New Syntheses and Properties of XeO_2F_2 , $Cs^+XeO_2F_3^-$, and $NO_2^+[XeO_2F_3 \cdot n XeO_2F_2]^-$

Karl O. Christe* and William W. Wilson

Received March 16, 1988

Alkali-metal nitrates and N_2O_5 are useful reagents for the stepwise replacement of two fluorine atoms by one oxygen atom in xenon fluorides or oxyfluorides. Thus, the reaction of an excess of XeF_6 with $CsNO_3$ yields $XeOF_4$, FNO_2 , and $CsXeF_7$ in high yield. With CsNO₃ in excess, the primary products are CsXeOF₅ and FNO₂, and after longer reaction times some CsXeO₂F₃ is also formed. The reaction of $CsNO_3$ with an excess of $XeOF_4$ produces FNO_2 and XeO_2F_2 in quantitative yield with a mixture of CsF and CsXeOF₅ as the byproducts. Recrystallization of this CsF-CsXeOF₅-XeO₂F₂ mixture from anhydrous HF provides in the second s a convenient synthesis for $CsXeO_2F_3$. The reaction of N_2O_5 with an excess of XeO_F_4 results in XeO_2F_2 and FNO_2 , thus providing a new safe synthesis for XeO_2F_2 . Vibrational spectra of liquid, solid, and Ar-matrix-isolated XeO_2F_2 are reported. With FNO₂, xenon dioxide difluoride forms an unstable $NO_2^+[XeO_2F_3]$ adduct, which was characterized by Raman spectroscopy. The vibrational spectra of $C_{s}XeO_{2}F_{3}$ were recorded and assigned. It is shown that the two oxygen atoms in $XeO_{2}F_{3}$ are cis and not trans to each other and that the Raman spectrum previously attributed to $Cs^+XeO_2F_3^-$ is due to a $Cs^+[XeO_2F_3\cdot nXeF_2]^-$ adduct.

Introduction

In a prevous paper¹ it was shown that the nitrate ion is an excellent reagent for substituting one oxygen atom for two fluorine ligands in BrF_5 . During a study of the general utility of this reagent, the reactions of NO_3^- with xenon fluorides were also studied, and the results are summarized in this paper.

The controlled, stepwise substitution of two fluorines by one oxygen in XeF₆ was of particular interest because the previously used methods for the synthesis of XeO_2F_2 involved the highly explosive XeO_3 , either as a starting material² or as a potential byproduct.^{3,4} In view of this explosion hazard, it is not surprising that the previous literature on XeO_2F_2 is rather limited. The compound was first prepared by Huston² from XeO₃ and XeOF₄ and was characterized by him and his co-workers by vibrational spectroscopy,⁵ neutron diffraction,⁶ and an ¹⁸F radiotracer study.⁷ The only other reports on XeO_2F_2 chemistry are by Schrobilgen and co-workers. They prepared XeO_2F_2 by hydrolysis of XeF_6 in HF solution^{3,4} and recorded its NMR^{4} and $Raman^{4,8}$ spectra. Furthermore, they showed that XeO_2F_2 is a good fluoride ion donor and can form 1:1 and 1:2 adducts with SbF_5 that contain the XeO_2F^+ cation.^{3,8-10} Although the direct complexation of XeO₂F₂ with alkali-metal fluorides was not studied, they obtained, by the disproportionation of $XeOF_2$ in the presence of CsF in anhydrous HF, a solid that, on the basis of its Raman spectrum, was attributed to $Cs^+[trans-XeO_2F_3]^{-.11}$

In addition to the synthesis of XeO_2F_2 , we have also studied its fluoride ion donor and acceptor properties. In this paper, the adduct formation of XeO₂F₂ with CsF and FNO₂ is included, while data on the new adducts XeO₂F⁺AsF₆⁻ and FO₂XeFXeO₂F⁺AsF₆⁻ are given elsewhere.¹²

Experimental Section

Caution! The reaction of XeOF₄ with an excess of nitrate produces highly explosive XeO_3 . Liquid mixtures of XeO_2F_2 and XeO_3 , when cooled with liquid nitrogen, tended to flash followed within seconds by

- (1) Wilson, W. W.; Christe, K. O. Inorg. Chem. 1987, 26, 916.
- Huston, J. L. J. Phys. Chem. 1967, 71, 3339. (2)
- (3) Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 2370.
- Schumacher, G. A.; Schrobilgen, G. J. Inorg. Chem. 1984, 23, 2923. (4)Claassen, H. H.; Gasner, E. L.; Kim, H.; Huston, J. L. J. Chem. Phys. (5) 1968, 49, 253
- (6) Peterson, S. W.; Willett, R. D.; Huston, J. L. J. Chem. Phys. 1973, 59, 453.
- (7) Frame, H. D.; Huston, J. L.; Sheft, I. Inorg. Chem. 1969, 8, 1549. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, (8)
- 1256. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. J. Chem. Soc., Chem.
- Commun. 1972, 607. Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980. (10)
- (11) Gillespie, R. J.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1977. 595
- (12) Christe, K. O.; Wilson, W. W. Inorg. Chem., in press.

explosions. Therefore, for the XeOF₄ and XeO₂F₂ syntheses the xenoncontaining starting materials should always be used in excess, and appropriate safety precautions should be taken.

Apparatus and Materials. The vacuum lines, handling techniques, and spectrometers used in this study have been described elsewhere.^{12,13} CsNO₃ was prepared from Cs₂CO₃ and HNO₃ and dried in a vacuum oven at 120 °C for 1 day. FNO₂ was obtained as a byproduct from the reactions of nitrates with either XeF_6 , $XeOF_4$, or BrF_5^1 and was purified by fractional condensation through two cold traps kept at -142 and -196 °C, with the material retained at -196 °C being used. CsF was dried by fusion in a platinum crucible, followed by immediate transfer of the hot clinker to the dry N2 atmosphere of a glovebox. XeF6 was prepared from Xe and F_2 and purified by complexing with NaF and subsequent vacuum pyrolysis of the adduct.^{14,15} XeOF₄¹³ and N₂O₅¹⁶ were prepared by literature methods, and HF was dried with BiF₅ as previously described.17

Reaction of CsNO₃ with an Excess of XeF₆. A 30-mL stainless steel cylinder was loaded in the drybox with CsNO₃ (2.44 mmol). On the vacuum line, XeF_6 (20.51 mmol) was added at -196 °C. The cylinder was heated to 56 °C for 4 h and then cooled to -196 °C. It did not contain any material noncondensable at -196 °C. The material volatile at 25 °C was separated by fractional condensation through traps kept at -78 and -196 °C. The -196 °C trap contained FNO₂ (1.85 mmol), and the -78 °C trap had XeF₆, XeOF₄, and some FNO₂. To separate all of the FNO₂ from XeF₆ and XeOF₄, the contents of the -78 °C trap were fractionated three more times as described above and yielded an additional 0.55 mmol of FNO₂ in the -196 °C trap for a total of 2.4 mmol. XeF_6 and $XeOF_4$ were separated by complexing XeF_6 with a large excess of NaF in a Monel cylinder at 70 °C for 2 h, followed by pumping off the unreacted XeOF4 at 25 °C and collecting it in a U-trap at -78 °C. The collected material (546 mg; weight calculated for 2.44 mmol of $XeOF_4$ 545 mg) was shown by its vapor pressure and infrared spectrum to be pure XeOF₄. The solid nonvolatile residue from the CsNO₃-XeF₆ reaction (976 mg; weight calculated for 2.44 mmol of CsXeF₇ 969 mg) was identified by infrared and Raman spectroscopy as CsXeF₇.¹⁸

Reaction of XeF₆ with an Excess of CsNO₃. A mixture of CsNO₃ (6.06 mmol) and XeF_6 (1.12 mmol) was heated in a 30-mL stainless steel cylinder for 16 h to 54 °C. The cylinder was cooled to -196 °C and contained no noncondensable material. The material volatile at 25 °C was separated by fractional condensation through traps kept at -78 and -196 °C. The -196 °C trap contained FNO₂ (1.13 mmol), while the -78 °C trap had XeOF₄ (0.03 mmol). The solid, off-white residue (1.369 g; weight calculated, for 1.09 mmol of CsXeOF₅, 0.03 mmol of CsF, and 4.94 mmol of CsNO₃ 1.376 g) was identified by vibrational spectroscopy as CsNO3 and CsXeOF519 containing small amounts of CsXeO2F3 and $CsXeF_{7}^{18}$ and a trace amount of $XeO_{2}F_{2}$.

- (13) Christe, K. O.; Wilson, W. W. Inorg. Chem. 1988, 27, 1296.
 (14) Chernick, C. L.; Malm, J. G. Inorg. Synth. 1966, 8, 258.
 (15) Sheft, I.; Spittler, T. M.; Martin, F. H. Science (Washington, D.C.) 1964, 45, 701.
- (16)Wilson, W. W.; Christe, K. O. Inorg. Chem. 1987, 26, 1631.
- (17)Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978, 11, 71.
- (18) Christe, K. O.; Wilson, W. W. Inorg. Chem. 1982, 21, 4113.
- Holloway, J. H.; Kaucic, V.; Martin-Rovet, D.; Russell, D. R.; Schrobilgen, G. J.; Selig, H. Inorg. Chem. 1985, 24, 678. (19)

When the reaction time for the XeF₆ plus excess $CsNO_3$ system was increased to 2 weeks or more, the yield of FNO₂ increased and $CsXeO_2F_3$ became a major reaction product besides $CsXeOF_5$, $CsXeF_7$, and unreacted $CsNO_3$.

Reaction of CsNO₃ with an Excess of XeOF₄. Finely powdered CsNO₃ (1.28 mmol) was loaded into a prepassivated 10-mL stainless steel cylinder in the drybox. The cylinder was evacuated on the vacuum line, and XeOF₄ (4.97 mmol) was added at -196 °C. The cylinder was kept in an oven at 45 °C for 24 h, then reconnected to the vacuum line, and cooled to -196 °C. It did not contain any significant amount of gas noncondensable at -196 °C. The material volatile at 25 °C was separated by fractional condensation in a dynamic vacuum through traps kept at -78 and -196 °C. The -78 °C trap contained XeOF₄ (3.18 mmol), and the -196 °C trap, FNO₂ (1.22 mmol). The white solid residue (569 mg; weight calculated for 1.28 mmol of XeO₂F₂, 0.77 mmol of CsF, and 0.51 mmol of CsXeOF₅ 566 mg) was identified by vibrational spectroscopy. The Raman bands due to XeO_2F_2 (884 m, 852 sh, 849 vs, 501 m, 489 ms, 354 w, 207 w cm⁻¹) deviated somewhat from those of the neat solid XeO_2F_2 but in their general appearance resembled those of XeO_2F_2 mixtures with other compounds (see Results and Discussion)

Preparation of Cs⁺XeO₂F₃⁻. The solid product obtained from the CsNO₃ plus excess XeOF₄ reaction, when recrystallized from anhydrous HF, was converted almost quantitatively to Cs⁺XeO₂F₃⁻ with simultaneous XeOF₄ evolution. A remaining trace of free XeO₂F₂, detectable by its Raman bands at 881, 850, and 497 cm⁻¹, could be converted to CsXeO₂F₃ by the addition of a small amount of extra CsF before the recrystallization.

Preparation of XeO_2F_2 . A sample of freshly prepared N_2O_5 (3.95) mmol) was transferred on the vacuum line under a dynamic vacuum into a 0.75-in-o.d. Teflon-FEP U-trap that was equipped with two stainless steel valves and kept at -45 °C. The Teflon U-trap was cooled to -196 °C, and XeOF₄ (8.71 mmol) was added. The mixture was allowed to slowly warm to ambient temperature in an empty cold Dewar flask and was kept at this temperature for 90 min. The U-tube was cooled to -196 °C and contained no noncondensable material. The material volatile at room temperature was pumped off briefly through two traps cooled to -78 and -196 °C. The trap at -196 °C contained FNO₂ (7.4 mmol), while the one at -78 °C had XeOF₄ (4.75 mmol). The liquid residue in the Teflon U-trap (827 mg; weight calculated for 3.95 mmol of XeO₂F₂ and 0.49 mmol of FNO₂ 827 mg) was shown by Raman spectroscopy to be predominantly ionic $NO_2^+[XeO_2F_3 nXeO_2F_2]^-$. Complete removal of FNO_2 together with some XeO_2F_2 was achieved by prolonged pumping on the sample at ambient temperature. The resulting pure XeO₂F₂ was a white solid melting at 31 °C and was characterized by its vibrational spectra.4,5,8

The XeO₂F₂-FNO₂ System. FNO₂ (3.86 mmol) was added at -196 °C to a sapphire tube containing XeO₂F₂ (1.32 mmol). The mixture was allowed to warm to ambient temperature. At first the product was liquid, but after several hours at 25 °C it was converted to a white solid, which was shown by Raman spectroscopy to be an NO₂⁺ salt of [XeO₂F₃· $nXeO_2F_2$]⁻. The tube was cooled to -78 °C, and unreacted FNO₂ (3.21 mmol) was pumped off, establishing the composition of the white solid as NO₂⁺[XeO₂F₃·1.03XeO₂F₂]⁻. The dissociation pressure above 0.65 mmol of this solid in a 27.2-mL volume at 22.4 °C was found to be 96 Torr of FNO₂. Upon removal of FNO₂ by brief pumping at 25 °C, the white solid residue melted to a clear colorless liquid that had lost most of its FNO₂. As described above for the preparation of pure XeO₂F₂, the complete removal of FNO₂ was achieved with some loss of XeO₂F₂.

Results and Discussion

Reactions of NO₃⁻ with XeF₆ and Synthesis of XeOF₄. The reaction of CsNO₃ with a large excess of XeF₆ at temperatures above the melting point of XeF₆ (49.5 °C) proceeds quantitatively according to (1) and (2). If in (1) the excess of XeF₆ is reduced

$$CsNO_3 + XeF_6 \rightarrow CsF + XeOF_4 + FNO_2$$
(1)

$$CsF + XeF_6 \rightarrow CsXeF_7$$
 (2)

to less than 100%, some of the CsF can react with XeOF₄ to form Cs⁺XeOF₅^{-.19} Substitution of CsNO₃ by NaNO₃ in (1) provides the following advantages, a more detailed description of which is reported elsewhere:¹³ (i) NaNO₃ is commercially readily available and less expensive than CsNO₃; (ii) NaF does not form a stable adduct with XeOF₄, and therefore, only a small excess of XeF₆ is required for (1) without loss of XeOF₄; (iii) the formed NaF complexes the small excess of XeF₆ used as NaXeF₇. This results in XeOF₄ and FNO₂ as the only volatile products, which can be separated readily by fractional condensation due to their vastly different volatilities.

If in the $CsNO_3$ -XeF₆ reaction an excess of $CsNO_3$ is being used, most of the XeF₆ is converted to XeOF₄, which reacts with CsF according to (3). In this case, the major reaction products

$$CsF + XeOF_4 \rightarrow CsXeOF_5$$
 (3)

are FNO₂ and CsXeOF₅, with small amounts of CsF, CsXeF₇, CsXeO₂F₃, and XeO₂F₂ also being formed. With long reaction times of several weeks at 54 °C, the secondary reactions (4) and (5) gain in importance, and CsXeO₂F₃ becomes a major reaction product.

$$CsNO_3 + XeOF_4 \rightarrow CsF + FNO_2 + XeO_2F_2 \qquad (4)$$

$$CsF + XeO_2F_2 \rightarrow CsXeO_2F_3 \tag{5}$$

Reaction of CsNO₃ with XeOF₄ and Synthesis of XeO₂F₂. The reaction of CsNO₃ with a large excess of XeOF₄ results in the quantitative formation of FNO₂ and XeO₂F₂ according to (4), with about 60% of the CsF reacting with excess XeOF₄ according to (3) to give CsXeOF₅. Since XeO₂F₂ is of low volatility and is difficult to remove from the other solid products, i.e. CsF and CsXeOF₅, the CsNO₃ in (4) was replaced by N₂O₅ which, in the solid state, has the ionic structure NO₂⁺NO₃^{-16.00} In this manner, instead of nonvolatile CsF, volatile FNO₂ is formed as in (6), and XeO₂F₂ is the only low-volatility reaction product, thus facilitating product separation. While most of the FNO₂ byproduct can

$$NO_2^+NO_3^- + XeOF_4 \rightarrow 2FNO_2 + XeO_2F_2$$
 (6)

readily be pumped off from XeO_2F_2 at ambient temperature, complete removal of FNO_2 becomes increasingly more difficult and requires prolonged pumping. Since pure XeO_2F_2 melts at 31 °C², solidification of the initially liquid reaction product at ambient temperature serves as a good indication that removal of the FNO_2 byproduct is essentially complete.

The use of an excess of N_2O_5 in (6) should be avoided because XeO_2F_2 can react further with N_2O_5 , producing FNO₂ and highly explosive XeO_3 . This was experimentally verified but not further pursued due to the pronounced sensitivity of the resulting liquid XeO_2F_2 -XeO₃ mixture. This mixture, when cooled with liquid nitrogen, tended to flash followed by explosive decomposition.

In summary, the reaction of N_2O_5 with XeOF₄ provides a convenient, scalable, and safer new synthesis for XeO₂F₂, provided that an excess of XeOF₄ is used in the reaction. The previous methods used either XeOF₄ and the explosive XeO₃ as starting materials² or the hydrolysis of XeF₆ in HF solution, which has also been described as hazardous.⁴

Synthesis of $XeO_2F_3^-$ Salts. The solid product obtainable from the reaction of CsNO₃ and an excess of XeOF₄ (see above) consists of a mixture of CsF, CsXeOF₅, and XeO₂F₂. Recrystallization of this mixture from anhydrous HF solution results in an essentially complete conversion of CsF and CsXeOF₅ to CsXeO₂F₃ according to (5) and (7). The fact that the pseudo-trigonal-bipyramidal

$$CsXeOF_5 + XeO_2F_2 \xrightarrow{HF} CsXeO_2F_3 + XeOF_4$$
(7)

 XeO_2F_2 (Xe has one sterically active free valence electron pair in its Xe(VI) compounds) is a stronger Lewis acid than pseudooctahedral XeOF₄ and, therefore, displaces it from its salts is not surprising. Since XeOF₄ has a vapor pressure of 29 torr at 23 °C, it can readily be pumped off from the CsXeO₂F₃ product, which is isolated as a stable white solid.

The only previous report concerning the existence of an $XeO_2F_3^-$ salt was a statement that, in an HF solution containing CsF, XeO_2 disproportionates according to (8) to give $CsXeO_2F_3^{-11}$.

$$2XeOF_2 + CsF \xrightarrow{HF} CsXeO_2F_3 + XeF_2$$
(8)

The product from (8) was characterized by its Raman spectrum, which was interpreted in terms of an $XeO_2F_3^-$ anion in which the two oxygen atoms are trans to each other.¹¹ However, the Raman spectrum (trace B, Figure 1) of our CsXeO₂F₃, prepared according to (7), significantly differs in the region of the Xe–F vibrations from that previously reported.¹¹ This discrepancy was resolved.

⁽²⁰⁾ Grison, E.; Eriks, K.; De Vries, J. L. Acta Crystallogr. 1950, 3, 290.

Figure 1. Traces A and B: infrared and Raman spectra, respectively, of solid CsXeO₂F₃ at 25 °C. Trace C: Raman spectrum of CsXeO₃F₂•nXeF₂ at 25 °C.

It was shown that a mixture of XeF_6 and XeF_4 , when reacted with CsNO₃, yields a product that contains XeF₂ in addition to Cs- XeO_2F_3 and exhibits a Raman spectrum (see trace C of Figure 1) that is similar to that previously reported.¹¹ Therefore, the material previously ascribed¹¹ to CsXeO₂F₃ was most likely a $CsXeO_2F_3 \cdot nXeF_2$ adduct. This is not surprising in view of the known tendency of XeF₂ to form molecular adducts with other pseudooctahedral xenon or iodine species such as XeF4,²¹ XeOF4,²² XeF_5^+ , ^{23,24} or IF_5^{24} and the fact that XeF_2 is a byproduct in (8).

- (21) Burns, J. H.; Ellison, R. D.; Levy, H. A. Acta Crystallogr. 1965, 18,

Figure 2. Trace A: Raman spectrum of solid $NO_2^+[XeO_2F_3,nXeO_2F_2]^$ recorded at 25 °C under an FNO2 pressure of 2 atm. Trace B: Raman spectrum of a sample of XeO₂F₂ containing a small amount of residual FNO₂, recorded as a solid at -100 °C. Trace C: Raman spectrum of the XeO_2F_2 residue after complete removal of all FNO₂, recorded as a solid at 25 °C.

In the case of the reaction of $C_{s}NO_{3}$ with XeF_{4} containing XeF_{6} . the formation of $C_sXeO_2F_3 \cdot XeF_2$ is readily explained by the sequence of reactions 9-12. Reaction 10 has previously been

$$CsNO_3 + XeF_4 \rightarrow CsF + FNO_2 + XeOF_2$$
 (9)

$$2XeOF_2 \rightarrow XeO_2F_2 + XeF_2 \tag{10}$$

$$CsF + XeO_2F_2 \rightarrow CsXeO_2F_3$$
 (11)

$$CsXeO_2F_3 + XeF_2 \rightarrow CsXeO_2F_3 \cdot XeF_2$$
(12)

shown²⁵ to occur readily at temperatures above -15 °C. A detailed discussion of the vibrational spectra of CsXeO₂F₃ will be given below.

The sluggishness of FNO_2 removal from XeO_2F_2 (see above) and the observation of a Raman signal at 1401 cm⁻¹, which is characteristic for NO2⁺,¹⁶ suggested that XeO2F2 and FNO2 might

Wechsberg, M.; Bartlett, N. Z. Anorg. Allg. Chem. 1971, 385, 5. Zemva, B.; Jesih, A.; Templeton, D. H. Zalkin, A.; Cheetham, A. K.; Bartlett, N. J. Am. Chem. Soc. 1987, 109, 7420. (23)

 ⁽²⁴⁾ Jones, G. R.; Burbank, R. D.; Bartlett, N. Inorg. Chem. 1970, 9, 2264.
 (25) Jacob, E.; Opferkuch, R. Angew. Chem., Int. Ed. Engl. 1976, 15, 158.

Table I. Vibrational Spectra of XeO_2F_2 and Their Assignment in Point Group C_{2n}

Figure 3. Trace A: infrared spectrum of XeO₂F₂, isolated in an Ar matrix at -263 °C. Trace B: Raman spectrum of solid XeO₂F₂ recorded at -110 °C.

FREQUENCY, cm-1

form an unstable adduct. This was confirmed by showing that XeO_2F_2 , when combined with an excess of FNO₂ at room temperature, retained at -78 °C about 0.5 mol of FNO2/mol of XeO_2F_2 . The Raman spectrum (trace A, Figure 2) of the resulting adduct showed the 1401-cm⁻¹ band characteristic¹⁶ of NO₂⁺ and was not a composite of the spectra of free $XeO_2F_3^-$ (trace B, Figure 1) and solid XeO_2F_2 (trace C, Figure 2). Therefore, it is attributed to an NO₂⁺ salt of a $[XeO_2F_3 \cdot nXeO_2F_2]^-$ polyanion. The FN- $O_2 \cdot 2XeO_2F_2$ adduct, which was isolated by FNO₂ removal at -78 °C, was an unstable white solid with an FNO₂ dissociation pressure of at least 96 Torr at 22.4 °C. Complete removal of all FNO, could be achieved by prolonged pumping at 25 °C. Raman spectra at different stages of FNO₂ removal are shown in Figure 2, traces A-C, and indicate that the presence of even small amounts of NO_2^+ causes pronounced association effects and complexity of the spectra for XeO_2F_2 .

Vibrational Spectra. XeO₂F₂. Although most of the fundamental vibrations of XeO₂F₂ were known from previous studies^{4,5} and a normal-coordinate analysis had been carried out,²⁶ the marginal quality of some of the reported spectra⁵ and questions

concerning the assignments of some of the deformation modes prompted us to redetermine the vibrational spectra. The results are shown in Figures 3 and 4, , and the revised assignments are summarized in Table I. The structure of XeO_2F_2 has been

established by a neutron diffraction study.⁶ It is a pseudo trigonal bipyramid of symmetry C_{2v} in which one of the equatorial positions is occupied by a free valence electron pair. Of the nine fundamentals the four A₁ modes, $\nu_6(B_1)$, and $\nu_8(B_2)$ have been firmly assigned.4,5,26

The modes in question are the XeO₂ torsion mode, $\nu_5(A_2)$, the XeF₂ bending mode, $\nu_7(B_1)$, and the XeO₂ rocking mode, $\nu_9(B_2)$.

⁽²⁶⁾ Willet, R. D.; LaBonville, P.; Ferraro, J. R. J. Chem. Phys. 1975, 63, 1474

			obsd freq, cm ⁻¹ (rel intens)										
assgnt for XeO ₂ F ₃ - in point group C ₃				:		-Xe	c F F F			assgnt for XeOF3-			
		Ra	IR	Ra	IR		Ra	IR		<u></u>	poin	t group C _s	
A′	ע רע	$\nu_{as}(XeO_2)$ $\nu_{sum}(XeO_2)$	863 (18) 834 (100)	853 vs 833 m	881 (39) 853 (100)	906 s 849 mw	732 (8)			768 (7)	A'	v ₁	v(XeO)
	V3	$\nu(XeF')$	513 (20)	517 vs		,				503 (61)		V2	ν(XeF')
	ν4	$\nu_{\rm sym}({\rm XeF_2})$	463 (29)	471 s	537 (33)	537 w	496 (100)	509 (100)		464 (100)		ν_3	$\nu_{\rm sym}({\rm XeF_2})$
	νs	$\delta_{sciss}(XeO_2)$	372 (7)	379 m	344 (2.5)	331 sh							
	ν_6	$\delta(F'XeO)$	303 (8)	309 m						270 (5)		ν_4	$\delta(F'XeO)$
	ν_7	8 _{sciss} (XeF ₂)	212 (1.5)		222 (1.2)		197 (1)			219 (1)		νs	$\delta_{sciss}(XeF_2)$
							}		213 vs				
	ν_8	δ _{scips} (XeF ₂) }	169 (5)		202 (1.4)	202 w	186 (8) J			167 (5)		ν_6	$\delta_{sciss}(XeF_2)$
Α″	Vo	$v_{\rm eff}({\rm XeF_{2}})$	538 (3)	540 vs	578 (0+)	585 vs			560 vs	487 (10)	Α″	עק	$v_{a}(XeF_{2})$
••	P10	$\tau(XeO_2)$		331 w	318 (~1)	329 sh	205 (4)			1 201 (5)	V8	$\delta_{\rm rock}({\rm XeO})$	
	ν ₁₁	$\delta_{\rm rock}({\rm XeO_2})$	342 (6)	341 w	314 (6)	324 m ∫	285 (4)			} 301 (3)		•	
	ν_{12}	$\delta_{\rm rock}({\rm XeF'})$	242 (1)							292 (1)		ν_9	$\delta_{rock}(XeF')$

Table II. Vibrational Spectra of Cs⁺XeO₂F₃⁻ Compared to Those of Closely Related Compounds

^a Data from this work (Table I). ^b Data from ref 11. ^c Data from ref 27.

It should be noted that, in the previous normal-coordinate analysis,²⁶ the ν_7 and ν_9 modes have been assigned to the wrong symmetry blocks and must be exchanged. Although the choice of the B₁ and B₂ block for such a C_{2v} molecule is arbitrary, all modes within a given block must be symmetric with respect to the same plane of symmetry.

For the assignments of ν_5 , ν_7 , and ν_9 , three frequencies, 318, 314, and 222 cm⁻¹ (Ra (Raman) values of the solid), are available. Since the $\nu_7(B_1)$ and the $\nu_4(A_1)$ XeF₂ bending modes should be almost degenerate, their frequencies and relative intensities should be similar. Since $\nu_4(A_1)$ has been firmly assigned to the 202-cm⁻¹ band,^{4,5,21} $\nu_7(B_1)$ is assigned to the 222-cm⁻¹ band. Of the remaining two yet unassigned vibrations, the XeO₂ rocking mode should have higher infrared and Raman intensities than those for the XeO₂ torsion. The rocking mode, therefore, is assigned to the 314-cm⁻¹ band, leaving the very weak 318-cm⁻¹ band for the torsional mode.

The XeO₂F₃⁻ Anion. As mentioned above, the Raman spectrum previously attributed¹¹ to $CsXeO_2F_3$ is that of a $CsXeO_2F_3$ ·nXeF₂ adduct. The vibrational spectra of $CsXeO_2F_3$ free of XeF₂ are shown in Figure 1, traces A and B, and their assignments are summarized in Table II.

The Xe atom in $XeO_2F_3^-$ possesses a free valence electron pair, and therefore, the structure of the anion should be that of a pseudooctahedron. In such a structure the two oxygen ligands could be either cis or trans with respect to each other, and the vibrational spectra should allow one to distinguish between these two isomers.

For simplicity, let us assume isolated linear and bent (90°) OXeO groups. A linear OXeO group has a center of symmetry, and therefore, the symmetric and the antisymmetric stretching vibrations should be mutually exclusive in the infrared and the Raman spectra. Furthermore, the coupling between the antisymmetric and the symmetric stretching modes should be at a maximum, resulting in a maximal separation of their frequencies,²⁸ On the other hand, for a right-angled OXeO group both the antisymmetric and the symmetric stretching vibrations should be of significant intensity in both the infrared and the Raman spectra. Furthermore, their frequency separation should be at a minimum since their potential energy terms (G matrix terms) become identical.²⁸

These arguments can be nicely supported by the known examples²⁹ of *cis*- and *trans*-IF₄O₂⁻, which are also pseudooctahedral and have atomic masses very similar to those in XeO₂F₃⁻. Thus, in *trans*-IF₄O₂⁻ the symmetric and the antisymmetric OIO stretching modes are mutually exclusive in the infrared and Raman spectra and exhibit a frequency separation of 61 cm⁻¹. By contrast, in *cis*-IF₄O₂⁻ both OIO stretching modes are infrared and Raman active (Ra (cm⁻¹ (relative intensity)) ν_{as} 875 (14), ν_{sym} 856 (100); IR (cm⁻¹) ν_{as} 875 vs, ν_{sym} 855 vs) and their frequency separation is only 20 cm⁻¹.

Inspection of Figure 1 and Table II reveals for $XeO_2F_3^-$ a frequency separation of about 29 cm⁻¹ and significant Raman intensity for the antisymmetric OXeO stretch and infrared intensity for the symmetric OXeO stretch. Furthermore, these observations for $XeO_2F_3^-$ closely resemble those for solid XeO_2F_2 ($\Delta \nu = 28 \text{ cm}^{-1}$; Ra (cm⁻¹ (relative intensity)) ν_{as} 881 (39), ν_{sym} 853 (100)), which was shown by neutron diffraction⁶ to have an OXeO bond angle of 106°.³⁰ Consequently, the oxygen atoms in $XeO_2F_3^-$ must be cis with respect to each other, and their bond angle should be similar to that in XeO_2F_2 . The same arguments hold for the CsXeO_2F_3·nXeF_2 adduct, which exhibits almost identical XeO_2 stretching frequencies and intensities.

The vibrational assignments for cis-XeO₂F₃⁻ are based to a large extent on correlations with the known spectra of the closely related XeO₂F₂, XeOF₂,¹¹ and XeF₂²⁷ molecules and the XeOF₃⁻ anion¹¹ (see Table II). Compared to those of XeO₂F₂, the XeO₂F₃⁻ vibrations involving the XeO₂ group exhibit only minor frequency shifts, with the stretching modes being somewhat lower and the deformation modes being somewhat higher than their counterparts in XeO₂F₂. The frequency increases of the deformation modes are attributed to the addition of the fluoride ion, resulting in increased crowding of the ligands in the equatorial plane and concomitant resistance toward angle deformation. On the other

⁽²⁷⁾ Bartlett, N.; Sladky, F. O. In Comprensive Inorganic Chemistry; Bailar, J. C., Emeleus, H. J., Nyholm, R., Trotman-Dickenson, A. F., Eds.; Pergamon: Oxford, U.K., 1973; Vol. 1, p 255.

⁽²⁸⁾ Weidlein, J.; Muller, U.; Dehnicke, K. In Schwingungsspektroskopie; Thieme: Stuttgart, West Germany, 1982; p 53.

⁽²⁹⁾ Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1981, 20, 2104.

⁽³⁰⁾ The small (106°) O-Xe-O bond angle in solid XeO₂F₂ is due to oxygen bridging with neighboring molecules. In matrix-isolated XeO₂F₂, the O-Xe-O bond angle must be significantly larger than 106° and should approximate the 120° value expected for an ideal trigonal bipyramid. This is supported by the increased frequency separation of 57 cm⁻¹ observed for the two XeO₂ stretching modes in matrix-isolated XeO₂F₂. A trans configuration of the oxygens in matrix-isolated XeO₂F₂ can be ruled out from the significant intensities of ν_{sist}(XeO₂) in the IR spectra.

hand, all vibrations involving the two axial fluorine atoms show pronounced frequency decreases. This is not surprising because the formal negative charge, created by the addition of the extra F^- ligand, generally resides in this type of molecule on the highly electronegative fluorine ligands. Therefore, the axial Xe-F bonds become more ionic and weaker.

The addition of the F⁻ ion to XeO₂F₂ creates three extra fundamentals. These are the equatorial Xe–F' stretching mode, ν_3 , the F'XeO bending mode, ν_6 , and the XeF' rocking mode, ν_{12} . The assignment of the Xe–F' stretching mode to the 513-cm⁻¹ Raman band is clear-cut. The frequency of the F'XeO deformation mode involves a singly bonded fluorine and a doubly bonded oxygen and, therefore, should be intermediate between those of the XeO₂ deformations (380–330 cm⁻¹) and the XeF₂ deformations (170–220 cm⁻¹). It is, therefore, assigned to the Raman band at 303 cm⁻¹. The remaining XeF' rocking mode (ν_{12}) is assigned

to the last, yet unassigned Raman band at 242 cm⁻¹. The frequency of this mode appears plausible from a comparison with the closely related XeF₄ and XeOF₄ molecules. The XeF' rocking mode in XeO₂F₃⁻⁻ involves a motion similar to that of the symmetric in-plane deformations in XeF₄ and XeOF₄, which have frequencies of 235 and 233 cm⁻¹, respectively. Similarly, the frequency of the axial XeF₂ scissoring mode, $\nu_8(A')$, of XeO₂F₃⁻⁻ correlates well with that of the antisymmetric XeF₄ deformation mode, $\nu_9(E)$, of XeOF₄.

The assignments given in Table II for $XeOF_3^-$ are tentative since at present it is not known whether the oxygen atom is cis or trans with respect to the equatorial fluorine ligand. For $CsXeO_2F_3$. $nXeF_2$ (trace C, Figure 1) no detailed analysis is made at this time, except for the obvious assignments of the bands at 861, 834, 538, 461, 340, and 302 cm⁻¹ to $XeO_2F_3^-$ and of the 504-cm⁻¹ band to XeF_2 . Similarly, a detailed analysis of the $NO_2^+[XeO_2F_3^$ $nXeO_2F_2]^-$ spectrum (trace A, Figure 2) is not warranted. Some obvious assignments are as follows: 1401 cm⁻¹, $\nu_{sym}(NO_2^+)$; 900, 888, and 879 cm⁻¹, $\nu_{as}(XeO_2)$; 861, 850, and 839 cm⁻¹, $\nu_{sym}(XeO_2)$; 506 cm⁻¹, $\nu_{sym}(XeF_2)$.

Conclusion. The usefulness of nitrates as a reagent for the substitution of two fluorine ligands for a doubly bonded oxygen has been extended from bromine fluorides^{1,31} to xenon fluorides.

In the previous work on BrF₅ it was suggested¹ that the fluorine-oxygen reaction involves an $M^+F_5BrONO_2^-$ intermediate, which for M = Li or Na decomposes to MF, and an unstable F₄BrONO₂, which then decomposes to FNO₂ and BrF₃O. For M = K, Rb, or Cs, which can form stable BrF₄O⁻ salts, the direct formation of $M^+BrF_4O^-$ by FNO₂ elimination from $M^+F_5BrONO_2^-$ was postulated. In this study, the formation of free XeO₂F₂ was observed for the CsNO₃ plus XeOF₄ reaction, in spite of the stability of Cs⁺XeO₂F₃⁻. It, therefore, appears that in these exchange reactions, regardless of the nature of the M⁺ cation, MF and the free oxyfluoride are generated first and that the formation of the alkali-metal oxyfluoride salts is a secondary reaction of variable conversion.

Furthermore, the present study demonstrates that N_2O_5 , which in the solid state has the ionic composition $NO_2^+NO_3^-$, can serve as a substitute for the alkali-metal nitrates. When the desired oxyfluoride has little or no volatility, the use of N_2O_5 is of particular advantage because volatile FNO₂ is the only byproduct, thereby facilitating the product separation.

Finally, the nitrate method provided an improved synthesis of XeO_2F_2 that allowed a better characterization of its properties and reaction chemistry, in particular with respect to its Lewis acid and base characteristics.

Acknowledgment. We are grateful to Dr. C. J. Schack and R. D. Wilson for their help, to Dr. G. J. Schrobilgen for providing us with copies of his original XeO_2F_2 Raman spectra, and to the Office of Naval Research for financial support.

Registry No. $CsNO_3$, 7789-18-6; XeF_6 , 13693-09-9; FNO_2 , 10022-50-1; $XeOF_4$, 13774-85-1; $CsXeF_7$, 19033-04-6; $CsXeOF_5$, 12191-01-4; $CsXeO_2F_3$, 65014-03-1; XeO_2F_2 , 13875-06-4; N_2O_5 , 10102-03-1; $NO_2^+[XeO_2F_3]^-$, 116025-38-8.

(31) Wilson, W. W.; Christe, K. O. Inorg. Chem. 1987, 26, 1573.