$$
g_{\rm eff} = \sum_{i} K_i g_i \tag{6}
$$

Successive application of the Wigner-Eckart theorem to the site spins and pair spins gives

$$
K_1 = K_2 = \frac{\langle S_{1z} \rangle}{\langle S_z \rangle} = \frac{\alpha \gamma}{\Delta_1} \tag{7}
$$

$$
K_3 = \frac{\langle S_{3z} \rangle}{\langle S_z \rangle} = \frac{\delta_1 \epsilon}{\Delta_2} \qquad K_4 = \frac{\langle S_{4z} \rangle}{\langle S_z \rangle} = \frac{\delta_2 \epsilon}{\Delta_2} \tag{8}
$$

where

$$
\alpha = [S_{12}'(S_{12}' + 1) + S_1(S_1 + 1) - S_2(S_2 + 1)]/2
$$

\n
$$
\gamma = [S(S + 1) + S_{12}'(S_{12}' + 1) - S_{34}'(S_{34}' + 1)]/2
$$

\n
$$
\Delta_1 = S_{12}'(S_{12}' + 1)S(S + 1)
$$

\n
$$
\epsilon = [S(S + 1) + S_{34}'(S_{34}' + 1) - S_{12}'(S_{12}' + 1)]/2
$$

\n
$$
\delta_1 = [S_{34}'(S_{34}' + 1) + S_3(S_3 + 1) - S_4(S_4 + 1)]/2
$$

\n
$$
\delta_2 = [S_{34}'(S_{34}' + 1) + S_4(S_4 + 1) - S_3(S_3 + 1)]/2
$$

\n
$$
\Delta_2 = S_{34}'(S_{34}' + 1)S(S + 1)
$$

\n(9)

Since the sites 3 and 4 form a mixed-valence pair, it is necessary to average A_3 and A_4 for these sites. (We assume $S_3 = \frac{5}{2}$ and $S_4 = 2$ as a convention.) Site a values for typical monomeric compounds are $a(Fe^{3+}) = -20$ MHz and $a(Fe^{2+}) = -22$ MHz,⁴ so that for HP in the ground $\frac{9}{2}$ $\frac{1}{2}$ (4)) state we predict $K_1 =$ $-4/3$, $K_3 = \frac{55}{27}$, $K_4 = \frac{44}{27}$, and

$$
A_1 = A_2 = +26.7 \text{ MHz}
$$

$$
A_{3,4}^{av} = -38.5 \text{ MHz}
$$
 (10)

compared with A_1 = +20.2 and $A_{3,4}$ ^{av} = -32.0 MHz experimentally. For the excited substate $\frac{9}{2}$ $\frac{1}{2}$ (5)), we predict A_1 $A_2 = -40$ MHz and $A_{3,4}^{av} = +31.3$ MHz, in contrast to experiment. For the excited $\left[\frac{9}{2}\right]_2$ (3)) state, we find $A_1 = +12$ MHz and $A_{3,4}^{av} = -23$ MHz, which can be compared with the observed hyperfine coupling only after the $S = \frac{3}{2}$ state is identified and its hyperfine coupling obtained by ENDOR or magnetic Mössbauer spectroscopy. This is not presently available.

spins and one local $S_4 = 2$ spin If there were three local $\frac{3}{2}$ spins and one local $S_4 = 2$ spin with $g(Fe^{3+}) = 2.002$ and $g_4(Fe^{2+}) = 2.002 + \Delta g_4$, then $g_{eff} =$ 2.002 + $\frac{44}{27}$ Δg_4 . With a ferrous $\Delta g_4^{\text{av}} = 0.05$ (see ref 7a), we calculate $g_{\text{eff}}^{av} = 2.08$, in good agreement with typical HP $g_{av} =$ 2.06. However, the $S_3 - S_4$ pair is totally delocalized, so it is better to calculate Δg_{34} for the complete $S_{34}^{\prime} = \frac{9}{2}$ subdimer.

Detailed quantitative calculations on HP models are under way and experiments are planned to more thoroughly explore this theoretical model.

Acknowledgment. I am grateful for discussions with J. Gaillard, E. Munck, E. P. Day, G. Ruis, B. Lamotte, J. Jordanov, J. M. Moulis, and D. Case. J. Gaillard also helped to construct the figures. This research was financially supported by the CENG.

> Contribution from the Department of Chemistry, California State University, Los Angeles, **Los** Angeles, California 90032

Conversion of *closo* **-2,4-C₂B₅H₇ to [***nido* **-2,4-C₂B₄H₇]^{** \vdash **}**

Zahid J. Abdou, Frank Gomez, Gaby Abdou, and Thomas Onak*

Received February **3,** *1988*

The $[nido-2,4-C₂B₄H₇]=$ ion has been previously prepared from a cage-opening reaction of $closo-1, 6-C_2B_4H_6$ with metal hydrides or from the treatment of *5-(CH3)3N-nido-2,4-C2B4H6* with a metal hydride.^{1,2} Both reactions are very slow and, of course, depend

upon the availability of $closo-1, 6-C_2B_4H_6$. One of the most accessible small carboranes³⁻⁵ is closo-2,4-C₂B₅H₇, and thus it became desirable to find a method for the removal of a boron from this C_2B_5 cage compound with the prospect of finding another route to the $[nido-2, 4-C_2B_4H_7]$ ⁻ ion.

Experimental Section

Materials and Handling of Chemicals. The parent closo-carborane $2,4-C_2B_5H_7$ was obtained from R. E. Williams and used without further purification. Standard high-vacuum techniques were used in the handling of all chemicals.

Instrumentation. Proton (400- and 500-MHz) spectra were obtained by use of Bruker **AM** and Bruker **WM** instruments, respectively. All "B NMR chemical shift data are based on $\delta(BF_3 OEt_2) = 0.00$ with negative values upfield.

Reaction of *closo*-2,4-C₂B₅H₇ with Lithium Amides. (a) With Li[N(CH₃)₂]. To a 3-mm NMR tube, equipped at one end with a 2.5-mL bulb, was added $Li[N(CH_3)_2]$ (Aldrich, 0.19 mmol) under a nitrogen atmosphere. After the tube and its contents were attached to a high-vacuum apparatus, $closo-2, 4-C_2B_3H_7$ (0.13 mmol) was condensed into the tube at -195 °C. The mixture was subsequently warmed to room temperature, mixed well by shaking the sample, and then allowed to stand for approximately 2 min. After the sample was cooled back to -195 °C, $CH₃CN$ (Wilmad, 2 mmol) was added and the tube sealed and warmed to ambient temperature. The sample slowly turned to a clear yellow liquid, with no solids present. After the sample was kept at room temperature for 5.5 h, a 11 B NMR spectrum indicated the presence of (a) [nido-2,4-C₂B₄H₇]⁻ (2%) (¹¹B NMR: δ (B(1)) -52.0, J(BH) = 158 Hz; $\delta(B(3)) + 21.3$, $J(BH) = 121$ Hz; $\delta(B(5,6)) + 1.2$, $J(BH) = 133$ Hz),^{1,2} (b) starting material, $closo-2,4-C₂B₅H₇⁶$ (97%), and traces of other compounds. After 28 h at ambient temperature the quantity of [2,4- $C_2B_4H_7$] increased to 10% at the expense of the $C_2B_5H_7$. After 12 days at room temperature, four boron-containing cage compounds were evident: C₂B₅H₇ (48%), [2,4-C₂B₄H₇]⁻ (29%), compound A (6%) ¹¹B and compound B (7%) (high-field B(1) resonance at δ -50), and approximately 10% of other boron-containing species with an assortment of resonances appearing in the regions of $\delta + 28$, +15, -5, -10 to -20, and -44. One month later the percentage of $[2,4-C_2B_4H_7]$ ⁻ climbed to 76%, and after 2 months 95% of all of the boron content was attributed to this ion with the remaining ¹¹B resonances found at δ -7 and -15 to -25; no evidence of the starting material $C_2B_5H_7$, nor of compounds A and B, was found. NMR: δ -39.1 (d), $J(BH) = 153$ Hz; $\delta +7$ (d); $\delta +21$ (d); $\delta +49$ (d)),

(b) With $\text{Li}[N(C_2H_5)_2]$ **.** In a manner similar to that described in section a $Li[N(C_2H_5)_2]$ (Aldrich, 0.195 mmol), closo-2,4-C₂B₅H₇ (0.195 mmol), and CD_3CN (2 mmol) were mixed. After 1 day at ambient temperature the clear liquid sample was yellow with no solids present. NMR data revealed the presence of (a) $[nido-2,4-C_2B_4H_7]$ ⁻ (39%) (¹¹B NMR: $\delta(B(1))$ -52.9, $J(BH) = 158$ Hz; $\delta(B(3)) + 20.7$, $J(BH) = 119$ Hz; $\delta(B(5,6)) + 0.4$, $J(BH) = 136$ Hz. ¹H NMR: $\delta(H(1)) - 1.59$, $J(HB) = 157$ Hz; $\delta((H\mu)) - 4.57$ (broad)),^{1,2} (b) starting material, *closo-2*,4- $C_2B_5H_7^6$ (45%), and small amounts of compounds A (11%) and B (5%). ¹¹B NMR data for A: δ -39.1 (area 1), $J(BH) = 154 \text{ Hz}$; $\delta + 6.7$ (area 2), $J(BH) = 131$ Hz; $\delta +21.0$ (area 1), $J(BH) = ca. 118$ Hz; $\delta +48.5$ (area 1) (half-width ca. 260 Hz, which narrows to 170 Hz upon proton decoupling). IlB NMR data for compound B: 6 -48.1 (area l), J(BH) = 151 Hz; 6 ca. -21 (area 2), J(BH) = 176 Hz: *6* +20.7 (doublet, area 1). After the mixture was left to stand at room temperature for an additional 6 days, the ¹¹B NMR spectrum of the sample exhibited the same resonances as observed before, but with slightly different intensities, leading to the following composition assessment: $[nido-2,4-C_2B_4H_7]$, 37%; $closo-2, 4-C_2B_5H_7$, 49%; A, 7%; B, 7%. After 1 month at room temperature nearly equal amounts of the starting material, closo-2,4- $C_2B_5H_7$, and $[nido-2,4-C_2B_4H_7]$ were present, as assessed by the ¹¹B NMR pattern. No further change occurred with time.

In another experiment with $C_2B_5H_7/Li[N(C_2H_5)_2]$ (0.25 and 0.17 mmol, respectively) dissolved in 1.5 mmol of deuteriated acetonitrile, the

- (1) Lockman, B.; Onak, T. *J.* Am. Chem. **SOC. 1972,** *94,* 7923-7924.
- (2) Onak, T.; Lockman, B.; Haran, G. J. Chem. SOC., Dalton Trans. **1973,** 21 15-21 18.
- Grimes, R. N. Carboranes; Academic: New York, 1970. Williams, R. E. Adv. Inorg. Chem. Radiochem. **1976,** 18,67-142.
- Chemistry; Pergamon: Oxford, England, 1982; pp 411-457.
Onak, T. Carboranes. In Gmelin Handbook of Inorganic Chemistry;
- (5) Onak, T. Carboranes. In *Gmelin Handbook of Inorganic Chemistry*; Springer-Verlag: Berlin, FRG, 1981; Boron Compounds 1st Suppl. Vol. 3, pp 105-256; *Ibid*. Springer-Verlag: Berlin, FRG, 1982; Boron Compounds 2nd Suppl
- (6) Eaton, G. R.; Lipscomb, W. N. NMR Studies *of* Boron Hydrides and Related Compounds; Benjamin: New York, 1969.

 $\text{closo} - 2, 4 - \text{C}_2\text{B}_5\text{H}_7$ nido-2,4- $\text{C}_2\text{B}_4\text{H}_7$

Figure 1. Conversion of closo-2,4-C₂B₅H₇ to $[nido-2,4-C_2B_4H_7]$ ⁻.

¹¹B NMR spectrum after 12 days at room temperature exhibits the resonances of C₂B₅H₇⁶ (19%), [nido-2,4-C₂B₄H₇]⁻ (38%), and compound A (33%) (¹¹B NMR: δ ⁽¹¹B) -39.1 (area 1), $J(BH) = 152$ Hz; $\delta + 7$ (d, area 2); δ +21.3 (d, area 1); δ +48.4 (area 1)); the remainder of the boron resonances in the NMR spectrum could not be assigned but were present as small peaks in the regions of $\delta +27$ (broad), $+29$ (d), and $+12$. A monitoring of the ¹¹B NMR spectra over the next 3 months revealed a gradual disappearance of both $C_2B_5H_7$ and compound A coupled with a buildup of $[2,4-C_2B_4H_7]$.

(c) With $\text{Lip}(\text{CH}(\text{CH}_3)_2)_2$. In a manner similar to that described in section a, $Li[N(CH(CH₃)₂)₂]$ (Aldrich, 0.23 mmol), closo-2,4-C₂B₅H₇ (0.15 mmol), and CH,CN (1.5 mmol) were mixed. The sample slowly turned to a clear yellow-orange liquid, with **no** solids present. After the sample was kept at room temperature for 4.5 h, a ¹¹B NMR spectrum indicated the presence of (a) $[nido-2,4-C_2B_4H_7]$ ⁻ (40%) (¹¹B NMR: $\delta(B(5,6))$ +0.8, $J(BH)$ = 125 Hz),^{1,2} (b) starting material, *closo*-2,4- $C_2B_5H_7^6$ (51%), compound A (4%) (¹¹B NMR: δ -39.5 (d), $J = 154$ Hz; δ +7 (d); δ +21 (d); δ +47 (d, broad)), and an assortment of small resonances (accounting for *ca.* 4% of total boron) appearing in the regions of 6 +27 (broad), +12, *-5* to -20, -47, and -54. After 26 h at room temperature the percentages of each compound were as follows: $C_2B_5H_7$, 37%; [2,4-C₂B₄H₂]⁻, 54%; compound A, 3%; an assortment of small resonances (accounting for ca. 5% of total boron) appearing in the regions of 6 +27 (broad), +11, *-5* to -20, and -47 (d). After 16 days at room temperature the major change observed in the ¹¹B spectrum was that the ratio $[2,4-C_2B_4H_7]$: $C_2B_5H_7$ had increased to 2.3. $\delta(B(1))$ -52.5, $J(BH) = 157$ Hz; $\delta(B(3))$ +20.9, $J(BH) = 121$ Hz;

Discussion

It is well-known that alkoxide/alcohol mixtures can convert isomers of $closo-C_2B_{10}H_{12}$ to isomers of the [nido-C₂B₉H₁₂]⁻ ion according to eq $1.7-12$ Unfortunately, all attempts to use alk $closo-C₂B₁₀H₁₂ + RO^- + 2ROH \rightarrow$

$$
[C_2B_9H_{12}]^- + B(OR)_3 + H_2 (1)
$$

oxide/alcohol mixtures for the $C_2B_5H_7 \rightarrow [C_2B_4H_7]$ ⁻ conversion were unsuccessful, 13 and only cage decomposition products of the type experienced when ROH alone was utilized as the reagent¹⁴ were generally observed (e.g. $B(OR)_3$, $CH_3B(OR)_2$, $(RO)₂BCH₂B(OR)₂$).

The conversion of closo-2,4-C₂B₅H₇ to $[nido-2,4-C_2B_4H_7]$ ⁻ (Figure 1) can be accomplished, however, with the use of Li[N- $(R)_2$, $R = CH_3, C_2H_5, CH(CH_3)_2$, as the reagent and acetonitrile as the solvent. The stoichiometry for the reaction appears to be somewhat greater than 1:1 $Li[N(R_2)]$:C₂B₅H₇. The conversion of $closo-2$, $\overline{4}$ -C₂B₅H₇ to [nido-2, 4 -C₂B₄H₇]⁻ is nearly quantitative at room temperature, but during the course of the reaction at least two intermediates are seen in the ¹¹B NMR spectrum. Neither of these two intermediates is normally found in high percentage at any time during the reaction. Both of these intermediates

- Wiesboeck, R. A.; Hawthorne, M. F. *J. Am. Chem. Soc.* 1964, 86, 1642. (8) Garrett. P. M.: Tebbe. F. **N.;** Hawthorne, **M.** F. *J. Am. Chem. SOC.* 1964,86, 5016-5017.
- Hawthorne, M. F.; Wegner, P. **A.;** Stafford, R. C. *Inorg. Chem.* 1965, *4,* 1675.
- Hawthorne, M. F.; Wegner, P. **A.** *J. Am. Chem. SOC.* 1965, *87,* 4392-4393.
- Hawthorne, M. F.; Young, D. C.; Garrett, P. M.; Owen, D. **A.;** Schwerin, **S.** G.; Tebbe, F. **N.;** Wegner, P. **A.** *J. Am. Chem. Soc.* 1968, *90,* 862-868.
- Hawthorne, M. F.; Wegner, P. **A.** *J. Am. Chem. SOC.* 1968, *90,* 896-901.
- DiStefano, E. W.; Onak, T., unpublished results.
- (14) Dobbie, R. C.; Wan, E.; Onak, T. *J. Chem. Soc., Dalton Trans.* 1975, 2603-2606.

Figure 2. Plausible structure for compound A, $[(\mu^{5,6}-R_2NBH)-nido 2,4-C_2B_4H_6$ -.

exhibit a high-field doublet in the region of δ -45 to -50, very reminiscent of an apical boron for open-face pyramidal systems.6 In one of these intermediates (arbitrarily called compound A in the Experimental Section) two sets of ¹¹B NMR BH doublets in a ratio of 2:l are seen in the midfield region expected for the basal-situated borons of such a pyramid; a somewhat broadened boron resonance, which sharpens to a measurable extent upon proton decoupling, is observed downfield in a region that is consistent with a "non"-cage boron but one that could well be attached, in a bridging environment,¹⁵ to two atoms of the pentagonal base (e.g. borons 5 and 6). A definitive structure cannot be assigned at this time, but it is highly possible that compound A is $[(\mu^{5.6}-R_2NBH)-nido-2.4-C_2B_4H_6]^T$, displayed in Figure 2. The structure of the other intermediate, never present in quantities greater than for compound A, is more difficult to assess, but from the appearance of a high-field BH doublet, assignable to a boron in an apical environment of a pyramidal-shaped compound (see above), it could well represent further progress of the reaction to eventually give $[nido-2,4-C_2B_4H_7]$.

Acknowledgment. We wish to thank the National Science Foundation (Grant CHE8617068) and the MARC-NIH program $(F.G.)$ for partial support of this study. The 11 B NMR data were obtained by the use of a Bruker WM-500 instrument at the Southern California Regional NMR Facility at the California Institute of Technology, funded by NSF Grant CHE8440137, and by the use of an AM-400 instrument at CSULA, funded by NIH Grant RR-08101-13S1, by NSF Grant DMB-8503839, and by the Keck and Dreyfus Foundations.

Registry No. A $(R = CH_3)$, 116303-14-1; A $(R = C_2H_5)$, 116303- $[nido-2,4-C_2B_4H_7]$, 39394-97-3; Li $[N(CH_3)_2]$, 3585-33-9; Li $[N(C_2 H_5$ ₂], 816-43-3; Li{N(CH(CH₃)₂)₂], 4111-54-0. 15-2; A (R = CH(CH₃)₂), 116303-16-3; closo-2,4-C₂B₅H₇, 20693-69-0;

(15) Gaines, D. F.; Iorns, T. **V.** *J. Am. Chem. SOC.* 1970, *92,* 4571-4574.

Contribution from the Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Comments on the Crystal Structure of Tetrabutylammonium Bis(5,6-dihydro-1,4-dithiin-2,3-dithiolato)nickelate(111)

Jane Hanna Welch, Robert D. Bereman,* and Phirtu Singh

Received *March* **23,** *1988*

There has been considerable interest in transition-metal complexes of dithiolenes and dithiolates, which promise to add to our knowledge of low-dimensional highly conducting materials.¹⁻⁸ We, for example, have reported the synthesis of a new 1,2-dithiolene, 5,6-dihydro-1,4-dithiin-2,3-dithiolate, which when reacted with Ni(I1) salts yields a complex whose structure is remarkably similar to BEDT-TTF in the rhenate salt.⁹ We had undertaken a study of the effects of cations on the intermolecular contacts

^{*}To whom correspondence should be addressed.