Acknowledgment. This research was supported by a grant (D.C.) from the National Institutes of Health (GM-26671).

Notes

Contribution from the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Protic Acid Behavior of Phosphine-Triborane(7)

Rosemarie E. DePoy and Goji Kodama*

Received May 26, 1988

The protic acid behavior of phosphine-borane(3) (BH₃·PH₃) has been demonstrated by its reaction with ammonia to give $NH_4^+[BH_3 \cdot PH_2]^{-1,2}$ and by its reaction with $NaBH_4$ in dimethoxyethane at 0 °C to produce hydrogen gas and Na⁺[BH₃. $PH_2 \cdot BH_3$ ^{-.3} In the reaction with ammonia a further change occurs at a higher temperature (-45 °C) to finally give an ammonium salt of the [BH₃·PH₂·BH₃]⁻ anion.^{1,2}

The observed enhanced protonic character of the PH₃ hydrogen atoms is due to the coordination of a BH₃ fragment to the PH₃. Since the B_3H_7 fragment is a stronger acid than BH_3 ,^{4,5} phosphine-triborane(7) $(B_3H_7PH_3)$ is expected to behave as a stronger protic acid than BH₃·PH₃. Conversely, the conjugate base [B₃- $H_7 \cdot PH_2$]⁻ should be weaker than $[BH_3 \cdot PH_2]^-$. In this paper, the reactions of B₃H₇·PH₃ with ammonia and with NaBH₄ are described and compared with those of BH₃·PH₃ in order to delineate the similarities and differences between the acid-base reaction chemistries of B₃H₇·PH₃ and BH₃·PH₃.

Results

A. Formation of [B₃H₇·PH₂]⁻. B₃H₇·PH₃ in Liquid Ammonia. In Figure 1, the ¹¹B and ³¹P NMR spectra of a liquid ammonia solution of B_3H_7 , PH₃ (ca. 0.5 M) are shown and compared with those of B_3H_7 , PH_3 in dichloromethane. The ³¹P spectra indicated that, upon dissolution of B_3H_7 , PH₃ in liquid ammonia, the PH₃ moiety of the molecule was converted to a PH_2^- unit: the ³¹P signal is a 1:2:1 triplet of a 1:1:1:1 quartet. The ¹¹B spectra indicated that the B_3H_7 group remained intact: the two ¹¹B signals appear in a 2:1 intensity ratio. These spectra remained unchanged as long as the solution was kept below -45 °C. When the solvent ammonia was removed by pumping, the original B_3H_7 ·PH₃ was recovered as residue. Thus, the following equation is appropriate for the interaction of B_3H_7 ·PH₃ with ammonia:

$$\mathbf{B}_{3}\mathbf{H}_{7}\cdot\mathbf{P}\mathbf{H}_{3} + \mathbf{N}\mathbf{H}_{3} \rightleftharpoons \mathbf{N}\mathbf{H}_{4}^{+} + [\mathbf{B}_{3}\mathbf{H}_{7}\cdot\mathbf{P}\mathbf{H}_{2}]^{-} \qquad (1)$$

At -45 °C, the solute underwent a slow change to give the $[B_3$ - $H_7 \cdot PH_2 \cdot BH_3$]⁻ anion (see part B of this section) and as yet unidentified species indicated by the ¹¹B signals at -15 and -48 ppm.

Isolation of the Sodium Salt of [B3H7.PH2]. Phosphine-triborane(7) could be deprotonated by the use of $Na^{+}[HB(sec-Bu)_{3}]^{-}$ (eq 2 and 3). The salt $Na^{+}[B_{3}H_{7}\cdot PH_{2}]^{-}$, which was soluble in

$$B_{3}H_{7} \cdot PH_{3} + Na^{+}[HB(sec-Bu)_{3}]^{-} \xrightarrow{-45 \circ C \text{ in THF}} Na^{+}[B_{3}H_{7} \cdot PH_{2} \cdot B(sec-Bu)_{3}]^{-} + H_{2} (2)$$

$$Na^{+}[B_{3}H_{7} \cdot PH_{2} \cdot B(sec-Bu)_{3}]^{-} \xrightarrow{-B(sec-Bu)_{3}/pumping}$$

$$Na^{+}[B_{2}H_{7}PH_{2}]^{-} + B(sec-Bu)_{2}$$
 (3)

Supplementary Material Available: Tables S2-S5, listing positional

coordinates for all non-hydrogen atoms, thermal parameters, and the derived hydrogen positions for I-IV (13 pages); tables of calculated and

observed structure factors for I-IV (47 pages). Ordering information is

given on any current masthead page.

Figure 1. ¹¹B and ³¹P NMR spectra (32.1 and 40.5 MHz, respectively) of B_3H_7 , PH₃ (a) in ammonia at -70 °C and (b) in CH₂Cl₂ at +25 °C, recorded on a Varian XL-100-15 spectrometer.

tetrahydrofuran and dichloromethane, could be isolated as a white solid by pumping out the solvent and B(sec-Bu)₃ from the reaction mixture below -45 °C. The major features of the NMR spectra of $Na^{+}[B_{3}H_{7}PH_{2}]^{-}$ are identical with those of the ammonia solution of B_3H_7 , PH₃ in Figure 1. The spectral data of this anion and its related compounds are summarized in Table I. Treatment of a solution of this salt with anhydrous hydrogen chloride regenerated B_3H_7 ·PH₃. The B_3H_7 ·PH₂⁻ anion decomposed above -45 °C to form the $[B_3H_7 \cdot PH_2 \cdot BH_3]^-$ anion and another unidentified species, which showed a broad ¹¹B signal ($\nu_{1/2} = 250$ Hz) centered at -35.5 ppm.

Several attempts were made to prepare the salts of the $[B_3]$ - $H_7 \cdot PH_2$ ⁻ anion by other methods, which included treatments of ammonia solutions of B_3H_7 ·PH₃ with sodium metal and with NaNH₂, treatment of B_3H_7 ·PH₃ with *n*-butyllithium in hexane, and treatment of B_3H_7 . THF with KPH₂ in diglyme. These attempts, however, were unsuccessful. Apparently, the B_3H_7 moiety undergoes reactions with these reagents. The B_3H_7 -PH₂⁻ ion could be detected only in the ¹¹B NMR spectrum of the NaNH₂ reaction solution (usually in <40% yields). It, however, could not be isolated from the product mixture.

B. Formation of $[B_3H_7 \cdot PH_2 \cdot BH_3]^{-1}$. Phosphine-triborane(7) reacted with NaBH₄ in tetrahydrofuran at -45 °C according to eq 4. The product $Na^{+}[B_{3}H_{7}\cdot PH_{2}\cdot BH_{3}]^{-}$, a white solid, was very

$$B_{3}H_{7} \cdot PH_{3} + Na^{+}BH_{4}^{-} \rightarrow Na^{+}[B_{3}H_{7} \cdot PH_{2} \cdot BH_{3}]^{-} + H_{2} \qquad (4)$$

soluble in tetrahydrofuran, and was stable at room temperature in the absence of air. The anion [B₃H₇·PH₂·BH₃]⁻ was inert toward strong Lewis bases, as prolonged contact with $P(CH_3)_3$ at ambient temperature left the anion unchanged.

The formation of the $[B_3H_7 PH_2 BH_3]^-$ anion was accompanied by a side reaction that produced NaB_3H_8 (eq 5). At -45 °C the

$$B_{3}H_{7}PH_{3} + Na^{+}BH_{4}^{-} + THF \rightarrow Na^{+}B_{3}H_{8}^{-} + BH_{3}THF + PH_{3} (5)$$

participation of this side reaction was slight. At higher temperatures, however, it became increasingly significant. When

Gilje, J. W.; Morse, K. W.; Parry, R. W. Inorg. Chem. 1967, 6, 1761.
 Dietz, E. A.; Morse, K. W.; Parry, R. W. Inorg. Chem. 1976, 15, 1.
 Mayer, E.; Laubengayer, A. W. Monatsh. Chem. 1970, 101, 1138.
 Edwards, L. J.; Parry, R. W. J. Am. Chem. Soc. 1959, 81, 3554.
 Bishop, V. L.; Kodama, G. Inorg. Chem. 1981, 20, 2724.

Table I.	NMR	Data	for	Phosphine-7	Friborane(7)	and	Related	Compounds ^a
----------	-----	------	-----	-------------	--------------	-----	---------	------------------------

		chem shift, ppm						
		B ₃ H ₇		BR, or BH,				
compd	solvent/temp, °C	¹¹ B ₁	¹¹ B _{2,3}	¹¹ B	³¹ P			
B ₃ H ₇ •PH ₃ ^b	CH ₂ Cl ₂ /+25	-51.3 $J_{\rm BP} = 70 \; {\rm Hz}$	-10.2		-96.3 $J_{PH} = 400 \text{ Hz}$ $J_{BP} = 70 \text{ Hz}$			
B ₃ H ₇ ·PH ₃	liquid $NH_3/-70$	-42.2 $J_{BP} = 45 \text{ Hz}$	-21.6		-193.6 $J_{\rm BH} = 180 {\rm Hz}$			
Na ⁺ B ₃ H ₇ ·PH ₂ ⁻	THF/-70	-42.2 $J_{BP} = 45 \text{ Hz}$	-21.3		- FR			
	$CH_2Cl_2/-45$	-42.4 $J_{BP} = 55 \text{ Hz}$	-20.4		-187 $J_{\rm BH} = 220 {\rm Hz}$			
$Na^+B_3H_7 \cdot PH_2 \cdot BR_3^-$	THF/+25	-45.2	-18.5	+25.7	-76.5^{c} $J_{PH} = 300 \text{ Hz}$ $J_{PB} \approx 80 \text{ Hz}$			
Na ⁺ B ₃ H ₇ ·PH ₂ ·BH ₃ ⁻	THF/+25	-46.6 $J_{\rm BP} = 88 {\rm Hz}$	-16.4	-40.2 $J_{BP} = 50 \text{ Hz}$ $J_{PH} = 92 \text{ Hz}$	-85^{P} $J_{PH} = 400 \text{ Hz}$ $J_{RP(1)} = 88 \text{ Hz}$			
BH ₃ ·PH ₃ ^d	neat/+37			-42.8 $J_{BP} = 28 \text{ Hz}$ $J_{DU} = 103 \text{ Hz}$	-113 $J_{\rm PH} = 380 {\rm Hz}$			
BH ₃ •PH ₂ ^{-e}	ND ₃			-37.6 $J_{BP} = 29 \text{ Hz}$ $I_{CM} = 90 \text{ Hz}$	-202.6^{f} $J_{\rm PH} = 175 {\rm Hz}$			
NH4 ⁺ BH3·PH2·BH3 ⁻ 8	H ₂ O			$J_{BP} = 60 \text{ Hz}$ $J_{BP} = 91.2 \text{ Hz}$	-117 $J_{\rm PH} = 320 {\rm Hz}$			

^aReference standards are BF₃·O(C_2H_5)₂ for boron and 85% orthophosphoric acid for phosphorus. ^bReference 5. ^cAt -60 °C. ^dReference 16. ^eReference 2. ^fBH₃·PH₃ in liquid ammonia at -60 °C; this work. ^gReference 1.

diethyl ether was used as the solvent, the formation of $B_3H_8^-$ was the major reaction.

The ¹¹B and ³¹P NMR data of the $[B_3H_7 \cdot PH_2 \cdot BH_3]^-$ anion are included in Table I. The large triplet feature of the ³¹P signal and a multiplet fine structure in the ¹H-spin-decoupled ³¹P signal (a 1:1:1:1 quartet of a 1:1:1:1 quartet) confirm the presence of a H₂PBB' moiety, and the doublet of a quartet structure of the ¹¹B signal to -40.2 ppm shows the presence of a BH₃ group that is bonded to the phosphorus atom. The relative intensity ratio of the signal at -16.4 ppm and the doublet signal at -46.6 ppm is 2:1, suggesting the presence of a triborane(7) fragment attached to the phosphorus atom.

Anhydrous hydrogen chloride reacted with Na⁺[B₃H₇·PH₂· BH₃]⁻ in tetrahydrofuran at 0 °C according to eq 6. Tri-

$$Na^{+}[B_{3}H_{7} \cdot PH_{2} \cdot BH_{3}]^{-} + HCl + THF \rightarrow B_{3}H_{7} \cdot PH_{2} \cdot BH_{2} \cdot THF + NaCl + H_{2}$$
(6)

methylamine displaced tetrahydrofuran from B₃H₇·PH₂·BH₃·THF at -45 °C to give B₃H₇·PH₂·BH₃·N(CH₃)₃. At higher reaction temperatures, the strong base cleaved the B_3H_7 moiety.

Discussion

Reaction of B_3H_7 ·PH₃ with Ammonia. The protic acid behavior of B_3H_7 ·PH₃ shown in eq 1 is similar to that of BH₃·PH₃ (eq 7).^{1,2}

$$BH_{3} \cdot PH_{3} + NH_{3} \rightleftharpoons NH_{4}^{+} + [BH_{3} \cdot PH_{2}]^{-} \text{ (below -45 °C)}$$
(7)

Both $B_3H_7 \cdot PH_3$ and $BH_3 \cdot PH_3$ are weak protic acids and can be recovered from the solutions by pumping out the solvent. However, at higher temperatures the reactions that occur are different for the two systems.

Parry and co-workers^{1,2} showed that the formation of the [BH₃·PH₂·BH₃]⁻ anion is the result of the PH₃ displacement from BH₃·PH₃ by a strong Lewis base, [BH₃·PH₂]⁻.

$$[BH_{3} \cdot PH_{2}]^{-} + BH_{3} \cdot PH_{3} \rightarrow [BH_{3} \cdot PH_{2} \cdot BH_{3}]^{-} + PH_{3} \quad (at -45 \text{ °C}) \quad (8)$$

The reaction that is extrapolated to the B_3H_7 PH₃ system would be

$$[B_3H_7 \cdot PH_2]^- + B_3H_7 \cdot PH_3 \rightarrow [B_3H_7 \cdot PH_2 \cdot B_3H_7]^- + PH_3 \qquad (9)$$

However, because of the strongly acidic character of the B_3H_7

fragment, the B-P bond is stronger in B₃H₇·PH₃ than in BH₃·PH₃, the Lewis basicity of $[B_3H_7 \cdot PH_2]^-$ is weaker than that of $[B_3H_7 \cdot PH_2]^ H_3 \cdot PH_2$]⁻, and the activity of $B_3H_7 \cdot PH_3$ in the ammonia solution is weaker than that of BH₃·PH₃ in ammonia. All of these factors make the PH_3 displacement in the triborane system (eq 9) less favorable than that in the monoborane system (eq 8). Instead, the Lewis base $[B_3H_7 \cdot PH_2]^-$ ruptures the B_3H_7 moiety.

Reaction of B₃H₇·PH₃ with NaBH₄. The formation of $Na^{+}[B_{3}H_{7}PH_{2}BH_{3}]^{-}$ by the reaction of $B_{3}H_{7}PH_{3}$ with $NaBH_{4}$ parallels that of Na⁺[BH₃·PH₂·BH₃]⁻ from BH₃·PH₃ and NaBH₄. As expected from its stronger protic acidity, the B₃H₇·PH₃ reacts with NaBH₄ in tetrahydrofuran at a much lower temperature than $BH_3 \cdot PH_3$ does in the same solvent.

The side reaction that was observed (eq 5) is explained by the formation of B3H7.THF followed by its facile reaction with $NaBH_4^6$ (eq 10 and 11). The participation of the side reaction

$$B_{3}H_{7} \cdot PH_{3} + THF \rightleftharpoons B_{3}H_{7} \cdot THF + PH_{3}$$
(10)

$$B_{3}H_{7}THF + Na^{+}BH_{4} \rightarrow Na^{+}B_{3}H_{8} + BH_{3}THF$$
(11)

is more pronounced at higher temperatures because of a higher rate of the B₃H₇ THF formation and, therefore, a higher concentration of B_3H_7 THF. The preferential formation of NaB_3H_8 in diethyl ether probably indicates that the rate of the $[B_3H_7 \cdot P_7]$ $H_2 \cdot BH_3$]⁻ formation is dependent on the solubility of NaBH₄ in the solvent used. Sodium borohydride is less soluble in diethyl ether than in tetrahydrofuran: solubilities of NaBH₄ at 20 °C are 0.02 g/100 g of $(C_2H_5)_2O^7$ vs 0.1 g/100 g of $C_4H_8O.^8$

The $B_3H_8^-$ anion that is produced as the side product might further react with B₃H₇·PH₃ and even with BH₃·PH₃ (which would be formed by the reaction of the liberated PH₃ and BH₃·THF¹⁰)

- (7) Sodium Borohydride; Bull. 502-E; Metal Hydride Inc.: Beverly, MA, 1954.
- (8) Sodium Borohydride; Thiokol/Ventron Division: Danvers, MA, 1979; p 3. Shimoi, M.; Kodama, G. Inorg. Chem. 1983, 22, 3300
- (9)
- Cowley, A. H.; Damasco, M. C. J. Am. Chem. Soc. 1971, 93, 6815. (10)Rudolph, R. W.; Schultz, C. W. Ibid. 1971, 93, 6821.

⁽⁶⁾ Hough, W. V.; Edwards, L. J. Borax To Boranes; Advances in Chemistry 32; American Chemical Society: Washington, DC, 1961; p 190. Parry, R. W.; Rudolph, R. W.; Shriver, D. F. Inorg. Chem. 1964, 3, 1479.

to give $[B_3H_7 \cdot PH_2 \cdot B_3H_7]^-$ and $[BH_3 \cdot PH_2 \cdot B_3H_7]^-$, respectively. However, the ¹¹B NMR spectrum of the reaction solution did not give evidence for the $[B_3H_7 \cdot PH_2 \cdot B_3H_7]^-$ anion.

The $[B_3H_7 \cdot PH_2 \cdot BH_3]^-$ Anion. The $[B_3H_7 \cdot PH_2 \cdot BH_3]^-$ anion is unique in that it contains two different borane fragments attached to the same phosphorus atom. The two J_{BP} values for P-B(B₃H₇) and P-B(BH₃) are 88 and 50 Hz, respectively, and are consistent with those expected from the relative acid strength of the two borane fragments.^{5,10} Furthermore, the $P-B(BH_3)$ coupling constant for [B₃H₇·PH₂·BH₃]⁻ (50 Hz) is smaller than that for [BH₃·PH₂·BH₃]⁻ (60 Hz),¹ reflecting the weakly basic nature of $[B_1H_2 \cdot PH_2]^-$ relative to that of $[BH_3 \cdot PH_2]^-$. The reaction of the $[B_3H_7 \cdot PH_2 \cdot BH_3]^-$ anion with HCl provided a unique testing case for the relative hydridic character of hydrogen atoms in the BH₃ and B₃H₇ fragments.

Reactivity of B₁H₂ Moieties toward Lewis Bases. The inertness of the [B₃H₇·PH₂·BH₃]⁻ anion toward strong Lewis bases compares with that of the $B_3H_8^-$ anion. The coordination of the strongly basic PH₂·BH₃⁻ ligand and the overall negative charge render the B_1H_7 moiety inert toward strong bases. When the negative charge is removed as in $B_3H_7 \cdot PH_2 \cdot BH_2 \cdot L$ [L = THF or N(CH₃)₃], the inertness is lost and its B₃H₇ moiety is cleaved readily by strong bases in the manner that was previously discussed.¹¹

The instability of $[B_3H_7 \cdot PH_2]^-$ is notable. Apparently, this negatively charged base is strong enough to rupture the B_3H_7 group of the anionic adduct $[B_3H_7 PH_2]^-$. A complete study of the $[B_3H_7 \cdot PH_2]^-$ anion decomposition has not been performed. However, the observation that one of the two decomposition products was the [B₃H₇·PH₂·BH₃]⁻ anion and another product showed a rather simple ¹¹B NMR spectrum suggests that the B_3H_7 moiety may have been cleaved into BH_3 and B_2H_4 units. Thus, the decomposition of $NH_4^+[B_1H_7 \cdot PH_2]^-$ in liquid ammonia and the decomposition of $Na^{+}[B_{3}H_{7}\cdot PH_{2}]^{-}$ in tetrahydrofuran might be expressed by

$$2NH_{4}^{+}[B_{3}H_{7}\cdot PH_{2}]^{-} + NH_{3} \rightarrow NH_{4}^{+}[B_{3}H_{7}\cdot PH_{2}\cdot BH_{3}]^{-} + NH_{4}^{+}[H_{3}N\cdot B_{2}H_{4}\cdot PH_{2}]^{-}" (12)$$

 $2Na^{+}[B_{3}H_{7}PH_{2}]^{-} \rightarrow$

$$Na^{+}[B_{3}H_{7} \cdot PH_{2} \cdot BH_{3}]^{-} + Na^{+}[(1/n)(B_{2}H_{4} \cdot PH_{2})_{n}]^{-} (13)$$

Experimental Section

(a) General Procedures and Chemicals. Conventional vacuum-line techniques were used throughout for the handling of volatile compounds. Generally, reactions were performed in 9- or 10-mm-o.d. Pyrex tubes, each equipped with a stopcock. The tube containing a reaction mixture was placed in the probe of a Varian XL-100-15 or a FT-80A NMR spectrometer for recording of ¹¹B NMR spectra to monitor the reaction. Chemicals: B₂H₆, obtained from Callery Chemical Co.; B₄H₁₀, laboratory stock¹² or prepared by the hydrolysis of laboratory stock B₅H₁₁,¹³ PH₃, prepared by the pyrolysis of phosphorus acid;¹⁴ B₃H₇·PH₃, prepared by the reaction of B₄H₁₀ and PH₃ in CH₂Cl₂;⁵ NaBH₄, Alfa Products, purified by extracting with ammonia; NaHB(sec-Bu)₃, obtained from Aldrich Chemical Co. (N-Selectride), 1 M in tetrahydrofuran; HCl, Matheson Gas Products.

(b) Reaction of B₃H₇·PH₃ with Na⁺[HB(sec-Bu)₃]⁻. A 0.50-mmol sample of B₃H₇·PH₃ was condensed at the bottom of a 10-mm-o.d. Pyrex reaction tube, which was equipped with a \$19/38 inner joint and, in parallel with the joint, a stopcock at the upper end of the tube.¹⁵ A 0.6-mL sample of the N-Selectride solution was syringed in above the frozen sample of B_3H_7 , PH₃ through the $\overline{19}/38$ joint while an outward flow of nitrogen gas was maintained. The joint was then capped, the tube was evacuated, and the mixture was held at -45 °C for 2 h. The hydrogen gas evolved was collected in a Toepler pump system. The ¹¹B NMR spectrum of the reaction solution showed the signals of Na⁺[B₃H₇·PH₂·B(sec-Bu)₃]⁻. Weak signals of B₃H₈⁻ and [HB(sec-Bu)₃]⁻ were present in the spectrum also. The reaction tube was then pumped on for 30 h at -45 °C to remove B(sec-Bu)₃ and tetrahydrofuran. Dichloromethane was then added to the tube, and the ^{11}B and ^{31}P NMR spectra of Na⁺[B₃H₇·PH₂]⁻ were recorded.

To a CH₂Cl₂ solution of Na⁺[B₃H₇·PH₂]⁻ was added a slight excess of anhydrous HCl at -197 °C. The mixture was stirred at -80 °C and then allowed to warm to -45 °C. A white precipitate formed in the solution. The ¹¹B NMR spectrum of the solution indicated that B₃-H₇·PH₃ had been regenerated.

(c) Reaction of \bar{B}_3H_7 ·PH₃ with NaBH₄. In Tetrahydrofuran. A jump-stirrer rod was placed in a reaction tube similar to that described in part b. A 0.50-mmol sample of B₃H₇·PH₃ and about 1 mL of tetrahydrofuran were condensed at the bottom of the reaction tube. A slight excess of NaBH₄ was then added through the joint. The tube was evacuated, and the mixture was stirred at -45 °C for 18 h. After the evolved hydrogen gas (0.43 mmol) was pumped out, the resulting solution was filtered into a 10-mm-o.d. NMR tube to record ¹¹B and ³¹P spectra. In the sample thus prepared, only a trace of $B_3H_8^-$ was present. When the reactions were run at higher temperatures, increasingly larger amounts of B₃H₈⁻ were found as the side product and smaller amounts of hydrogen gas were evolved.

In Diethyl Ether. A 0.24-mmol sample of B₃H₇·PH₃ was allowed to react with 0.25 mmol of NaBH₄ for 30 min in diethyl ether at room temperature. The volatile components were pumped out, and a fresh portion of diethyl ether was condensed in the tube to obtain the ¹¹B NMR spectrum, which indicated the formation of $B_3H_8^-$ and a trace of $[B_3^-$ H₇·PH₂·BH₃]⁻.

(d) Supplementary Observation on BH₃·PH₃ Reactions. Reaction with Ammonia. A 0.95-mmol sample of BH3 PH3 was prepared in a 9-mmo.d. tube and was dissolved in about 1.5 mL of liquid ammonia at -75 °C. The ¹¹B NMR spectrum of the solution showed the formation of $NH_4^+[BH_3 \cdot PH_2]^-$. The ammonia was pumped out at -80 °C, and the residue was dissolved in CH₂Cl₂. The ¹¹B spectrum of the solution was that of BH₃, PH₃.

Reaction with NaBH₄ in Tetrahydrofuran. A 0.48-mmol sample of BH₃·PH₃ was prepared in a reaction tube and was allowed to react with 0.45 mmol of $NaBH_4$ in about 1 mL of tetrahydrofuran. At 0 °C no overt signs of reaction were noted. When the mixture was allowed to stand at room temperature for a few weeks, its ¹¹B NMR spectrum indicated that approximately 80% of the original BH3 PH3 had been converted to [BH₃·PH₂·BH₃]

(e) Reaction of [B₃H₇·PH₂·BH₃] with HCl. A tetrahydrofuran solution of Na⁺(B₃H₇·PH₂·BH₃]⁻ was treated with a slight excess of anhydrous HCl at 0 °C for 45 min. The evolved hydrogen gas was pumped out, and the precipitate of NaCl (identified by its X-ray powder pattern) was filtered off. The ¹¹B NMR spectrum of the filtrate showed the signals attributable to B_3H_7 ·PH₂·BH₂·THF: -5.0 ppm (t of d, $J_{BH} \approx 100$ Hz, $J_{BP} = 70$ Hz), BH₂; -14.0 (s) and -49.8 ppm (d, $J_{BP} = 80$ Hz), intensity ratio 2:1, B₃H₇. The ³¹P signal appeared at -103.5 ppm.

When the tetrahydrofuran solution of B₃H₇·PH₂·BH₂·THF was treated with an excess of trimethylamine at -45 °C, the solution gave a set of ¹¹B signals which was interpreted as that of B₃H₇·PH₂·BH₂·N-(CH₃)₃: -11.0 ppm (t of d, $J_{BH} \approx 100$ Hz, $J_{BP} \approx 70$ Hz), BH₂: -13.7 (s) and -49.2 ppm ($J_{BP} = 78$ Hz), intensity ratio 2:1, B₃H₂.

Acknowledgment. We gratefully acknowledge the support of this work by the U.S. Army Research Office through Grants DAAG 29-81-K-0101 and 29-85-K-0034. Financial support to R.E.D. from the National Science Foundation (Minority Graduate Fellowship, 1981-1984) is appreciated. We thank Vicki Bishop and Cole Panushuka of this laboratory for their exploratory observations on the system of the ammonia $-B_3H_7$ ·PH₃ reaction.

⁽¹¹⁾ Deever, W. R.; Lory, E. R.; Ritter, D. M. Inorg. Chem. 1969, 8, 1263. Paine, R. T.; Parry, R. W. Ibid. 1975, 14, 689. DePoy, R. E.; Kodama, C. Hick 1969, 27, 114 G. Ibid. 1988, 27, 1116.

Kameda, M.; Kodama, G. Inorg. Chem. 1984, 23, 3710.
 Dodds, A. R.; Kodama, G. Inorg. Chem. 1979, 18, 1465.
 Gokhale, D.; Jolly, W. L. Inorg. Synth. 1967, 9, 56.

⁽¹⁵⁾ For the details of the reaction tube, see: DePoy, R. E. Ph.D Dissertation, University of Utah, Salt Lake City, UT, 1987.

⁽¹⁶⁾ Rudolph, R. W.; Parry, R. W.; Farran, C. F. Inorg. Chem. 1966, 5, 723.