CH_3)_3$	-0.05 (s), 9 H	-0.15 (d)	$J_{\rm PNPCH} = 8.8$	$J_{PCC} = 13.7$
	inso		135.56 (d)	$J_{\rm RC} = 88.9$	$J_{max} = 10.3$
	ortho	7.58 (m), 2 H	128.66 (d)	C CON	PLLC 10.0
	meta	7.27 (m), 2 H	129.50 (d)	$J_{\rm PNPC} = 6.0$	$J_{\rm PCCCC} = 3.0$
	para	7.27 (m), 1 H	132.02 (d)	$J_{\text{PCSiC}} = 3.4$	
		gem-N ₃ P ₃ (OCH ₂ CF ₃) ₄ (C	$H_2SiMe_3)(R)$		
			· · ·	coupling	g const, Hz
R (no.)	signal	¹ Η NMR, δ ^{<i>a</i>,<i>b</i>}	¹³ C NMR, ppm ^{a,b}	PCH ₂ SiMe ₃	PR
C_2H_5 (2a)	$PCH_2Si(CH_3)_3$	1.08 (dt), 2 H	21.62 (dt)	$J_{\rm PCH} = 20.0$	$J_{\rm PCCH} = 17.2$
	$PCH_2Si(CH_3)_3$	0.15 (s), 9 H	-0.30 (d)	$J_{\rm PNPCH} = 7.5$	$J_{\rm HCCH} = {\rm unres}$
	PCH ₂ CH ₃	1.70 (m), 2 H	28.94 (d)	$J_{\rm PC} = 85.5$	$J_{\rm PC} = 94.0$
	PCH_2CH_3	1.17 (dl), 3 H 4.22 (m) 8 H	5.43 (d) 62.52 (d)	$J_{\rm PNPC} = 4.3$	$J_{PCC} = 5.1$
	POCH ₂ CF ₃	4.22 (iii), 8 H	122.75 (q)	PCSiC = 5.4	
$i-C_{3}H_{7}$ (2b)	$PCH_2Si(CH_3)_3$	1.17 (dt), 2 H	18.25 (dt)	$J_{\rm PCH} = 16.1$	$J_{\rm PCCH} = 18.6$
5 / (/	PCH ₂ Si(CH ₃) ₃	0.17 (s), 9 H	-0.15 (d)	$J_{\rm PNPCH} = 2.9$	$J_{\rm HCCH} = 7.0$
	$PCH(CH_3)_2$	1.76 (m), 1 H	33.15 (d)	$J_{\rm PC} = 83.8$	$J_{\rm PC} = 92.3$
	$PCH(CH_3)_2$	1.12 (dd), 6 H	15.17 (d)	$J_{\rm PNPC} = 4.3$	$J_{\rm PCC} = 3.4$
	POCH ₂ CF ₃	4.23 (m), 8 H	62.34 (q)	$J_{\rm PCSiC} = 3.4$	
$n_{\rm e}$ C.H. (7 c)	PCH_2CF_3 PCH_2CF_3	1 20 (dt) 2 H	122.78 (qt) 22.14 (dt)	$I_{\rm max} = 17.4$	$I_{\text{mon}} = 7.0$
n=C4119 (ac)	$PCH_{2}Si(CH_{3})_{3}$	0.18 (s), 9 H	-0.15 (d)	$J_{\text{BNDCH}} = 2.5$	$J_{\rm HCCH} = 92.2$
	PCH ₂ CH ₂ CH ₂ CH ₃		35.87 (dt)	$J_{\rm PC} = 84.8$	$J_{PCC} = 17.7$
	PCH ₂ CH ₂ CH ₂ CH ₃	1.75-1.38 (m), 6 H	23.68 (d)		
	PCH ₂ CH ₂ CH ₂ CH ₃		23.80 (d)	$J_{\rm PNPC} = 4.6$	$J_{\rm PCCC} = 4.9$
	PCH ₂ CH ₂ CH ₂ CH ₃	0.42 (t), 3 H	13.46 (s)	$J_{\text{PCSiC}} = 3.1$	
		4.24 (m), 8 H	62.55 (qt) 122.79 (at)		
t-C.H. (2d)	$PCH_{2}CH_{3}$	1 15 (dt) 2 H	122.79 (qt) 14 70 (dt)	$I_{\text{norm}} = 14.6$	$J_{\text{recur}} = 16.8$
· 04119 (=u)	$PCH_2Si(CH_3)_3$	0.18 (s), 9 H	-0.21 (d)	$J_{\rm PNPCH} = 3.0$	$J_{\rm PC} = 91.6$
	$PC(CH_3)_3$		35.12 (d)	$J_{\rm PC} = 85.4$	
	$PC(CH_3)_3$	1.11 (d), 9 H	23.56 (s)	$J_{\rm PNPC} = 5.5$	
	$POCH_2CF_3$	4.25 (m), 8 H	62.62 (q)	$J_{\text{PCSiC}} = 3.1$	
\mathbf{r}_{a0} (1)	$POCH_2CF_3$ $PCH_S(CU)$	1 20 (dt) 2 U	122.78 (qt) 25.82 (dt)	I = 177	$I_{-av} = 13.0$
neu (20)	$PCH_{2}Si(CH_{2})_{3}$	0.16 (s) 9 H	0.04 (d)	$J_{\rm PDH} = 17.7$	$J_{\text{PDIPCH}} = 2.0$
	$PCH_2C(CH_1)_1$	1.76 (dt), 2 H	48.87 (dt)	$J_{\rm PC} = 83.6$	$J_{\rm PC} = 90.9$
	PCH ₂ C(CH ₃) ₃	1.10 (s), 9 H	31.02 (d)	$J_{\rm PNPC} = 4.0$	$J_{\rm PNPC} = 3.4$
	POCH ₂ CF ₃	4.22 (m), 8 H	62.52 (q)	$J_{\text{PCSiC}} = 3.1$	$J_{\text{PCCC}} = 7.9$
CH (26)	$POCH_2CF_3$	1 44 (44) 2 11	122.78 (qt)	I = 10 C	I = 1257
$C_{6}\Pi_{5}(2I)$	$PCH_{Si}(CH_{3})_{3}$	1,44 (UL), 2 H	24.00 (at) -0.36 (d)	$J_{\rm PCH} = 18.0$ $J_{\rm PMPCH} = 2.8$	$J_{PC} = 123.7$
	1 011201(0113)3	0.00 (0), 7 11	0.00 (4)	PINFCH 2.0	PNPC 21T

Table III (Continued)

		· · · · · · · · · · · · · · · · · · ·		coupling const, Hz	
R (no.)	signal	¹ H NMR, $\delta^{a,b}$	¹³ C NMR, ppm ^{a,b}	PCH ₂ SiMe ₃	PR
C ₆ H ₅ (2f)	PC_6H_5				······································
	ipso		137.51 (dt)	$J_{\rm PC} = 90.9$	$J_{PCC} = 12.8$
	ortho	7.79 (m), 2 H	128.53 (d)		
	meta	7.49 (m), 2 H	129.26 (d)	$J_{\rm PNPC} = 5.8$	$J_{\text{PCCC}} = 10.4$
	para	7.49 (m), 1 H	131.57 (d)		
	DO 611 67			$J_{\text{PCSiC}} = 3.7$	$J_{\text{PCCCC}} = 3.1$
	POCH ₂ CF ₃	4.32 (m), 4 H	62.75 (qdt)		
		4.02 (m), 4 H	62.27 (qdt)		
	POCH ₂ CF ₃		122.63 (qt)		
			122.41 (qt)		
		gem-N ₃ P ₃ (OCH ₂	$CF_3)_4(CH_3)(R)$		
				coup	ling const, Hz
R (no.)	signal	¹ H NMR, $\delta^{a,b}$	¹³ C NMR, ppm ^{a,b}	PCH3	PR
C_2H_5 (3a)	PCH ₃	1.53 (dt), 3 H	18.98 (dt)	$J_{\rm PCH} = 13.8$	$J_{\rm PCCH} = 20.3$
	PCH ₂ CH ₃	1.76 (m), 2 H	26.83 (dt)	$J_{\text{PNPCH}} = 1.7$	$J_{\rm HCCH} = 7.5$
	PCH ₂ CH ₃	1.14 (dt), 3 H	5.11 (d)	$J_{\rm PC} = 94.0$	$J_{\rm PC} = 94.6$
	POCH ₂ CF ₃	4.25 (m), 8 H	62.61 (q)	$J_{\rm PNPC} = 3.7$	$J_{\rm PNPC} = 3.4$
	POCH ₂ CF ₃		122.75 (qt)		$J_{\rm PCC} = 6.1$
<i>i</i> -C ₃ H ₇ (3b)	PCH ₃	1.50 (dt), 3 H	16.79 (dt)	$J_{\rm PCH} = 13.4$	$J_{\rm PCCH} = 18.8$
	$PCH(CH_3)_2$	1.82 (m), 1 H	31.23 (dt)	$J_{\rm PNPCH} = 3.4$	$J_{\rm HCCH} = 7.0$
	$PCH(CH_3)_2$	1.14 (dd), 6 H	14.79 (d)	$J_{\rm PC} = 92.8$	$J_{\rm PC} = 94.0$
	POCH ₂ CF ₃	4.24 (m), 8 H	62.59 (q)	$J_{PNPC} = unres$	$J_{\rm PNPC} = 3.1$
	POCH ₂ CF ₃		122.75 (qt)		$J_{\rm PCC} = 1.2$
n-C4H9 (3c)	PCH ₃	1.52 (dt), 3 H	19.60 (dt)	$J_{\rm PCH} = 13.9$	$J_{\rm HCCH} = 7.0$
	PCH ₂ CH ₂ CH ₂ CH ₃		33.57 (dt)	$J_{\text{PNPCH}} = 1.7$	$J_{\rm PC} = 93.4$
	PCH ₂ CH ₂ CH ₂ CH ₃	1.80–1.35 (m), 6 H	23.58 (d)		
	PCH ₂ CH ₂ CH ₂ CH ₃		23.39 (d)	$J_{\rm PC} = 94.0$	$J_{\rm PNPC} = 3.4$
	PCH ₂ CH ₂ CH ₂ CH ₃	0.92 (t), 3 H	13.40 (s)	$J_{\rm PNPC} = 3.7$	$J_{PCC} = 17.1$
	POCH ₂ CF ₃	4.24 (m), 8 H	62.59 (q)		$J_{\rm PCCC} = 4.9$
	POCH ₂ CF ₃		122.74 (qt)		
$t-C_4H_9$ (3d)	PCH ₃	1.47 (dt), 3 H	14.67 (dt)	$J_{\rm PCH} = 13.1$	$J_{\rm PCCH} = 17.0$
	$PC(CH_3)_3$		33.24 (dt)	$J_{\text{PNPCH}} = 1.7$	$J_{\rm PC} = 93.4$
	$PC(CH_3)_3$	1.11 (d), 9 H	23.29 (s)	$J_{\rm PC} = 90.3$	$J_{\rm PNPC} = 3.1$
	POCH ₂ CF ₃	4.22 (m), 8 H	62.58 (q)	$J_{\rm PNPC} = 4.0$	
	POCH ₂ CF ₃		122.80 (qt)		
$neo-C_5H_{11}$ (3e)	PCH ₃	1.52 (dt), 3 H	22.97 (dt)	$J_{\rm PCH} = 13.7$	$J_{\rm PCH} = 13.5$
	$PCH_2C(CH_3)_3$	1.78 (dt), 2 H	47.15 (dt)	$J_{PNPCH} = unres$	$J_{\rm PNPCH} = unres$
	$PCH_2C(CH_3)_3$	1.10 (s), 9 H	30.94 (d)	$J_{\rm PC} = 93.4$	$J_{\rm PC} = 92.2$
	POCH ₂ CF ₃	4.21 (m), 8 H	62.64 (q)	$J_{\rm PNPC} = 3.1$	$J_{\rm PNPC} = 4.0$
	POCH ₂ CF ₃		122.78 (qt)		$J_{\rm PCCC} = 7.9$
C_6H_5 (3f)	PCH ₃	1.74 (dt), 3 H	21.99 (dt)	$J_{\rm PCH} = 14.6$	$J_{\rm PC} = 125.7$
	P <i>C</i> ₆ <i>H</i> 5				
	ipso		135.08 (dt)	$J_{\rm PNPCH} = 2.0$	$J_{\rm PNPC} = 3.0$
	ortho	7.81 (m), 2 H	128.68 (d)		
	meta	7.53 (m), 2 H	129.33 (d)	$J_{\rm PC} = 101.3$	$J_{\rm PCC} = 13.4$
	para	7.53 (m), 1 H	132.00 (d)		
				$J_{\rm PNPC} = 5.2$	$J_{PCCC} = 11.0$
	POCH ₂ CF ₃	4.33 (m), 4 H	62.75 (qt)		_
					$J_{\text{PCCCC}} = 3.0$
			** • * • •		
		4.10 (m), 4 H	62.47 (qt)		

^a CDCl₃ solution. ^b Key: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m). ^c Unres = unresolved.

Table IV. Bond Lengths (Å) for $gem-N_3P_3Cl_4(CH_2SiMe_3)(t-C_4H_9)$ (1d)

Cl(1)-P(2)	2.002 (1)	P(3)-N(2)	1.579 (2)
Cl(2) - P(2)	2.003 (1)	P(3) - N(3)	1.551 (1)
Cl(3) - P(3)	2.005 (1)	Si-C(5)	1.894 (2)
Cl(4) - P(3)	1.997 (1)	Si-C(6)	1.850 (2)
P(1) - N(1)	1.620(1)	Si-C(7)	1.853 (2)
P(1) - N(3)	1.619 (1)	Si-C(8)	1.855 (3)
P(1)-C(1)	1.813 (2)	C(1) - C(2)	1.520 (4)
P(1)-C(5)	1.776 (2)	C(1) - C(3)	1.533 (3)
P(2)-N(1)	1.550 (1)	C(1) - C(4)	1.540 (4)
P(2)-N(2)	1.570 (2)		

from the filtrate to yield an oil. The oil was vacuum-distilled twice at 90-130 °C/0.05 mmHg to yield pure 3 as a clear oil. The compound where $R = n \cdot C_4 H_9$ (3c) was recrystallized from hexane to yield a white solid. Complete characterization data are given in Tables I-III.

X-ray Structure Determination Technique. Our general X-ray struc-ture determination technique has been described previously,^{13,23,24} and

Table V. Bond Lengths (Å) for $gem-N_3P_3Cl_4(CH_2SiMe_3)_2$ (7)

		J J 4 (- 2	
Cl(1)-P(2)	2.005 (1)	P(3)-N(2)	1.585 (2)
Cl(2) - P(2)	2.018 (1)	P(3) - N(3)	1.550 (2)
Cl(3)-P(3)	1.987 (1)	Si(1)-C(1)	1.903 (2)
Cl(4)-P(3)	2.010(1)	Si(1) - C(2)	1.867 (3)
P(1) - N(1)	1.635 (1)	Si(1) - C(3)	1.850 (3)
P(1) - N(3)	1.623 (2)	Si(1)-C(4)	1.858 (3)
P(1) - C(1)	1.786 (2)	Si(2) - C(5)	1.884 (2)
P(1) - C(5)	1.775 (2)	Si(2) - C(6)	1.857 (3)
P(2)-N(1)	1.554 (2)	Si(2)-C(7)	1.847 (3)
P(2) - N(2)	1.577 (2)	Si(2)-C(8)	1.871 (3)

only the details related to the present work will be given here. Crystals of 1d and 7 were grown from hexane/CH₂Cl₂ solution by slow evapo-

(23) Allcock, H. R.; Nissan, R. A.; Harris, P. J.; Whittle, R. R. Organo-

metallics 1984, 3, 432.
 (24) Allcock, H. R.; Mang, M. N.; Riding, G. H.; Whittie, R. R. Organo-metallics 1986, 5, 2244.

Table VI. Bond Angles (deg) for $gem-N_3P_3Cl_4(CH_2SiMe_3)(t-C_4H_9)$ (1d)

N(1)-P(1)-N(3)	113.94 (7)	N(2)-P(3)-N(3)	119.65 (8)
N(1) - P(1) - C(1)	107.57 (9)	C(5) - Si - C(6)	111.3 (1)
N(1)-P(1)-C(5)	109.78 (9)	C(5)-Si-C(7)	104.8 (1)
N(3) - P(1) - C(1)	108.67 (9)	C(5) - Si - C(8)	110.1 (2)
N(3) - P(1) - C(5)	107.93 (9)	C(6) - Si - C(7)	110.9 (1)
C(1)-P(1)-C(5)	108.85 (9)	C(6) - Si - C(8)	109.8 (2)
Cl(1)-P(2)-Cl(2)	99.56 (3)	C(7) - Si - C(8)	109.8 (2)
Cl(1)-P(2)-N(1)	111.18 (6)	P(1)-N(1)-P(2)	123.15 (9)
Cl(1)-P(2)-N(2)	107.93 (7)	P(2)-N(2)-P(3)	119.98 (9)
Cl(2) - P(2) - N(1)	109.50 (6)	P(1)-N(3)-P(3)	122.74 (9)
Cl(2) - P(2) - N(2)	107.19 (7)	P(1)-C(1)-C(2)	108.3 (2)
N(1) - P(2) - N(2)	119.56 (8)	P(1)-C(1)-C(3)	109.9 (2)
Cl(3)-P(3)-Cl(4)	99.62 (4)	P(1)-C(1)-C(4)	108.9 (2)
Cl(3)-P(3)-N(2)	107.27 (7)	C(2)-C(1)-C(3)	110.4 (3)
Cl(3)-P(3)-N(3)	109.55 (6)	C(2)-C(1)-C(4)	109.3 (3)
Cl(4) - P(3) - N(2)	108.32 (7)	C(3)-C(1)-C(4)	110.1 (3)
Cl(4)-P(3)-N(3)	110.53 (6)	P(1)-C(5)-Si	119.3 (1)
Table VII. Rond Ang	les (deg) for i	pem-N-P-CL(CH-Si	$Me_{1}(7)$
Table VII. Bond Ang	les (deg) for $\frac{1}{2}$	$\frac{\text{gem-N}_{3}P_{3}Cl_{4}(CH_{2}Si)}{C(1)}$	$\frac{Me_3}{2}(7)$
$\frac{\text{Fable VII. Bond Ang}}{N(1)-P(1)-N(3)}$	$\frac{113.09}{100.40} (8)$	$\frac{\text{gem-N}_{3}P_{3}Cl_{4}(CH_{2}Si)}{C(1)-Si(1)-C(2)}$	$\frac{\mathrm{Me}_{3}_{2}(7)}{105.4(2)}$
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$	les (deg) for 2 113.09 (8) 109.49 (9)	$\frac{\text{gem-N}_{3}P_{3}Cl_{4}(CH_{2}Si)}{C(1)-Si(1)-C(2)}$ $C(1)-Si(1)-C(3)$ $C(1)-Si(1)-C(4)$	$\frac{Me_{3})_{2}(7)}{105.4(2)}$ 109.7(2)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(1)-P(1)-C(5)$	$\frac{\text{les (deg) for }}{113.09 (8)}$ $\frac{109.49 (9)}{107.04 (9)}$	$\frac{\text{gem-N_3P_3Cl_4(CH_2Si}}{C(1)-Si(1)-C(2)}$ $C(1)-Si(1)-C(3)$ $C(1)-Si(1)-C(4)$ $C(2)$ $Si(1)$ $C(2)$	$\frac{Me_{3})_{2}(7)}{105.4(2)}$ 109.7(2) 112.1(1) 110.6(2)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(1)$	les (deg) for 2 113.09 (8) 109.49 (9) 107.04 (9) 109.15 (9) 110.02 (9)	$\frac{\text{gem-N_3P_3Cl_4(CH_2Si}}{C(1)-Si(1)-C(2)}$ $C(1)-Si(1)-C(3)$ $C(1)-Si(1)-C(4)$ $C(2)-Si(1)-C(3)$ $C(2)-Si(1)-C(3)$	$\frac{Me_3)_2 (7)}{105.4 (2)} \\ 109.7 (2) \\ 112.1 (1) \\ 110.6 (2) \\ 100.2 (2) \\ $
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(1)$ $N(3)-P(1)-C(5)$ $N(3)-P(1)-C(5)$	les (deg) for 2 113.09 (8) 109.49 (9) 107.04 (9) 109.15 (9) 110.02 (9) 107.0 (1)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\ \hline C(1)-Si(1)-C(2)\\ C(1)-Si(1)-C(3)\\ C(1)-Si(1)-C(4)\\ C(2)-Si(1)-C(4)\\ C(2)-Si(1)-C(4)\\ C(2)-Si(1)-C(4)\\ \hline C(4)\\ $	$\frac{Me_3)_2}{105.4} \frac{(7)}{(2)}$ 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.3 (2) 109.8 (2)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(1)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$	les (deg) for 2 113.09 (8) 109.49 (9) 107.04 (9) 109.15 (9) 110.02 (9) 107.9 (1)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\ \hline C(1)-Si(1)-C(2)\\ C(1)-Si(1)-C(3)\\ C(1)-Si(1)-C(4)\\ C(2)-Si(1)-C(4)\\ C(2)-Si(1)-C(3)\\ C(2)-Si(1)-C(4)\\ C(3)-Si(1)-C(4)\\ C(5)-Si(2)-C(4)\\ \hline \end{array}$	$\frac{Me_3)_2}{105.4} \frac{(7)}{(2)}$ 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.3 (2) 109.8 (3) 109.8 (2)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(1)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $N(1)$	les (deg) for 2 113.09 (8) 109.49 (9) 107.04 (9) 109.15 (9) 110.02 (9) 107.9 (1) 99.89 (4)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(1)-Si(1)-C(4)\\C(2)-Si(1)-C(3)\\C(2)-Si(1)-C(3)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(6)\\C(7)\end{array}$	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.3 (2) 109.8 (3) 109.8 (2) 110.6 (1)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(1)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $Cl(1)-P(2)-Cl(2)$ $Cl(1)-P(2)-N(1)$	les (deg) for 2 113.09 (8) 109.49 (9) 107.04 (9) 109.15 (9) 110.02 (9) 107.9 (1) 99.89 (4) 108.98 (7)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(1)-Si(1)-C(4)\\C(2)-Si(1)-C(3)\\C(2)-Si(1)-C(3)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C(6)\\Si(2)-C(7)\\C(6)\\C(6)\\C(6)\\C(6)\\C(6)\\C(6)\\C(6)\\C(6$	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.3 (2) 109.8 (3) 109.8 (2) 110.0 (1) 104.0 (1)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(1)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $C(1)-P(2)-N(1)$ $C(1)-P(2)-N(1)$ $C(1)-P(2)-N(2)$	les (deg) for 1 113.09 (8) 109.49 (9) 107.04 (9) 109.15 (9) 110.02 (9) 107.9 (1) 99.89 (4) 108.98 (7) 107.38 (8)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(1)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C$	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.8 (3) 109.8 (3) 109.8 (2) 110.0 (1) 104.9 (1) 102.0 (2)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(1)$ $N(3)-P(1)-C(1)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $C(1)-P(2)-N(1)$ $Cl(1)-P(2)-N(2)$ $Cl(2)-P(2)-N(1)$ $Cl(2)-P(2)-N(1)$	les (deg) for 1 113.09 (8) 109.49 (9) 107.04 (9) 110.02 (9) 110.02 (9) 107.9 (1) 99.89 (4) 108.98 (7) 107.38 (8) 110.39 (7)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(8)\\C(6)-Si(2)-C(9)\\C(6)-Si(2)-Si(2)-C(9)\\C(6)-Si(2)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)\\C(6)-Si(2)\\C(6)-Si(2)-Si(2)\\C(6)-Si(2)\\C(6)-Si(2)\\C(6)-Si(2)\\C(6)-Si(2)\\C(6)-S$	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.8 (3) 109.8 (3) 109.8 (2) 110.0 (1) 104.9 (1) 112.9 (2) 109.2 (2)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $Cl(1)-P(2)-Cl(2)$ $Cl(1)-P(2)-N(1)$ $Cl(2)-P(2)-N(2)$ $Cl(2)-P(2)-N(1)$ $Cl(2)-P(2)-N(2)$ $N(1)$ $N(2)$	les (deg) for 1 113.09 (8) 109.49 (9) 107.04 (9) 100.15 (9) 110.02 (9) 107.9 (1) 99.89 (4) 108.98 (7) 107.38 (8) 110.39 (7) 107.97 (9)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(8)\\C(6)-Si(2)-C(7)\\C(6)-Si(2)-C(8)\\C$	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 109.3 (2) 109.8 (3) 109.8 (2) 110.0 (1) 104.9 (1) 112.9 (2) 108.0 (2) 111.0 (2)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $C(1)-P(2)-C(12)$ $C(1)-P(2)-N(1)$ $Cl(2)-P(2)-N(1)$ $Cl(2)-P(2)-N(2)$ $N(1)-P(2)-N(2)$ $N(1)-P(2)-N(2)$ $N(1)-P(2)-N(2)$ $N(1)-P(2)-N(2)$ $N(1)-P(2)-N(2)$	les (deg) for 1 113.09 (8) 109.49 (9) 107.04 (9) 100.15 (9) 110.02 (9) 107.9 (1) 99.89 (4) 108.98 (7) 107.38 (8) 110.39 (7) 107.97 (9) 120.28 (9) 100.22 (6)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(8)\\C(6)-Si(2)-C(7)\\C(6)-Si(2)-C(8)\\C(7)-Si(2)-Si(2)\\C(7)-Si(2)-Si(2)\\C(7)-Si(2)-Si(2)\\C(7)-Si(2)-Si(2)\\C(7)-Si(2)-Si(2)\\C(7)-Si(2)-Si(2)\\C(7)-Si(2)-Si(2)\\C(7)-Si(2)-Si(2)\\C(7)-Si(2)-Si(2)\\C(7)-Si($	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.3 (2) 109.8 (3) 109.8 (2) 110.0 (1) 104.9 (1) 112.9 (2) 108.0 (2) 111.0 (2) 102.4 (1)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(12)$ $Cl(1)-P(2)-N(1)$ $Cl(2)-P(2)-N(1)$ $Cl(2)-P(2)-N(2)$ $N(1)-P(2)-N(2)$	les (deg) for 1 113.09 (8) 109.49 (9) 107.04 (9) 100.15 (9) 107.9 (1) 99.89 (4) 108.98 (7) 107.38 (8) 110.39 (7) 107.97 (9) 120.28 (9) 100.32 (6)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(8)\\C(6)-Si(2)-C(7)\\C(6)-Si(2)-C(8)\\C(7)-Si(2)-C(8)\\C(7)-Si(2)-C(8)\\P(1)-N(1)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\N(2)-P(2)\\P(2)\\P(2)\\N(2)-P(2)\\P(2)\\P(2)\\P(2)\\P(2)\\P(2)\\P(2)\\P(2)\\$	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.3 (2) 109.8 (3) 109.8 (2) 110.0 (1) 104.9 (1) 112.9 (2) 108.0 (2) 111.0 (2) 112.4 (1) 112.5 (1)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(5)$ $N(3)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $C(1)-P(2)-N(1)$ $C(1)-P(2)-N(1)$ $C(1)-P(2)-N(2)$ $Cl(2)-P(2)-N(2)$ $Cl(2)-P(2)-N(2)$ $N(1)-P(2)-N(2)$ $Cl(3)-P(3)-Cl(4)$ $Cl(3)-P(3)-N(2)$ $Cl(3)-P(3)-N(2)$	les (deg) for 1 113.09 (8) 109.49 (9) 107.04 (9) 109.15 (9) 107.9 (1) 99.89 (4) 107.38 (8) 110.39 (7) 107.97 (9) 120.28 (9) 100.32 (6) 107.29 (8)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(8)\\C(6)-Si(2)-C(7)\\C(6)-Si(2)-C(8)\\C(7)-Si(2)-C(8)\\C(7)-Si(2)-C(8)\\P(1)-N(1)-P(2)\\P(2)-N(2)-P(3)\\P(1)-N(2)-P(3)\\P(1)-N(2)-P(3)\\P(1)-N(2)-P(3)\\P(1)-N(2)-P(3)\\P(2)-N(2)-P(3)\\P(2)-N(2)-P(3)\\P(2)-N(2)-P(3)\\P(2)-N(2)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P(3)-P(3)\\P(3)-P($	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.3 (2) 109.8 (3) 109.8 (2) 110.0 (1) 104.9 (1) 112.9 (2) 108.0 (2) 111.0 (2) 122.4 (1) 118.5 (1) 123.2 (1)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(5)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $Cl(1)-P(2)-N(2)$ $Cl(2)-P(2)-N(2)$ $Cl(2)-P(2)-N(2)$ $N(1)-P(2)-N(2)$ $Cl(3)-P(3)-Cl(4)$ $Cl(3)-P(3)-N(2)$ $Cl(3)-P(3)-N(2)$ $Cl(3)-P(3)-N(2)$	les (deg) for 1 113.09 (8) 109.49 (9) 107.04 (9) 109.15 (9) 107.9 (1) 99.89 (4) 107.38 (8) 110.39 (7) 107.97 (9) 120.28 (9) 100.32 (6) 107.29 (8) 109.90 (7)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(1)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(8)\\C(6)-Si(2)-C(8)\\C(7)-Si(2)-C(8)\\C(7)-Si(2)-C(8)\\P(1)-N(1)-P(2)\\P(2)-N(2)-P(3)\\P(1)-N(3)-P(3)\\P(1)-C(1)-Si(2)-C(3)\\P(1)-C(1)-Si(3)-P(3)\\P(1)-C(1)-Si(2)-C(3)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-C(1)-Si(2)\\P(1)-$	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.3 (2) 109.8 (3) 109.8 (2) 110.0 (1) 104.9 (1) 112.9 (2) 108.0 (2) 111.0 (2) 122.4 (1) 118.5 (1) 123.2 (1)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(5)$ $N(3)-P(1)-C(5)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $Cl(1)-P(2)-N(2)$ $Cl(2)-P(2)-N(1)$ $Cl(2)-P(2)-N(2)$ $N(1)-P(2)-N(2)$ $Cl(3)-P(3)-Cl(4)$ $Cl(3)-P(3)-N(2)$ $Cl(3)-P(3)-N(2)$ $Cl(4)-P(3)-N(2)$ $Cl(4)-P(3)-N(2)$ $Cl(4)-P(3)-N(2)$	les (deg) for 1 113.09 (8) 109.49 (9) 107.04 (9) 109.15 (9) 110.02 (9) 107.9 (1) 99.89 (4) 107.38 (8) 110.39 (7) 107.97 (9) 120.28 (9) 100.32 (6) 107.29 (8) 109.90 (7) 107.32 (9)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(8)\\C(6)-Si(2)-C(8)\\C(7)-Si(2)-C(8)\\C$	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.8 (3) 109.8 (3) 109.8 (2) 110.0 (1) 104.9 (1) 112.9 (2) 108.0 (2) 111.0 (2) 122.4 (1) 118.5 (1) 123.2 (1) 120.2 (1) 121.4 (1)
Table VII. Bond Ang $N(1)-P(1)-N(3)$ $N(1)-P(1)-C(1)$ $N(1)-P(1)-C(1)$ $N(3)-P(1)-C(1)$ $N(3)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(1)-C(5)$ $C(1)-P(2)-C(2)$ $C(1)-P(2)-N(2)$ $C(1)-P(2)-N(2)$ $C(2)-P(2)-N(2)$ $N(1)-P(2)-N(2)$ $C(3)-P(3)-C(4)$ $C(3)-P(3)-N(2)$ $C(3)-P(3)-N(3)$ $C(4)-P(3)-N(2)$ $C(4)-P(3)-N(2)$ $C(4)-P(3)-N(3)$ $N(2)$	les (deg) for 1 113.09 (8) 109.49 (9) 107.04 (9) 100.02 (9) 100.02 (9) 107.9 (1) 99.89 (4) 107.38 (8) 110.39 (7) 107.97 (9) 120.28 (9) 100.32 (6) 107.29 (8) 109.90 (7) 107.32 (9) 110.11 (7)	$\begin{array}{c} gem-N_3P_3Cl_4(CH_2Si\\C(1)-Si(1)-C(2)\\C(1)-Si(1)-C(3)\\C(2)-Si(1)-C(4)\\C(2)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(3)-Si(1)-C(4)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(6)\\C(5)-Si(2)-C(7)\\C(5)-Si(2)-C(8)\\C(6)-Si(2)-C(8)\\C(7)-Si(2)-C(8)\\P(1)-N(1)-P(2)\\P(2)-N(2)-P(3)\\P(1)-N(3)-P(3)\\P(1)-C(1)-Si(1)\\P(1)-C(5)-Si(2)\\\end{array}$	Me ₃) ₂ (7) 105.4 (2) 109.7 (2) 112.1 (1) 110.6 (2) 109.8 (3) 109.8 (3) 109.8 (2) 110.0 (1) 104.9 (1) 112.9 (2) 108.0 (2) 111.0 (2) 122.4 (1) 123.2 (1) 120.2 (1) 121.4 (1)

Table VIII. Positional Parameters and Their Estimated Standard Deviations for gem- $N_3P_3Cl_4(CH_2SiMe_3)(t-C_4H_9)$ (1d)

atom	x	у	Z	
Cl(1)	0.29345 (8)	0.23396 (6)	0.23054 (5)	
Cl(2)	0.17189 (6)	0.26193 (5)	0.37650 (6)	
Cl(3)	0.45146 (6)	0.24934 (6)	0.54846 (6)	
Cl(4)	0.55822 (7)	0.22507 (6)	0.39294 (8)	
P (1)	0.39220 (5)	0.43727 (4)	0.36855 (4)	
P(2)	0.29651 (5)	0.28897 (4)	0.33902 (5)	
P(3)	0.44723 (5)	0.28291 (5)	0.43213 (5)	
Si	0.25332 (6)	0.50863 (5)	0.49602 (6)	
N(1)	0.3075 (2)	0.3861 (1)	0.3316 (1)	
N(2)	0.3632 (2)	0.2375 (1)	0.3934 (2)	
N(3)	0.4571 (1)	0.3803 (1)	0.4249(1)	
C(1)	0.4574 (2)	0.4776 (2)	0.2848 (2)	
C(2)	0.4930 (3)	0.4028 (3)	0.2370 (2)	
C(3)	0.5355 (3)	0.5316 (3)	0.3162 (3)	
C(4)	0.3958 (3)	0.5312 (2)	0.2306 (2)	
C(5)	0.3533 (2)	0.5239 (2)	0.4270 (2)	
C(6)	0.2628 (2)	0.4090 (2)	0.5538 (2)	
C(7)	0.2554 (3)	0.6014 (2)	0.5641 (2)	
C(8)	0.1477 (2)	0.5086 (2)	0.4367 (3)	
C(3) C(4) C(5) C(6) C(7) C(8)	0.5355 (3) 0.3958 (3) 0.3533 (2) 0.2628 (2) 0.2554 (3) 0.1477 (2)	0.5316 (3) 0.5312 (2) 0.5239 (2) 0.4090 (2) 0.6014 (2) 0.5086 (2)	0.3162 (3) 0.2306 (2) 0.4270 (2) 0.5538 (2) 0.5641 (2) 0.4367 (3)	

ration of the solvent. A summary of the important crystallographic data is presented in Table X.

The structures were solved by direct methods using MULTAN 82.²⁵ In each case, the first E map revealed the positions of all non-hydrogen atoms. Both structures were refined by full-matrix, least-squares calculations with anisotropic thermal parameters for the non-hydrogen atoms. Difference Fourier syntheses, calculated toward the end of refinement, showed maxima consistent with the expected positions of H

(26) Allcock, H. R.; Desorcie, J. L.; Riding, G. H. Polyhedron 1987, 6, 119.

Table IX. Positional Parameters and Their Estimated Standard Deviations for $gem-N_3P_3Cl_4(CH_2SiMe_3)_2$ (7)

	0 3 3 10		
atom	x	У	Z
Cl(1)	0.25942 (8)	0.30041 (8)	0.01147 (4)
Cl(2)	0.12096 (8)	0.11873 (9)	-0.09959 (6)
Cl(3)	0.46356 (11)	0.47680 (8)	-0.18300 (6)
Cl(4)	0.29661 (11)	0.27849 (13)	-0.27172 (5)
P (1)	0.53151 (6)	0.11833 (5)	-0.09534 (3)
P(2)	0.29271 (7)	0.21703 (6)	-0.07207 (4)
P(3)	0.39795 (8)	0.30963 (7)	-0.17418 (4)
Si(1)	0.60934 (8)	-0.06185 (7)	-0.20513 (4)
Si(2)	0.77007 (8)	0.27364 (7)	-0.00172 (4)
N(1)	0.4177 (2)	0.1325 (2)	-0.0500 (1)
N(2)	0.2893 (2)	0.3167 (2)	-0.1288 (1)
N(3)	0.5202 (2)	0.2221 (2)	-0.1538 (1)
C(1)	0.5152 (2)	-0.0268 (2)	-0.1356 (1)
C(2)	0.6003 (5)	-0.2296 (3)	-0.2157 (2)
C(3)	0.5240 (5)	0.0140 (4)	-0.2862 (2)
C(4)	0.7899 (3)	-0.0144 (4)	~0.1799 (2)
C(5)	0.6928 (2)	0.1251 (2)	-0.0370 (1)
C(6)	0.8229 (4)	0.3601 (3)	-0.0706 (2)
C(7)	0.6503 (3)	0.3580 (3)	0.0375 (2)
C(8)	0.9265 (3)	0.2315 (4)	0.0645 (2)

Table X. Summary of Crystal Data and Collection Parameters

	1d	7
formula	C ₈ H ₂₀ Cl ₄ N ₃ P ₃ Si	C ₈ H ₂₂ Cl ₄ N ₃ P ₃ Si ₂
fw	421.1	451.2
cryst size, mm	$0.40 \times 0.32 \times 0.21$	$0.63 \times 0.45 \times 0.54$
space group	Pbca	$P2_1/n$
a, Å	14.884 (4)	10.145 (4)
b, Å	15.815 (4)	11.060 (5)
c, Å	16.615 (4)	19.999 (6)
β , deg		103.56 (3)
V, Å ³	3910.9	2181.4
z	8	4
$D(\text{calcd}), \text{g/cm}^3$	1.43	1.37
radiation	Μο Κα	Μο Κα
θ limits, deg	25	25
μ , cm ⁻¹	9.03	8.7
λ, \mathbf{A}	0.71073	0.71073
T, K	293	293
scan method	$\omega/2\theta$	$\omega/2\theta$
ω -scan width, deg	0.80 + 0.35 tan θ	$0.60 + 0.35 \tan \theta$
cryst decay	3.3%	2.0%
empirical abs cor		
min cor factor	0.961	0.965
max cor factor	1.000	1.000
no. of unique data measd	3445	3827
no. of data used	2723	3179
$[I > 3\sigma(I)]$		
data:param ratio	11.0	8.4
R, R_{w}	0.0365, 0.0461	0.042, 0.061
$(=(\sum \Delta^2 / \sum w F_o^2)^{1/2})$		
$(\Delta/\sigma)_{\rm max}$ in last cycle	0.15	0.30
$\Delta \rho$ in final ΔF map, e Å ⁻³	0.26	0.48
final p param in weighting scheme	0.020	0.050
av shift/error	2.81	2.068

atoms in both structures. The H atoms were included in the refinement at their idealized geometric positions (C-H = 0.95 Å). At the conclusion of the refinements, the values of R and R_w were 0.0365 and 0.0461, respectively, for 1d and 0.042 and 0.061, respectively, for 7. In the refinements, weights were derived from the counting statistics.

Acknowledgment. We thank the Air Force Office of Scientific Research for support of this work.

Registry No. 1a, 115421-93-7; **1b**, 115421-94-8; **1c**, 115421-95-9; **1d**, 115422-09-8; **1e**, 115422-10-1; **1f**, 115421-96-0; **2a**, 115421-97-1; **2b**, 115421-98-2; **2c**, 115421-99-3; **2d**, 115422-00-9; **2e**, 115422-01-0; **2f**, 115422-02-1; **3a**, 115422-03-2; **3b**, 115422-04-3; **3c**, 115422-05-4; **3d**, 115422-06-5; **3e**, 115422-07-6; **3f**, 115422-04-3; **3c**, 115422-05-4; **3d**, 115422-06-5; **3e**, 115422-07-6; **3f**, 115422-08-7; **4**, 940-71-6; **7**, 104738-11-6; **8a**, 72474-25-0; **8b**, 72474-28-3; **8c**, 72474-27-2; **8d**, 72474-20-5; **8e**, 110718-21-3; **8f**, 84811-29-0; Me₃SiCH₂MgCl, 13170-43-9; Me₃SiCH₂Cl, 2344-80-1; C₂H₃MgCl, 2386-64-3; *i*-C₃H₇MgCl, 1068-55-9; *n*-C₄H₉MgCl, 693-04-9; C₆H₃MgCl, 100-59-4; *neo*-C₅H₁₁MgCl, 13132-23-5; *i*-C₄H₉MgCl, 677-22-5; Me₃SiCH₂I, 4206-

⁽²⁵⁾ Main, P.; Fiske, S. J.; Hull, S.; Lessinger, L.; Germain, G.; Declercq, J. P. Woolfson, M. M. "MULTAN 82"; Universities of York, England, and Louvain, Belgium, 1982.

67-1; neo-C₅H₁₁Cl, 753-89-9; [(n-Bu)₃PCuI]₄, 59245-99-7; CF₃CH₂OH, 75-89-8; CF3CH2ONa, 420-87-1.

Supplementary Material Available: C-H bond lengths (Tables XI and XII), H-C-X bond angles (Tables XIII and XIV), positional parameters

Notes

Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011

Platinum(0) Complexes as Catalysts of Metal Carbonyl **Substitution Reactions**

Shian-Jy Wang and Robert J. Angelici*

Received March 8, 1988

Phosphine-substituted metal carbonyls have often been prepared by methods involving thermal or photochemical replacement of a CO ligand, despite several commonly observed problems: low yields, mixtures of mono- to multi-substituted products, and long reaction times.¹ More recently, several new procedures² have been developed to promote CO substitution by other ligands under mild conditions. Among them is Me₃NO,³ which oxidatively decarbonylates metal carbonyls, leading to a coordinatively unsaturated intermediate. Sodium benzophenone ketyl (BPK)^{4,5} has been shown to catalyze CO substitution. Also, several transition-metal complexes induce catalytic CO displacement in metal carbonyls. These include $[CpFe(CO)_2]_2$,⁶ $[CpMo(CO)_3]_2$,⁷ $CoCl_2$,⁸ PdO,⁹ and Fe₂(CO)₆(SMe)₂.¹⁰ In most of these reactions, there is evidence for electron-transfer catalysis (ETC) or it has been suggested that ETC is involved. We report here that the Pt(0) complexes $Pt(PPh_3)_4$ and $Pt(dibenzylideneacetone)_2$ (Pt-(dba)₂) also catalyze the phosphine substitution of CO in mono-, di-, and trinuclear metal carbonyl complexes. These two catalysts offer a convenient, high-yield route to monosubstituted M_x - $(CO)_{\nu-1}L$ complexes where L is a monodentate phosphine ligand.

- (1) (a) Clifford, A. F.; Mukherjee, A. K. Inorg. Chem. 1963, 2, 151. (b) Cotton, F. A.; Parish, R. V. J. Chem. Soc. 1960, 1440.
- Albers, M. O.; Coville, N. J. Coord. Chem. Rev. 1984, 53, 227 (a) Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Commun. 1975, 829. (3)(b) Koelle, U. J. Organomet. Chem. 1978, 155, 53. (c) Churchill, M. R.; Lashewycz, R. A.; Shapley, J. R.; Richter, S. I. Inorg. Chem. 1980,
- 19, 1277. (d) Luh, T.-Y. Coord. Chem. Rev. 1984, 60, 255. (a) Bruce, M. I.; Kehce, D. C; Matisons, J. G.; Nicholson, B. K.; Rieger, P. H.; Williams, M. L. J. Chem. Soc., Chem. Commun. 1982, 442. (b) Bruce, M. I.; Hambley, T. W.; Nicholson, B. K.; Snow, M. R. J. Organomet. Chem. 1982, 235, 83. (c) Butts, S. B.; Shriver, D. F. J. Organomet. Chem 1979, 169, 191.
- Organomet, Chem 1979, 109, 191.
 Bruce, M. I. Coord. Chem. Rev. 1987, 76, 1.
 (a) Coville, N. J.; Albers, M. O.; Singleton, E. J. Chem. Soc., Dalton Trans. 1983, 947. (b) Coville, N. J.; Albers, M. O.; Ashworth, T. V.; Singleton, E. J. Chem. Soc., Chem. Commun. 1981, 408. (c) Coville, N. J.; Darling, E. A. J. Organomet. Chem. 1984, 277, 105. (d) Albers, M. O.; Coville, N. J.; Singleton, E. J. Organomet. I. C. A.: Covilla, N. J.
 (e) Harris, G. W.; Albers, M. O.; Broevens, L. C. A.: Covilla, N. J. (e) Harris, G. W; Albers, M. O.; Boeyens, J. C. A.; Coville, N. J. Organometallics 1983, 2, 609. (f) Aime, S.; Botta, M.; Gobetto, R.; Osella, D. Inorg. Chim. Acta 1986, 115, 129.
 (a) Coville, N. J. J. Organomet. Chem. 1980, 190, C84. (b) Coville,
- (7) N. J. J. Organomet. Chem. 1981, 218, 337. (a) Albers, M. O.; Coville, N. J.; Singleton, E. J. Chem. Soc., Dalton
- (8) Trans. 1982, 1069. (b) J. Organomet. Chem. 1980, 199, 55. (c) J. Organomet. Chem. 1981, 217, 385. (d) Albers, M. O.; Coville, N. J.; Ashworth, T. V.; Singleton, E.; Swanepoel, H. E. J. Chem. Soc., Chem. Commun. 1980, 489.
- (a) Albers, M. O.; Coville, N. J.; Singleton, E. J. Chem. Soc., Chem. (9) (a) The Commun. 1982, 96. (b) Coville, N. J.; Albers, M. O. Inorg. Chim. Acta 1982, 65, L7. (c) Albers, M. O.; Coville, N. J.; Singleton, E. J. Or-ganomet. Chem. 1982, 234, C13. (d) Harris, G. W.; Boeyens, J. C. A.; Coville, N. J. J. Organomet. Chem. 1983, 255, 87.
 (10) Aime, S.; Botta, M.; Gobetta, R.; Osella, D. Organometallics 1985, 4, 1475.
- 1475.

for hydrogen atoms (Tables XV and XVI), selected least-squares planes and distances of atoms from those planes (Tables XVII and XVIII), and thermal parameters (Tables XIX and XX) (10 pages); observed and calculated structure factor amplitudes (Tables XXI and XXII) (60 pages). Ordering information is given on any current masthead page.

Experimental Section

General Reagents and Procedures. All reactions were performed under prepurified N₂. Unless noted otherwise, reagent grade chemicals were used without further purification. Methylene chloride and hexanes were distilled from CaH₂ and stored under N₂ over type 4A molecular sieves. Benzene was distilled from sodium benzophenone under N

The starting compounds, W(CO)₆, Fe(CO)₅, CpMn(CO)₃, Re₂(C-O)10, and Ph2PCH2CH2PPh2 (dppe) were purchased from Pressure Chemical Co. Other starting compounds, $CpFe(CO)_2I$,¹¹ Re(CO)₅(C-H₃),¹² Pt(PPh₃)₄,¹³ and Pt(dba)₂,¹⁴ were prepared as reported in the literature. The compound $Os_3(CO)_{12}$ was prepared from OsO_4 by a modification of a literature procedure¹⁵ that was carried out in a 300-mL stainless steel pressure autoclave (Parr Model No. 4761).

Infrared spectra were recorded on a Perkin-Elmer 681 instrument. ¹H NMR spectra were recorded on a Nicolet NT-300 spectrometer. Electron-impact mass spectra were obtained by using a Finnigan 4000 GC-MS

Reaction of Metal Carbonyls with PPh3 in the Presence of Pt(PPh3)4. A solution of PPh₃ (1-2 equiv), the metal carbonyl compound (1 equiv) $(W(CO)_6, Fe(CO)_5, CpFe(CO)_2I, Re(CO)_5(CH_3), CpMn(CO)_3, Re_2$ $(CO)_{10}$ or $Os_3(CO)_{12}$, and $Pt(PPh_3)_4$ (0.1 equiv) was brought to reflux in 50 mL of benzene under an N2 atmosphere. The reactions were monitored by changes in the IR spectra (2200-1600 cm⁻¹). At the end of the reaction (as established by the disappearance of the starting material), the solution was cooled to room temperature and the solvent removed under vacuum. The residue dissolved in CH_2Cl_2 was then passed through a silica-gel column (2.5 \times 15 cm) with 1:1 CH₂Cl₂/ hexanes as the eluant. The PPh₃-substituted products were collected. Recrystallization from CH₂Cl₂/hexanes gave the isolated products (percent yields in Table I), which were identified by their IR and ¹H NMR spectra (Table I). The catalyst, Pt(PPh₃)₄, was recovered. Also shown in Table I are results of control reactions where no Pt(0) catalyst was used

Reaction of Metal Carbonyls with Ligands in the Presence of Pt(dba)₂. A 50-mL benzene solution containing a donor ligand (PPh₃, PPh₂Me, dppe, P(OMe)₃, or norbornadiene) (usually 1.5 equiv), a metal carbonyl (Fe(CO)₅ or CpFe(CO)₂I) (1 equiv), and Pt(dba)₂ (0.1 equiv) was refluxed in a Schlenk flask. The reaction was monitored by IR spectroscopy (2200-1600 cm⁻¹), and heating was continued until the reaction had gone to completion. The solvent was removed under vacuum; the residue dissolved in CH₂Cl₂ was chromatographed (2.5×15 cm) on silica gel with 1:1 CH₂Cl₂/hexanes as the eluent. The products were recrystallized from CH_2Cl_2 /hexanes.

Results and Discussion

The substitution of one CO ligand in a variety of metal carbonyl complexes by PPh₃ is catalyzed by $Pt(PPh_3)_4$ (eq 1) in refluxing

$$M_x(CO)_y + PPh_3 \xrightarrow{Pt(PPh_3)_4} M_x(CO)_{y-1}(PPh_3) + CO$$
 (1)

$$M_x(CO)_y = W(CO)_6, Fe(CO)_5, CpFe(CO)_2I,Re(CO)_5(CH_3), Re_2(CO)_{10}, Os_3(CO)_{12}$$

benzene. As summarized in Table I, the products are isolated in 70-98% yields and the $Pt(PPh_3)_4$ catalyst may be recovered nearly quantitatively. Under the conditions of the reactions, but in the absence of the catalyst, there is essentially no reaction. Only the monophosphine-substituted complexes are obtained even when

1965; Vol. 1, pp 175-6. Hieber, W.; Braun, G.; Beck, W. Chem. Ber. **1960**, 93, 901.

- Ugo, R.; Cariati, F.; La Monica, G. Inorg. Synth. 1968, 11, 105. Cherwinski, W. J.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc., Dalton (14)Trans. 1974, 1405
- (15) Bradford, C. W.; Nyholm, R. S. Chem. Commun. 1967, 384.

⁽¹¹⁾ King, R. B. Organometallic Syntheses; Academic; New York, London,