Synthesis of Boron Nitride via a Polymeric Vinylpentaborane Precursor

Sir:

In a recent communication, $¹$ we showed that 2-vinylpentaborane</sup> could undergo a thermally induced polymerization reaction to form either soluble or cross-linked **poly(2-vinylpentaborane)** oligomers. Furthermore, we demonstrated that these materials, when heated under an argon atmosphere, produced pure boron carbide (B_4C) in high ceramic yield. We have now found that when poly(a1kenylpentaboranes) are pyrolyzed in the presence of a suitable reactant, they can serve as precursors to other important nonoxide ceramics. As an illustration, we report here the high-yield synthesis of boron nitride from the soluble oligomer poly(2-vinylpentaborane) **(I).**

There have been several previous reports of the use of polymer precursor routes as alternatives for the preparation of boron nitride (BN) ,²⁻⁷ and these studies have resulted in the production of ceramic materials in a range of yields and purities. Recently, several studies have shown that the pyrolysis of certain boron polymers in the presence of ammonia can lead to enhanced yields and purity of boron nitride products. For example, Seyferth and Rees⁸ recently reported that ammonia pyrolysis of diamminelinked decaborane polymers produced crystalline BN with reduced carbon contamination. Likewise, Ultrasystems⁹ has described the synthesis of BN from ammonia pyrolysis of soluble polyborazine compounds.

Pentaborane(9) is known to react readily with ammonia and alkylated amines to form a variety of products.¹⁰ Thus, depending on reaction conditions, simple deprotonation $[(NH_4^+)(B_5H_8^-)]$,¹¹ formation of a diammoniate $[(H_2B(NH_3)_2^*)(B_4H_7)]$,¹¹ or production of borazines may occur.¹² We have now found that I also readily reacts with ammonia at moderate temperatures to produce an intermediate that, when heated at higher temperatures, gives boron nitride in high yields.

The conversion of polymer I to boron nitride was accomplished by slowly heating (2 °C/min) a 470-mg sample of I from 25 to 350 °C under a flow of gaseous ammonia $(\sim 100 \text{ mL/min})$, followed by faster heating at the rate of 10 \degree C/min until a maximum temperature of 1000 °C was achieved. This temperature was then maintained for an additional 2 h, after which it was found that 472 mg of a light yellow solid was produced. Elemental analysis¹³ of the material showed a B/N ratio of 1.05 with a measured level of carbon of 0.81%. The diffuse-reflectance IR spectrum14 is consistent with spectra previously reported for

- (1) Mirabelli, M. G. L.; Sneddon, L. G. *J. Am. Chem. SOC.* **1988,** 110, 3305-3 307.
- Walker, B. E., Jr.; Rice, R. W.; Becher, P. **F.;** Bender, B. A.; Coblenz, (2) W. S. *Am. Ceram. SOC. Bull.* **1983, 62,** 916-923. Bender, B. A,; Rice, R. W.; Spann, J. R. *Ceram. Eng. Sei. Proc.* **1985,**
- 6, 1171-1183.
- Paciorek, K. J. L.; Harris, D. H.; Kratzer, R. H. *J. Polym. Sci., Polym. Chem. Educ.* **1986,** *24,* 173-185.
- (5) Narula, C. K.; Paine, R. T.; Schaeffer, R. In *Befter Ceramics Through Chemistry II;* Brinker, C. J., Clark, D. E., Ulrich, D. R., Eds.; MRS Symposia Proceedings 73; Materials Research Society: Pittsburgh, PA, 1986; pp 383-388.
- Narula, C. K.; Paine, R. T.; Schaeffer, R. *Polym. Prepr. (Am. Chem.* (6) *SOC., Diu. Polym. Chem.)* **1987,** *28,* 454.
- (7) Narula, C. K.; Schaeffer, R.; Paine, R. T.; Datye, A,; Hammetter, W. F. *J. Am. Chem. SOC.* **1987,** 109, 5556-5557.
- (8) **(a)** Rees, W. S., Jr.; Seyferth, D. Presented at the **194th** National Meeting of the American Chemical Society, New Orleans, LA, Sept 1987; paper INOR 446. (b) Rees, W. S., Jr.; Seyferth, D. *J. Am. Ceram. SOC.* **1988,** 71, C194-C196.
- (9) Paciorek, K. J. L.; Harris, D. H.; Krone-Schmidt, W.; Kratzer, R. H. Technical Report No. 4; Ultrasystems **Defense** and Space Inc.: Imine, CA, 1987.
- For a summary of the reactions of polyhedral boranes with Lewis bases, *see:* Shore, S. G. In *Boron Hydride Chemistry;* Muetterties, E. L., Ed.; Academic: New York, 1975; Chapter 3.
- Kodama, G.; Engelhardt, U.; Lafrenz, C.; Parry, R. W. *J. Am. Chem.* (11) *SOC.* **1972,** 94, 407-412.
-
- Bramlett, C. L.; Tabereaux, **A.** T., Jr. *Inorg. Chem.* **1970,** 9,978-979. Anal. Calcd for BN: B, 43.55; N, 56.45; Found BN prepared by pyrolysis of **I:** B, 45.24; N, 55.88; C, 0.81; H, 0.46.
- IR (diffuse): 3640 m, 3420 s, 2800 w, 2560 **m,** 2320 w, 1440 vs, vbr, (14) 1100 **s,** 940 w, 800 vs, 680 **s,** 620 **s** cm-I.

Figure 1. TGA analysis of polymer I under ammonia.I6

boron nitride.¹⁵ The material produced under these conditions was largely amorphous; however, crystalline BN (as determined by X-ray powder diffraction) was obtained when heating was continued for longer periods at 1450 °C.

Boron nitride prepared from I in the manner described above was obtained in 100.4% ceramic yield (based on a theoretical ceramic yield²¹ of 139.0%) and a chemical yield of 72.2% based on the following equation:

$$
-\begin{bmatrix} \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} \end{bmatrix} + 5NH_3 \quad \frac{NH_3}{1000^{\circ}C} \quad 5BN + 2CH_4 + 9H_2
$$
\n(1)

Thus, the addition of 5 equiv of $NH₃$ to I, followed by formation of boron nitride at higher temperatures, should result in a theoretical weight increase of 39%. This prediction is in excellent agreement with the thermogravimetric analysis¹⁶ of I under an ammonia atmosphere (Figure l), which showed a sharp weight increase in the range $75-400$ °C (\sim 48%) followed by a gradual weight loss from 475 to 650 °C (\sim 10%).

In an effort to isolate the intermediate compound at the point of maximum weight gain, a 480-mg sample of I was placed in a tube furnace under a flow of gaseous ammonia (\sim 100 mL/min). The sample was initially heated to 75 °C and then slowly heated (2 °C/min) through the temperature range 75-350 °C. Under these conditions a white, brittle material (640 mg) I1 was produced that was insoluble in a variety of polar and nonpolar organic solvents. A diffuse-reflectance IR spectrum¹⁷ revealed the presence of N-H, C-H, B-H, and B-N bonds, while elemental analysis¹⁸ is consistent with an empirical formula of $C_{2,0}B_{5,1}N_{4,8}H_{8,0}$. Since the B/C ratio in this material is identical with that of starting polymer I, the polymeric hydrocarbon backbone has probably remained intact. A UV-visible spectrum of the material showed a broad absorption with a maximum at 212 nm, similar to those that have been shown to arise from the $\pi-\pi^*$ electronic transition in borazine and fused-borazine¹⁹ polymers. This observation, coupled with the measured B/N ratio of \sim 1 in II, suggests that the pendant pentaborane cages in I have reacted with ammonia to form borazine-type ring systems in 11. Indeed, the analytical data are in excellent agreement with the formation of a borazanaphthalene unit,¹⁹ as shown in eq 2.

These results are thus consistent with the formation of BN from I in a two-step process. The initial step involves the formation

- (15) (a) Lynch, A. T.; Sneddon, L. G.; unpublished results. (b) Brame, E. G., Jr.; Margrave, J. L.; Meloche, **V.** W. *J. Inorg. Nucl. Chem.* **1957,** *5,* 48-52. (c) Takahoshi, T.; Itoh, H.; Takeuchi, **A.** *J. Cryst. Growth* **1979,** 47, 245-250.
- (16) TGA results were obtained by heating a sample of polymer **I** under ammonia from room temperature to 700 °C with a heating rate of 10 ^oC/min.
- (17) IR (diffuse): 3420 vs, 3160 s, 2940 **s,** 2900 **s,** 2850 s, 2500 m, 1600 m, 1400 s, 1110 m, 700 m, 610 m cm⁻
- (18) Elemental analysis of polymer **11:** B, 33.15; N, 41.03; C, 14.70; H, 4.93.
- (19) Neiss, M. A.; Porter, R. F. *J. Am. Chem. SOC.* **1972,** *94,* 1438-1443.

$$
+ 5 NH_3 \xrightarrow{\text{RL-350°C}} + 5 NH_3 \xrightarrow{\text{RL-350°C}} + \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \tag{2}
$$

of a borazine polymer intermediate **(eq 2),** followed by a second decomposition reaction at higher temperatures to form BN as shown in **eq 3.** Indeed, it was also found that further treatment

of a pure sample of **I1** under ammonia at higher temperatures resulted in formation of BN.

In summary, the results described herein demonstrate that **poly(2-vinylpentahorane)** oligomers are useful soluble ceramic precursors that can he readily converted to boron nitride in high yields. The potential applications for the processing of BN in this manner are numerous and include synthesis of composite materials²⁰ and the generation of thin films or coatings.²¹ Furthermore, owing to the highly reactive nature of the pentaborane cage, these polymers may well serve as precursors to a wide variety of other important boron-containing ceramics and work exploring these possibilities is currently in progress.

Acknowledgments. We thank the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, for the support of this research. We also thank Dr. Andrew McGhie and the National Science Foundation Materials Research Laboratory at the University of Pennsylvania for assistance in obtaining TGA results. We are also grateful to Dr. Martin McKenzie and Jim Halpin of the Du Pont Marshall Laboratory for diffuse-reflectance infrared spectra.

(21) Wynnc, K. 1.; Rice, R. W. *Annu. Reo. Mater. Sei.* **1904.14.297-334.**

Received May 24, 1988

Synthesis of Thiomolybdenyl Complexes with $[Mo_2(S)_2(O)_2]^2$ ⁺ Cores and Substitutionally Labile Ligands. Crystal and Molecular Structure of the $[Mo₂O₂S₄(DMF)₃]$ Complex

Sic

The reactivity characteristics of the Mo-coordinated S^2 , S_2^2 and S_4^2 ⁻ terminal ligands (L²⁻) in the $[L_2Mo_2(\mu-S)_2S_nO_{2-n}]^2$ complexes $(n = 0-2)$ are greatly affected by the nature of the neighboring terminal ligands on the Mo atom.¹ A detailed study of neighbor-ligand effects in the relative nucleophilic properties of coordinated S^2 , S_2^2 , or S_4^2 ligands is expected to be useful in the evaluation of specific features that may be important in the catalysis of the hydrodesulfurization (HDS) reaction.² Among

Figure 1. Synthesis and derivatives of the $[M_0O_2O_2S_4(DMF)_3]$ and $[\overline{M}o_2O_2S_2(DMF)_6]^{2+}$ complexes.

these features are included (a) the presence of proximal terminal oxo groups on the Mo atoms and (b) the interactions of the Mo atoms with oxides or hydroxides on the surface of the supporting y-Al,O, matrix.

The systematic synthesis of thiomolybdates with specific functional groups, and reactivity studies of such groups depend on the facile synthesis of simple derivatives of the $[Mo₂(\mu S_2S_nO_{2-n}$ ²⁺ cores, with substitution-labile terminal ligands. In the past, oxidative desulfurization reactions have been effective in the removal of coordinated S_x^2 ligands and their replacement by substitutionally labile ligands. Such reactions are exemplified in the synthesis of the $[Cp_2Fe_2(CH_3CN)_2(SEt)_2]^{2+}$ and $Os(I)_2$ - $(CO)₂(PPh₃)₂$ complexes. The former was obtained³ by air oxidation of $[Cp_2Fe_2(S_2)(SEt)_2]^{0,+}$ in CH₃CN solution and the latter⁴ by the I₂ oxidation of the $Os(n^2-S_2)(CO)_2(PPh_3)_2$ complex in $CH₂Cl₂$.

The reactions of $(Et_4N)_2[Mo_2O_2S_8]^5$ (I) with I_2 in dimethylformamide (DMF) are shown in Figure **I.** The reaction of I with an equimolar amount of I_2 proceeds readily at ambient temperature and following unexceptional workup affords the orange crystalline [Mo20zS4(DMF),] product6 **(11)** in **70%** yield. A similar reaction of I with 2 equiv of I, or the reaction of **I1** with an equimolar amount of I_2 results in the formation of the $[Mo₂O₂S₂(DMF)₆]$ ²⁺ cation in high yields. The latter can be isolated in crystalline form as the diiodide salt **111.6** The infrared spectra of the complexes show the Mo-0 vibrations at **948** and **954** cm-I for **I1** and at **928** and **947** cm-l for **111.** The C-0 stretching vibrations of the coordinated DMF molecules appear as doublets at **1641,** 1657 and **1647, 1664** cm-' for **I1** and **111,** respectively. The $M_0-\gamma^2-S_2$ and M_0-S_b vibrations in **II** are found at 527 and 469 cm⁻¹, and the Mo-S_b stretching vibration in III occurs at **474** cm-'. The conductivity of **III** in DMF solution (A

-
- (2) Massoth, F. E. *Ado. Catal.* **1978**, 27, 265.

(3) Kubas, G. J.; Vergamini, P. J. *Inorg. Chem.* **1981**, 20, 2667–2676.

(4) Farrar, D. H.; Grundy, K. R.; Payne, N. C.; Roper, W. R.; Walker, A.
 J. Am. Chem. Soc. **19** (3)
- J. Am. Chem. Soc. 1979, 101, 6577.

(5) Hadjikyriacou, A.; Coucouvanis, D., manuscript in preparation. The

synthesis of $[M_2O_2S_8]^2$ is carried out, under aqueous acrobic conditions, by the reaction of (NH₄)-Mo₀O₂₄ **obtained by the addition of 0.47 mmol of elemental sulfur to 65 mL of 22% (NH,),S solution obtained** from **Fisher Scientific. After a brief stirring at ambient tempratwe and standing for 24 h in air, the readion mixture was treated with a solution of 50 mmol of Et4NCI in 150 mL** of water. The suspension of $(Et_4N)_2[Mo_2O_2S_8]$ that formed upon **standing** for **30 min was isolated, washed with ethanol, CS2, and diethyl ether. and dried. The compound was recrystallized from 200 mL of DMF by the addition** of **4W mL of 2-propanol. The yield of the vellow crystalline product was 9.6 g or 45%.**
 (6) Anal. Calcd for Mo₂S₄O₂N₃C₂H₂₁:
- **Ma,'l7.75; I, 24153. Severe twinning** of **the well-shaped orange crystals of this compound has prorented us from finding** *B* **single crystal suitable for an X-ray determination.**

⁽²⁰⁾ Jamet, J.;Spann. I. **R.; Rice, R. W.; Lewis, D.;Coblenz, W. S.** *Cerom. Eng.* **Sei.** *Pmc.* **1984.5.677-694,**

⁽¹¹ Coucauvsns. D: Hadiik)riacou. A, Draganlac. M , **Kanatzids. M G** , **Ilcperuma. 0** *Pol,hedron* **19116.** *5.* **149-356**