New Syntheses and Properties of XeO_2F_2 , $Cs^+XeO_2F_3$, and $NO_2^+[XeO_2F_3\cdot nXeO_2F_2]$

Karl 0. Christe* and William W. Wilson

Received March 16, 1988

Alkali-metal nitrates and N_2O_5 are useful reagents for the stepwise replacement of two fluorine atoms by one oxygen atom in xenon fluorides or oxyfluorides. Thus, the reaction of an excess of XeF_6 with CsNO₃ yields $XeOF_4$, FNO_2 , and $CsXeF_7$ in high yield. With CsNO₃ in excess, the primary products are CsXeOF₅ and FNO₂, and after longer reaction times some CsXeO₂F₃ is also formed. The reaction of CsNO₃ with an excess of $XeOF_4$ produces FNO_2 and XeO_2F_2 in quantitative yield with a mixture of CsF and CsXeOF₃ as the byproducts. Recrystallization of this CsF-CsXeOF₅-XeO₂F a convenient synthesis for $Cs\acute{X}eO_2F_3$. The reaction of N₂O₃ with an excess of XeO_4F_4 results in XeO_2F_2 and \overline{FNO}_2 , thus providing a new safe synthesis for XeO_2F_2 . Vibrational spectra of liquid, so The vibrational spectra of CsXeO₂F₃ were recorded and assigned. It is shown that the two oxygen atoms in XeO₂F₃ are cis and not trans to each other and that the Raman spectrum previously attributed to $Cs^+XeO_2F_3^-$ is due to a $Cs^+[XeO_2F_3\cdot nXeF_2]^$ adduct.

Introduction

In a prevous paper' it was shown that the nitrate ion is an excellent reagent for substituting one oxygen atom for two fluorine ligands in BrF,. During a study of the general utility of this reagent, the reactions of NO_3^- with xenon fluorides were also studied, and the results are summarized in this paper.

The controlled, stepwise substitution of two fluorines by one oxygen in XeF_6 was of particular interest because the previously used methods for the synthesis of $XeO₂F₂$ involved the highly explosive $XeO₃$, either as a starting material² or as a potential byproduct.^{3,4} In view of this explosion hazard, it is not surprising that the previous literature on XeO_2F_2 is rather limited. The compound was first prepared by Huston² from $XeO₃$ and $XeOF₄$ and was characterized by him and his co-workers by vibrational spectroscopy,⁵ neutron diffraction,⁶ and an ¹⁸F radiotracer study.⁷ The only other reports on XeO_2F_2 chemistry are by Schrobilgen and co-workers. They prepared XeO_2F_2 by hydrolysis of XeF_6 in HF solution^{3,4} and recorded its NMR⁴ and Raman^{4,8} spectra. Furthermore, they showed that XeO_2F_2 is a good fluoride ion donor and can form 1:1 and 1:2 adducts with SbF₅ that contain the XeO_2F^+ cation.^{3,8-10} Although the direct complexation of $XeO₂F₂$ with alkali-metal fluorides was not studied, they obtained, by the disproportionation of $XeOF₂$ in the presence of CsF in anhydrous HF, a solid that, on the basis of its Raman spectrum, was attributed to $Cs^+[trans-XeO_2F_3]^{-11}$

In addition to the synthesis of XeO_2F_2 , we have also studied its fluoride ion donor and acceptor properties. **In** this paper, the adduct formation of $XeO₂F₂$ with CsF and $FNO₂$ is included, while data on the new adducts $XeO_2F^+AsF_6^-$ and $FO_2XeFXeO_2F^+AsF_6^$ are given elsewhere.¹²

Experimental Section

Caution! The reaction of XeOF4 with an excess of nitrate produces highly explosive XeO₃. Liquid mixtures of $XeO₂F₂$ and $XeO₃$, when cooled with liquid nitrogen, tended to flash followed within seconds by

- Wilson, W. W.; Christe, K. 0. *Znorg. Chem.* **1987,** *26,* 916.
- Huston, J. L. *J. Phys. Chem.* **1967,** *71,* 3339. (2)
- Gillespie, R. J.; Schrobilgen, G. J. *Znorg. Chem.* **1974,** *13,* 2370. (3)
- Schurnacher, G. **A,;** Schrobilgen, G. J. *Znorg. Chem.* **1984,** *23,* 2923. (4) (5) Claassen, H. H.; Gamer, E. L.; Kim, H.; Huston, J. L. *J. Chem. Phys.* **1968,** *49,* 253.
- Peterson, *S.* W.; Willett, *R.* D.; Huston, J. L. *J. Chem. Phys.* **1973,** *59,* 453.
- Frame, H. D.; Huston, J. L.; Sheft, **I.** *Inorg. Chem.* **1969,** *8,* 1549. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. *Znorg. Chem.* **1976,** *15,* (8)
- 1256. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. *J. Chem. SOC., Chem.*
- *Commun.* **1972,** 607. Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. *Znorg. Chem.* **1978,** *17,* 980. (10)
-
- Gillespie, R. J.; Schrobilgen, G. J. *J. Chem. Soc., Chem. Commun.* (11) **1977, 595**
- Christe, K. *0.;* Wilson, W. W. *Inorg. Chem.,* in press.

explosions. Therefore, for the $XeOF_4$ and XeO_2F_2 syntheses the xenon-
containing starting materials should always be used in excess, and appropriate safety precautions should be taken.

Apparatus and Materials. The vacuum lines, handling techniques, and spectrometers used in this study have been described elsewhere.^{12,13} CsNO₃ was prepared from Cs₂CO₃ and HNO₃ and dried in a vacuum oven at 120 °C for 1 day. $FNO₂$ was obtained as a byproduct from the reactions of nitrates with either XeF_6 , $XeOF_4$, or $BrF_5¹$ and was purified by fractional condensation through two cold traps kept at -142 and -196 \degree C, with the material retained at -196 \degree C being used. CsF was dried by fusion in a platinum crucible, followed by immediate transfer of the hot clinker to the dry N_2 atmosphere of a glovebox. XeF_6 was prepared from Xe and F_2 and purified by complexing with NaF and subsequent vacuum pyrolysis of the adduct.^{14,15} XeOF₄¹³ and N₂O₅¹⁶ were prepared by literature methods, and HF was dried with $Bi\overline{F}_5$ as previously described.¹⁷

Reaction of CsNO₃ with an Excess of XeF₆. A 30-mL stainless steel cylinder was loaded in the drybox with CsNO₃ (2.44 mmol). On the vacuum line, XeF₆ (20.51 mmol) was added at -196 °C. The cylinder was heated to 56 °C for 4 h and then cooled to -196 °C. It did not contain any material noncondensable at -196 °C. The material volatile at 25 °C was separated by fractional condensation through traps kept at -78 and -196 °C. The -196 °C trap contained FNO_2 (1.85 mmol), and the -78 °C trap had XeF_6 , $XeOF_4$, and some FNO_2 . To separate all of the FNO₂ from XeF₆ and XeOF₄, the contents of the -78 °C trap were fractionated three more times as described above and yielded an additional 0.55 mmol of FNO₂ in the -196 °C trap for a total of 2.4 mmol. X large excess of NaF in a Monel cylinder at 70 °C for 2 h, followed by pumping off the unreacted $XeOF₄$ at 25 °C and collecting it in a U-trap at -78 °C. The collected material (546 mg; weight calculated for 2.44 mmol of XeOF₄ 545 mg) was shown by its vapor pressure and infrared spectrum to be pure $XeOF_4$. The solid nonvolatile residue from the $\text{CsNO}_3\text{-XeF}_6$ reaction (976 mg; weight calculated for 2.44 mmol of $CsXeF₇$ 969 mg) was identified by infrared and Raman spectroscopy as $CsXeF₇$.¹⁸

Reaction of XeF_6 **with an Excess of CsNO₃.** A mixture of CsNO₃ (6.06 mmol) and XeF_6 (1.12 mmol) was heated in a 30-mL stainless steel cylinder for 16 h to 54 °C. The cylinder was cooled to -196 °C and contained no noncondensable material. The material volatile at 25 °C was separated by fractional condensation through traps kept at -78 and -196 °C. The -196 °C trap contained FNO_2 (1.13 mmol), while the -78 °C trap had $XeOF_4$ (0.03 mmol). The solid, off-white residue (1.369 g; weight calculated, for 1.09 mmol of $CsXeOF_5$, 0.03 mmol of CsF, and 4.94 mmol of CsNO₃ 1.376 g) was identified by vibrational spectroscopy as $CsNO₃$ and $CsXeOF₅¹⁹$ containing small amounts of $CsXeO₂F₃$ and $CsXeF₇¹⁸$ and a trace amount of $XeO₂F₂$.

-
-
- (13) Christe, K. O.; Wilson, W. W. *Inorg. Chem.* **1988**, 27, 1296.
(14) Chernick, C. L.; Malm, J. G. *Inorg. Synth.* **1966**, 8, 258.
(15) Sheft, I.; Spittler, T. M.; Martin, F. H. Science (*Washington, D.C.*)
1964, 45,
-
- (16) Wilson, W. W.; Christe, K. 0. *Inorg. Chem.* **1987,** *26,* 1631. (17) Christe, K. *0.;* Wilson, **W.** W.; Schack, C. J. *J. Nuorine Chem.* **1978,** *11,* 71.
- (18) Christe, K. 0.; Wilson, W. W. *Inorg. Chem.* **1982,** *21,* 4113.
- (19) Holloway, J. H.; Kaucic, **V.;** Martin-Rovet, D.; Russell, D. R.; Schro-bilgen, G. J.; Selig, H. *Inorg. Chem.* **1985,** *24,* 678.

When the reaction time for the XeF_6 plus excess CsNO₃ system was increased to 2 weeks or more, the yield of FNO_2 increased and CsXeO₂F₃ became a major reaction product besides $CsXeOF_5$, $CsXeF_7$, and unreacted CsNO.

Reaction of &NO3 with an Excess of XeOF,. Finely powdered CsNO, (1.28 mmol) was loaded into a prepassivated IO-mL stainless steel cylinder in the drybox. The cylinder was evacuated on the vacuum line, and $XeOF₄$ (4.97 mmol) was added at -196 °C. The cylinder was kept in an oven at 45 °C for 24 h, then reconnected to the vacuum line, and cooled to -196 °C. It did not contain any significant amount of gas noncondensable at -196 °C. The material volatile at 25 °C was separated by fractional condensation in a dynamic vacuum through traps kept at -78 and -196 °C. The -78 °C trap contained XeOF₄ (3.18 mmol), and the -196 °C trap, $FNO₂$ (1.22 mmol). The white solid residue (569 mg; weight calculated for 1.28 mmol of $XeO₂F₂$, 0.77 mmol of CsF, and 0.51 mmol of $CsXeOF₅$ 566 mg) was identified by vibrational spectroscopy. The Raman bands due to XeO_2F_2 (884 m, 852 sh, 849 vs, 501 m, 489 ms, 354 w, 207 w cm⁻¹) deviated somewhat from those of the neat solid XeO_2F_2 but in their general appearance resembled those of XeO_2F_2 mixtures with other compounds (see Results and Discussion).

Preparation of $Cs^+XeO_2F_3^-$ **.** The solid product obtained from the CsNO_3 plus excess XeOF_4 reaction, when recrystallized from anhydrous HF, was converted almost quantitatively to $Cs^{+}XeO_{2}F_{3}^{-}$ with simultaneous $XeOF_4$ evolution. A remaining trace of free XeO_2F_2 , detectable by its Raman bands at 881, 850, and 497 cm⁻¹, could be converted to $CsXeO₂F₃$ by the addition of a small amount of extra CsF before the recrystallization.

Preparation of XeO_2F_2 **.** A sample of freshly prepared N_2O_5 (3.95) mmol) was transferred on the vacuum line under a dynamic vacuum into a 0.75-in-0.d. Teflon-FEP U-trap that was equipped with two stainless steel valves and kept at -45 °C. The Teflon \dot{U} -trap was cooled to -196 $^{\circ}$ C, and XeOF₄ (8.71 mmol) was added. The mixture was allowed to slowly warm to ambient temperature in an empty cold Dewar flask and was kept at this temperature for 90 min. The U-tube was cooled to -196
°C and contained no noncondensable material. The material volatile at OC and contained no noncondensable material. The material volatile at room temperature was pumped off briefly through two traps cooled to -78 and -196 °C. The trap at -196 °C contained FNO_2 (7.4 mmol), while the one at -78 °C had $XeOF₄$ (4.75 mmol). The liquid residue in the Teflon U-trap (827 mg; weight calculated for 3.95 mmol of XeO_2F_2 and 0.49 mmol of $FNO₂ 827$ mg) was shown by Raman spectroscopy to be predominantly ionic $NO_2^+(XeO_2F_3nXeO_2F_2]$. Complete removal of $FNO₂$ together with some $XeO₂F₂$ was achieved by prolonged pumping on the sample at ambient temperature. The resulting pure $XeO₂F₂$ was a white solid melting at 31 °C and was characterized by its vibrational spectra.^{4,5,8}

The XeO₂F₂-FNO₂ System. FNO_2 (3.86 mmol) was added at -196 ^oC to a sapphire tube containing XeO_2F_2 (1.32 mmol). The mixture was allowed to warm to ambient temperature. At first the product was liquid, but after several hours at 25 °C it was converted to a white solid, which was shown by Raman spectroscopy to be an NO_2^+ salt of $[XeO_2F_3]$. $nXeO_2F_2$]. The tube was cooled to -78 °C, and unreacted FNO₂ (3.21) mmol) was pumped off, establishing the composition of the white solid as $NO_2^+[XeO_2F_3\cdot 1.03XeO_2F_2]$. The dissociation pressure above 0.65 mmol of this solid in a 27.2-mL volume at 22.4 $^{\circ}$ C was found to be 96 Torr of FNO₂. Upon removal of FNO₂ by brief pumping at 25 °C, the white solid residue melted to a clear colorless liquid that had lost most of its $FNO₂$. As described above for the preparation of pure $XeO₂F₂$, the complete removal of FNO_2 was achieved with some loss of XeO_2F_2 .

Results and Discussion

Reactions of NO₃⁻ with XeF_6 **and Synthesis of** $XeOF_4$ **.** The reaction of CsNO_3 with a large excess of XeF_6 at temperatures above the melting point of Xe \overline{F}_6 (49.5 °C) proceeds quantitatively according to (1) and (2). If in (1) the excess of XeF_6 is reduced

$$
CsNO3 + XeF6 \rightarrow CsF + XeOF4 + FNO2
$$
 (1)

$$
CsF + XeF_6 \to CsXeF_7
$$
 (2)

to less than 100%, some of the CsF can react with $XeOF_4$ to form $Cs^{+}XeOF_{5}^{-19}$ Substitution of CsNO₃ by NaNO₃ in (1) provides the following advantages, a more detailed description of which is reported elsewhere.¹³ (i) NaNO_3 is commercially readily available and less expensive than $CsNO₃$; (ii) NaF does not form a stable adduct with $XeOF_4$, and therefore, only a small excess of XeF_6 is required for (1) without loss of $XeOF_4$; (iii) the formed NaF complexes the small excess of XeF_6 used as NaXeF₇. This results in $XeOF_4$ and FNO_2 as the only volatile products, which can be separated readily by fractional condensation due to their vastly different volatilities.

If in the CsNO₃-XeF₆ reaction an excess of CsNO₃ is being used, most of the XeF_6 is converted to $XeOF_4$, which reacts with CsF according to (3). In this case, the major reaction products
 $CsF + XeOF_4 \rightarrow CsXeOF_5$ (3)

$$
CsF + XeOF_4 \rightarrow CsXeOF_5 \tag{3}
$$

are $FNO₂$ and $CsXeOF₅$, with small amounts of CsF, $CsXeF₇$, $CsXeO₂F₃$, and $XeO₂F₂$ also being formed. With long reaction times of several weeks at 54 °C, the secondary reactions (4) and (5) gain in importance, and $CsXeO₂F₃$ becomes a major reaction product. CsNO₃ + XeOF₄ \rightarrow CsF + FNO₂ + XeO₂F₂ (4)

$$
CsNO3 + XeOF4 \rightarrow CsF + FNO2 + XeO2F2
$$
 (4)

$$
CsF + XeO2F2 \rightarrow CsXeO2F3
$$
 (5)

$$
CsF + XeO2F2 \rightarrow CsXeO2F3
$$
 (5)

Reaction of CsNO₃ with $XeOF_4$ **and Synthesis of** XeO_2F_2 **.** The reaction of $CsNO₃$ with a large excess of $XeOF₄$ results in the quantitative formation of $FNO₂$ and $XeO₂F₂$ according to (4), with about 60% of the CsF reacting with excess $XeOF₄$ according to (3) to give CsXeOF₅. Since XeO_2F_2 is of low volatility and is difficult to remove from the other solid products, i.e. CsF and CsXeOF₅, the CsNO₃ in (4) was replaced by N_2O_5 which, in the solid state, has the ionic structure $NO_2^+NO_3^{-16,20}$ In this manner, instead of nonvolatile CsF, volatile FNO, is formed as in **(6),** and $XeO₂F₂$ is the only low-volatility reaction product, thus facilitating product separation. While most of the FNO_2 byproduct can $NO_2^+NO_3^- + XeOF_4 \rightarrow 2FNO_2 + XeO_2F_2$ (6)

$$
NO2+NO3- + XeOF4 \rightarrow 2FNO2 + XeO2F2
$$
 (6)

readily be pumped off from XeO_2F_2 at ambient temperature, complete removal of FNO₂ becomes increasingly more difficult and requires prolonged pumping. Since pure XeO_2F_2 melts at 31 $^{\circ}C^{2}$, solidification of the initially liquid reaction product at ambient temperature serves as a good indication that removal of the $FNO₂$ byproduct is essentially complete.

The use of an excess of N_2O_5 in (6) should be avoided because $XeO₂F₂$ can react further with $N₂O₅$, producing FNO₂ and highly explosive $XeO₃$. This was experimentally verified but not further pursued due to the pronounced sensitivity of the resulting liquid $XeO₂F₂-XeO₃$ mixture. This mixture, when cooled with liquid nitrogen, tended to flash followed by explosive decomposition.

In summary, the reaction of N_2O_5 with XeOF₄ provides a convenient, scalable, and safer new synthesis for XeO_2F_2 , provided that an excess of $XeOF₄$ is used in the reaction. The previous methods used either $XeOF_4$ and the explosive XeO_3 as starting materials² or the hydrolysis of XeF_6 in HF solution, which has also been described as hazardous.⁴

Synthesis of XeO_2F_3 **- Salts.** The solid product obtainable from the reaction of CsNO_3 and an excess of XeOF_4 (see above) consists of a mixture of CsF, CsXeOF₅, and XeO₂F₂. Recrystallization of a mixture of CsF, CsxeOF₅, and XeO₂F₂. Recrystantization
of this mixture from anhydrous HF solution results in an essentially
complete conversion of CsF and CsXeOF₅ to CsXeO₂F₃ according
to (5) and (7). The complete conversion of CsF and CsXeOF₅ to CsXeO₂F₃ according to **(5)** and **(7).** The fact that the pseudo-trigonal-bipyramidal

$$
CsXeOF_5 + XeO_2F_2 \xrightarrow{\text{HF}} CsXeO_2F_3 + XeOF_4 \qquad (7)
$$

 $XeO₂F₂$ (Xe has one sterically active free valence electron pair in its $Xe(VI)$ compounds) is a stronger Lewis acid than pseudooctahedral $XeOF_4$ and, therefore, displaces it from its salts is not surprising. Since $XeOF_4$ has a vapor pressure of 29 torr at 23 °C, it can readily be pumped off from the $CsXeO_2F_3$ product, which is isolated as a stable white solid.

The only previous report concerning the existence of an XeO_2F_3 salt was a statement that, in an HF solution containing CsF, $XeOF₂$ disproportionates according to (8) to give $CsXeO₂F₃$.¹¹ blated as a stable white solid.

previous report concerning the existence of a

statement that, in an HF solution conta

proportionates according to (8) to give C.
 $2XeOF_2 + CsF \xrightarrow{HF} CsXeO_2F_3 + XeF_2$

of fram (9) was abanas

$$
2XeOF_2 + CsF \xrightarrow{\text{nr}} CsXeO_2F_3 + XeF_2 \tag{8}
$$

The product from (8) was characterized by its Raman spectrum, which was interpreted in terms of an $XeO₂F₃$ anion in which the two oxygen atoms are trans to each other.¹¹ However, the Raman spectrum (trace B, Figure 1) of our $CsXeO_2F_3$, prepared according to (7), significantly differs in the region of the Xe-F vibrations from that previously reported.¹¹ This discrepancy was resolved.

⁽²⁰⁾ Grison, **E.; Eriks,** K.; De **Vries,** J. L. *Acta Crystollogr.* **1950, 3,** 290.

Figure 1. Traces **A** and B: infrared and Raman spectra, respectively, of solid CsXeO₂F₃ at 25 °C. Trace C: Raman spectrum of CsXeO₃F₂.nXeF₂ at 25 °C.

It was shown that a mixture of XeF_6 and XeF_4 , when reacted with CsNO₃, yields a product that contains XeF_2 in addition to Cs- $XeO₂F₃$ and exhibits a Raman spectrum (see trace C of Figure 1) that is similar to that previously reported.¹¹ Therefore, the material previously ascribed¹¹ to $CsXeO₂F₃$ was most likely a $CsXeO_2F_3 \cdot nXeF_2$ adduct. This is not surprising in view of the known tendency of XeF_2 to form molecular adducts with other pseudooctahedral xenon or iodine species such as XeF_4 ,²¹ $XeOF_4$,²² XeF_5 ⁺,^{23,24} or IF₅²⁴ and the fact that XeF_2 is a byproduct in (8).

- **(21) Burns,** J. **H.;** Ellison, R. D.; **Levy,** H. **A.** *Acta Crystollogr.* **1965, 18, ,I**
-

Figure 2. Trace A: Raman spectrum of solid $NO_2^+(XeO_2F_3 \cdot nXeO_2F_2)$ recorded at 25 °C under an FNO₂ pressure of 2 atm. Trace B: Raman spectrum of a sample of XeO_2F_2 containing a small amount of residual FNO_2 , recorded as a solid at -100 °C. Trace C: Raman spectrum of the XeO_2F_2 residue after complete removal of all FNO_2 , recorded as a solid at 25 °C.

In the case of the reaction of CsNO₃ with XeF_4 containing XeF_6 , the formation of $CsXeO_2F_3\times eF_2$ is readily explained by the sequence of reactions 9-12. Reaction 10 has previously been

$$
CsNO3 + XeF4 \rightarrow CsF + FNO2 + XeOF2 (9)
$$

$$
2XeOF_2 \rightarrow XeO_2F_2 + XeF_2 \tag{10}
$$

$$
CsF + XeO2F2 \rightarrow CsXeO2F3
$$
 (11)

$$
CsXeO_2F_3 + XeF_2 \rightarrow CsXeO_2F_3 \cdot XeF_2 \qquad (12)
$$

shown²⁵ to occur readily at temperatures above -15 °C. A detailed discussion of the vibrational spectra of $CsXeO_2F_3$ will be given below.

The sluggishness of FNO_2 removal from XeO_2F_2 (see above) and the observation of a Raman signal at 1401 cm⁻¹, which is characteristic for $NO_2^{+,16}$ suggested that XeO_2F_2 and FNO_2 might

II.
(22) Wechsberg, M.; Bartlett, N. Z. Anorg. Allg. Chem. 1971, 385, 5.
(23) Zemva, B.; Jesih, A.; Templeton, D. H. Zalkin, A.; Cheetham, A. K.; Bartlett, N. J. Am. Chem. Soc. 1987, 109, 7420.

^{~ ~~ ~ ~~~} **(24)** Jones, **G.** R.; Burbank, R. D.; Bartlett, N. *Inorg. Chem.* **1970, 9,2264. (25)** Jacob, **E.;** Opferkuch, R. *Angew. Chem., Znt. Ed. Engl.* **1976.15, 158.**

Table I. Vibrational Spectra of $XeO₂F₂$ and Their Assignment in Point Group $C₂$,

Figure 3. Trace A: infrared spectrum of XeO_2F_2 , isolated in an Ar matrix at -263 °C. Trace B: Raman spectrum of solid $XeO₂F₂$ recorded at -110 °C.

FREQUENCY, cm-1

form an unstable adduct. This was confirmed by showing that $XeO₂F₂$, when combined with an excess of FNO₂ at room temperature, retained at -78 °C about 0.5 mol of FNO_2/mol of $XeO₂F₂$. The Raman spectrum (trace A, Figure 2) of the resulting adduct showed the 1401-cm⁻¹ band characteristic¹⁶ of NO_2^+ and was not a composite of the spectra of free $XeO_2F_3^-$ (trace B, Figure 1) and solid $XeO₂F₂$ (trace C, Figure 2). Therefore, it is attributed to an NO_2 ⁺ salt of a $[XeO_2F_3 \cdot nXeO_2F_2]$ ⁻ polyanion. The FN- O_2 -2Xe O_2F_2 adduct, which was isolated by \overline{FNO}_2 removal at -78 ^oC, was an unstable white solid with an FNO₂ dissociation pressure of at least 96 Torr at 22.4 °C. Complete removal of all FNO₂ could be achieved by prolonged pumping at 25 °C. Raman spectra at different stages of FNO, removal are shown in Figure **2,** traces **A-C,** and indicate that the presence of even small amounts of $NO₂$ ⁺ causes pronounced association effects and complexity of the spectra for $XeO₂F₂$.

Vibrational Spectra. XeO_2F_2 **.** Although most of the fundamental vibrations of XeO_2F_2 were known from previous studies^{4,5} and a normal-coordinate analysis had been carried out,²⁶ the

marginal quality of some of the reported spectra⁵ and questions concerning the assignments of some of the deformation modes prompted us to redetermine the vibrational spectra. The results are shown in Figures 3 and **4,** , and the revised assignments are summarized in Table I. The structure of $XeO₂F₂$ has been

established by a neutron diffraction study.⁶ It is a pseudo trigonal bipyramid of symmetry C_{2v} in which one of the equatorial positions is occupied by a free valence electron pair. Of the nine fundamentals the four A_1 modes, $\nu_6(B_1)$, and $\nu_8(B_2)$ have been firmly assigned. $4,5,26$

The modes in question are the $XeO₂$ torsion mode, $\nu_5(A_2)$, the XeF_2 bending mode, $\nu_7(B_1)$, and the XeO_2 rocking mode, $\nu_9(B_2)$.

⁽²⁶⁾ Willet, R. D.; **LaBonville, P.;** Ferraro, **J.** R. *J. Chem. Phys.* **1975,** *63,* **1414.**

assgnt for $XeO_2F_1^-$			obsd freq, cm^{-1} (rel intens)										
										F'	assgnt for $XeOF_3^-$		
in point group Ci		Ra	IR	Ra	IR		Ra	IR				in point group C_s	
A'	v_1 v_2	$v_{\rm as}(\text{XeO}_2)$ $\nu_{sym}(XeO_2)$	863 (18) 834 (100)	853 vs 833 m	881 (39) 853 (100)	906 s 849 mw	732 (8)			768(7)	A'	ν_1	$\nu(XeO)$
	ν_3	$\nu(XeF')$	513 (20)	517 vs						503(61)		v ₂	$\nu(XeF')$
	v_4	$\nu_{\text{sym}}(XeF_2)$	463 (29)	471 s	537 (33)	537 w	496 (100)	509 (100)		464 (100)		v_3	$\nu_{sym}(XeF_2)$
	ν_5	$\delta_{\text{sciss}}(\text{XeO}_2)$	372(7)	379 m	344(2.5)	331 sh							
	v_6	δ (F'XeO)	303(8)	309 m						270(5)		v_4	δ (F'XeO)
	ν_7	δ_{sciss} (XeF ₂)	212(1.5)		222(1.2)		197(1)			219(1)		ν_5	$\delta_{\text{sclss}}(XeF_2)$
	ν_8	8_{sciss} (XeF ₂)	169(5)		202(1.4)	202 w	186(8)		213 vs	167(5)		ν_6	$\delta_{\text{sciss}}(XeF_2)$
$A^{\prime\prime}$	ν_{9}	$\nu_{\rm as}(\text{XeF}_2)$	538(3)	540 vs	578 $(0+)$	585 vs			560 vs	487 (10)	$A^{\prime\prime}$	ν_{7}	$\nu_{\rm as}(\text{XeF}_2)$
	v_{10} v_{11}	$\tau(XeO_2)$ $\delta_{rock}(XeO_2)$	342(6)	331 w 341 w	318 $({\sim}1)$ 314(6)	329 sh 324 m	285 (4)			381(5)	ν_8	$\delta_{\text{rock}}(XeO)$	
	v_{12}	$\delta_{rock}(XeF')$	242(1)							292(1)		νq	$\delta_{\text{rock}}(XeF')$

Table II. Vibrational Spectra of Cs⁺XeO₂F₃⁻ Compared to Those of Closely Related Compounds

"Data from this work (Table I). ^b Data from ref 11. "Data from ref 27.

It should be noted that, in the previous normal-coordinate analysis,²⁶ the ν_7 and ν_9 modes have been assigned to the wrong symmetry blocks and must be exchanged. Although the choice of the B_1 and B_2 block for such a C_{2v} molecule is arbitrary, all modes within a given block must be symmetric with respect to the same plane of symmetry.

For the assignments of ν_5 , ν_7 , and ν_9 , three frequencies, 318, 314, and 222 cm⁻¹ (Ra (Raman) values of the solid), are available. Since the $\nu_7(B_1)$ and the $\nu_4(A_1)$ XeF₂ bending modes should be almost degenerate, their frequencies and relative intensities should be similar. Since $\nu_4(A_1)$ has been firmly assigned to the 202-cm⁻¹ band,^{4,5,21} $\nu_7(B_1)$ is assigned to the 222-cm⁻¹ band. Of the remaining two yet unassigned vibrations, the $XeO₂$ rocking mode should have higher infrared and Raman intensities than those for the XeO₂ torsion. The rocking mode, therefore, is assigned to the 314-cm⁻¹ band, leaving the very weak 318-cm⁻¹ band for the torsional mode.

The $XeO_2F_3^-$ Anion. As mentioned above, the Raman spectrum previously attributed¹¹ to CsXeO₂F₃ is that of a CsXeO₂F₃·nXeF₂ adduct. The vibrational spectra of $CsXeO_2F_3$ free of XeF_2 are shown in Figure 1, traces A and B, and their assignments are summarized in Table II.

The Xe atom in XeO_2F_3 possesses a free valence electron pair, and therefore, the structure of the anion should be that of a pseudooctahedron. In such a structure the two oxygen ligands could be either cis or trans with respect to each other, and the vibrational spectra should allow one to distinguish between these two isomers.

For simplicity, let us assume isolated linear and bent (90°) OXeO groups. A linear OXeO group has a center of symmetry, and therefore, the symmetric and the antisymmetric stretching vibrations should be mutually exclusive in the infrared and the Raman spectra. Furthermore, the coupling between the antisymmetric and the symmetric stretching modes should be at a maximum, resulting in a maximal separation of their frequencies,²⁸ On the other hand, for a right-angled OXeO group both the antisymmetric and the symmetric stretching vibrations should be of significant intensity in both the infrared and the Raman spectra. Furthermore, their frequency separation should be at a minimum since their potential energy terms (G matrix terms) become identical.²⁸

These arguments can be nicely supported by the known examples²⁹ of cis- and trans-IF₄O₂⁻, which are also pseudooctahedral and have atomic masses very similar to those in XeO_2F_3 . Thus, in trans-IF₄O₂ the symmetric and the antisymmetric OIO stretching modes are mutually exclusive in the infrared and Raman spectra and exhibit a frequency separation of 61 cm^{-1} . By contrast, in cis -IF₄O₂ both OIO stretching modes are infrared and Raman active (Ra (cm⁻¹ (relative intensity)) ν_{as} 875 (14), ν_{sym} 856 (100);
IR (cm⁻¹) ν_{as} 875 vs, ν_{sym} 855 vs) and their frequency separation is only 20 cm^{-1} .

Inspection of Figure 1 and Table II reveals for XeO_2F_3 ⁻ a frequency separation of about 29 cm⁻¹ and significant Raman intensity for the antisymmetric OXeO stretch and infrared intensity for the symmetric OXeO stretch. Furthermore, these observations for $XeO_2F_3^-$ closely resemble those for solid XeO_2F_2 $(\Delta \nu = 28 \text{ cm}^{-1}; \text{Ra (cm}^{-1} \text{ (relative intensity)}) \nu_{\text{as}} 881 \text{ (39)}, \nu_{\text{sym}}$ 853 (100)), which was shown by neutron diffraction⁶ to have an OXeO bond angle of 106°.³⁰ Consequently, the oxygen atoms in XeO_2F_3 ⁻ must be cis with respect to each other, and their bond angle should be similar to that in XeO_2F_2 . The same arguments hold for the $CsXeO_2F_3 \cdot nXeF_2$ adduct, which exhibits almost identical $XeO₂$ stretching frequencies and intensities.

The vibrational assignments for cis -XeO₂F₃⁻ are based to a large extent on correlations with the known spectra of the closely related XeO_2F_2 , $XeOF_2$,¹¹ and XeF_2^{27} molecules and the $XeOF_3^-$ anion¹¹ (see Table II). Compared to those of XeO_2F_2 , the $XeO_2F_3^$ vibrations involving the $XeO₂$ group exhibit only minor frequency shifts, with the stretching modes being somewhat lower and the deformation modes being somewhat higher than their counterparts in XeO_2F_2 . The frequency increases of the deformation modes are attributed to the addition of the fluoride ion, resulting in increased crowding of the ligands in the equatorial plane and concomitant resistance toward angle deformation. On the other

 (27) Bartlett, N.; Sladky, F. O. In Comprensive Inorganic Chemistry; Bailar, J. C., Emeleus, H. J., Nyholm, R., Trotman-Dickenson, A. F., Eds.; Pergamon: Oxford, U.K., 1973; Vol. 1, p 255.

Weidlein, J.; Muller, U.; Dehnicke, K. In Schwingungsspektroskopie;
Thieme: Stuttgart, West Germany, 1982; p 53. (28)

 (29) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1981, 20, 2104.

 (30) The small (106°) O-Xe-O bond angle in solid XeO_2F_2 is due to oxygen bridging with neighboring molecules. In matrix-isolated XeO_2F_2 , the O-Xe-O bond angle must be significantly larger than 106° and should
approximate the 120° value expected for an ideal trigonal bipyramid.
This is supported by the increased frequency separation of 57 cm⁻¹
observed for th A trans configuration of the oxygens in matrix-isolated XeO_2F_2 can be ruled out from the significant intensities of $\nu_{\text{as}}(XeO_2)$ in the Raman and of $\nu_{sym}(XeO_2)$ in the IR spectra.

hand, all vibrations involving the two axial fluorine atoms show pronounced frequency decreases. This is not surprising because the formal negative charge, created by the addition of the extra **F** ligand, generally resides in this type of molecule on the highly electronegative fluorine ligands. Therefore, the axial Xe-F bonds become more ionic and weaker.

The addition of the F ion to XeO_2F_2 creates three extra fundamentals. These are the equatorial $Xe-F'$ stretching mode, ν_3 , the F'XeO bending mode, ν_6 , and the XeF' rocking mode, ν_{12} . The assignment of the $Xe-F'$ stretching mode to the 513-cm⁻¹ Raman band is clear-cut. The frequency of the F'XeO deformation mode involves a singly bonded fluorine and a doubly bonded oxygen and, therefore, should be intermediate between those of the $XeO₂$ deformations (380-330 cm⁻¹) and the XeF_2 deformations $(170-220 \text{ cm}^{-1})$. It is, therefore, assigned to the Raman band at 303 cm⁻¹. The remaining XeF' rocking mode (ν_{12}) is assigned

to the last, yet unassigned Raman band at 242 cm⁻¹. The frequency of this mode appears plausible from a comparison with the closely related XeF_4 and $XeOF_4$ molecules. The XeF' rocking mode in $XeO_2F_3^-$ involves a motion similar to that of the symmetric in-plane deformations in XeF_4 and $XeOF_4$, which have frequencies of 235 and 233 cm-', respectively. Similarly, the frequency of the axial XeF_2 scissoring mode, $\nu_8(A')$, of $XeO_2F_3^$ correlates well with that of the antisymmetric XeF_4 deformation

The assignments given in Table II for $XeOF_3^-$ are tentative since at present it is not known whether the oxygen atom is cis or trans with respect to the equatorial fluorine ligand. For $CsXeO_2F_3$. $nXeF₂$ (trace C, Figure 1) no detailed analysis is made at this time, except for the obvious assignments of the bands at 861, 834, 538, 461, 340, and 302 cm⁻¹ to $XeO_2F_3^-$ and of the 504-cm⁻¹ band to XeF_2 . Similarly, a detailed analysis of the $NO_2^+(XeO_2F_3)$. $nXeO₂F₂$]⁻ spectrum (trace A, Figure 2) is not warranted. Some obvious assignments are as follows: 1401 cm^{-1} , $\nu_{sym}(\text{NO}_2^{+})$; 900, 888, and 879 cm⁻¹, $v_{as}(XeO_2)$; 861, 850, and 839 cm⁻¹, $v_{sym}(XeO_2)$; 506 cm⁻¹, $\nu_{sym}(XeF_2)$.

Conclusion. The usefulness of nitrates as a reagent for the substitution of two fluorine ligands for a doubly bonded oxygen has been extended from bromine fluorides^{1,31} to xenon fluorides.

In the previous work on BrF_5 it was suggested¹ that the fluorine-oxygen reaction involves an $M^{+}F_{5}BrONO_{2}^{-}$ intermediate, which for $M = Li$ or Na decomposes to MF, and an unstable F_4BrONO_2 , which then decomposes to FNO_2 and BrF_3O . For $M = K$, Rb, or Cs, which can form stable Br F_4O^- salts, the direct formation of $M^+BrF_4O^-$ by FNO_2 elimination from $M+F₅BrONO₂$ was postulated. In this study, the formation of free XeO_2F_2 was observed for the CsNO₃ plus $XeOF_4$ reaction, in spite of the stability of $Cs^+XeO_2F_3^-$. It, therefore, appears that in these exchange reactions, regardless of the nature of the **M+** cation, MF and the free oxyfluoride are generated first and that the formation of the alkali-metal oxyfluoride salts is a secondary reaction of variable conversion.

Furthermore, the present study demonstrates that N_2O_5 , which in the solid state has the ionic composition $NO_2^+NO_3^-$, can serve as a substitute for the alkali-metal nitrates. When the desired oxyfluoride has little or no volatility, the use of N_2O_5 is of particular advantage because volatile FNO, is the only byproduct, thereby facilitating the product separation.

Finally, the nitrate method provided an improved synthesis of $XeO₂F₂$ that allowed a better characterization of its properties and reaction chemistry, in particular with respect to its Lewis acid and base characteristics.

Acknowledgment. We are grateful to Dr. C. J. Schack and R. D. Wilson for their help, to Dr. G. J. Schrobilgen for providing us with copies of his original XeO_2F_2 Raman spectra, and to the Office of Naval Research for financial support.

Registry No. CsNO₃, 7789-18-6; XeF₆, 13693-09-9; FNO₂, 10022-50-1; XeOF₄, 13774-85-1; CsXeF₇, 19033-04-6; CsXeOF₅, 12191-01-4; $CsXeO₂F₃$, 65014-03-1; $XeO₂F₂$, 13875-06-4; $N₂O₅$, 10102-03-1; $NO₂⁺[XeO₂F₃]⁻, 116025-38-8.$

(31) Wilson, W. W.; Christe, **K.** 0. *Inorg. Chem.* **1987,** 26, 1573.