Volume 28

Number 2

January 25, 1989

Inorganic Chemistry

© Copyright 1989 by the American Chemical Society

Communications

Oxidation of Tertiary Amine Buffers by Copper(II)

Sir:

The problem of metal ion complexation and precipitation inherent in the use of the common inorganic buffers carbonate and phosphate has led to the widespread use of noncoordinating organic buffers such as HEPES, PIPES, MES, and related analogues.^{1,2}

A study appeared recently³ which cautioned against the danger that HEPES could be oxidized by Cu(II), especially when the latter bore a high oxidation potential such as in $(batho)_2Cu^{II}$ (E° = 0.62 V vs NHE compared to 0.167 V for the aquo ion,⁴ batho = 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonate). This study interpreted the oxidation in terms of oxidation of the primary alcohol group of HEPES and reported a similar oxidation of the structurally related alcohol N,N-dimethylethanolamine (DMEA). The fact that simple alcohols (methanol, ethanol, 2-propanol, glycerol) were not oxidized was rationalized in terms of a prerequisite complex formation with Cu(II) that occurred for HEPES and DMEA via coordination with the amino nitrogen.⁵ Curiously, Tris, tris(hydroxymethyl)aminomethane, which was acknowledged to be capable of complexing metal ions, failed to be oxidized.

We have been studying the mechanism of copper-mediated oxidation of nitrogen-containing compounds, and the reported reaction of HEPES and DMEA with $(batho)_2Cu^{II}$ appeared to us to represent tertiary amine oxidation rather than alcohol oxidation. In the present study, we have clarified and reinterpreted the characteristics of the earlier reported oxidations. Most importantly, we demonstrate that the oxidations of HEPES and DMEA are examples of general amine oxidation chemistry and that other non-alcoholic tertiary amine buffers such as PIPES and MES are similarly subject to oxidation by $(batho)_2Cu^{II}$.

The earlier study on $(batho)_2Cu^{II}$ oxidations³ made the following claims. (1) The rate is first order in HEPES and second order in Cu(II). (2) The pH rate dependence displays a linear increase of log (rate) with increasing pH at low pH (pH < pK_a), which

- (2) Ferguson, W. J.; Braunschweiger, K. I.; Braunschweiger, W. R.; Smith, J. R.; McCormick, J. J.; Wasmann, C. C.; Jarvis, N. P.; Bell, D. H.; Good, N. E. Anal. Biochem. 1980, 104, 300.
- (3) Hegetschweiler, K.; Saltman, P. Inorg. Chem. 1986, 25, 107.
- (4) Lappin, A. G.; Youngblood, M. P.; Margerum, D. W. Inorg. Chem. 1980, 19 407.
- (5) (batho)₂Cu^{II} is known to form pentacoordinate species in solution: Al-Shatti, N.; Lappin, A. G.; Sykes, A. G. Inorg. Chem. 1981, 20, 1466.

plateaus at higher pH ($\ge pK_a$). (3) The reaction is inhibited by the strong chelating agents NTA (nitrilotriacetic acid) and EDTA (ethylenediaminetetraacetic acid). (4) (phen)₃Fe^{III} (phen = 1,10-phenanthroline) does not oxidize HEPES even though it is a stronger oxidizing agent ($E^\circ = 1.1$ V vs NHE⁶) than (batho)₂Cu^{II}.

In interpreting the observed reactions of HEPES and DMEA as alcohol oxidations, the previous workers rationalized the second-order dependence in Cu(II) and observed pH rate profile in terms of rapid preassociation of the substrate with one Cu(II)batho,⁵ which required an unprotonated amino nitrogen, and subsequent rate-limiting oxidation by a second Cu(II). The claimed unreactivity of (phen)₃Fe^{III} was then attributed to the recognized low affinity of Fe(III) for aliphatic amines.

Our results⁷ run contrary to many of the conclusions reached in the previous study. First, we find that the rate is strictly *first* order in Cu(II). This can be seen from the observed invariance of $t_{1/2}$ with [Cu(II)] in Table I (second order in Cu(II) requires that $t_{1/2}$ vary inversely with [Cu(II)]). The previously claimed second-order dependence in Cu(II) was based only on the apparent linearity of the pseudo-second-order kinetic plot (carried out to 50% reaction). Actually, when we plotted our individual kinetic runs according to first- and second-order behavior, both plots were fairly linear up to 50% reaction (though the former still exhibited a better linear fit, especially beyond 50% reaction).⁸ Notwithstanding, it is the dependence of $t_{1/2}$ on [Cu(II)] that provides an unambiguous assessment of the true kinetic order.

Second, the reaction is an *amine oxidation*, not an alcohol oxidation, as would be expected on the basis of the lower ionization potential of nitrogen vs that of oxygen. Although product identity does not permit such distinction,¹⁰ our designation of the reaction as an amine oxidation is clearly demonstrated (Table II) by (i) the nearly identical oxidation rates of DMEA and the corre-

⁽¹⁾ Good, N. E.; Winget, G. D.; Winter, W.; Connolly, T. N.; Izawa, S.; Singh, R. M. M. Biochemistry 1966, 5, 467.

⁽⁶⁾ Moore, G. R.; Williams, R. J. P. Coord. Chem. Rev. 1976, 18, 125.
(7) Reactions were carried out at 25.0 °C as done previously,³ with use of a 10-fold excess of [batho] over [CuSO₄], both at low concentration compared to that of the organic substrate, and monitored through measurement of ΔA₄₈₃. Pseudo-first-order plots were linear to >75% reaction. The numbers listed in Tables I-III represent the average of two runs in most cases. The buffers used were of the highest purity available commercially (Aldrich), and all amines were fractionally distilled under N₂ shortly before use.

⁽⁸⁾ In order to avoid the possible occurrence of "special" salt effects such as those observed in ferricyanide oxidation of amines,⁹ most of our data were obtained in the absence of ancillary salt used by the previous workers to maintain constant ionic strength (1 M NaCl). However, the kinetic order in Cu(II) was not changed upon switching to their identical conditions (Table I, entry 4).

⁽⁹⁾ Audeh, C. A.; Lindsay Smith, J. R. J. Chem. Soc. B 1970, 1280.

⁽¹⁰⁾ For example, DMEA undergoes an overall four-electron oxidation to glyoxal and dimethylamine. Consistent mechanisms can be written involving either oxidative N-dealkylation or alcohol oxidation as the initial step, followed by the expected rapid oxidation of the resulting glycolaldehyde or dimethylaminoacetaldehyde, respectively. In the case of HEPES, which transfers a total of six electrons,³ a similar product-based mechanistic ambiguity is expected.

Table I. Effect of [Cu(II)] on the Rate of Amine Oxidations by (batho)₂Cu^{II}

substrate	$t_{1/2}$, min					
	pH	$[Cu^{II}]_0 = 0.025 \text{ mM}$	$[Cu^{II}]_0 = 0.10 \text{ mM}$	$[Cu^{II}]_0 = 0.25 \text{ mM}$	$10^{4}k_{\rm obsd},^{c}{\rm s}^{-1}$	
(CH ₃) ₂ NCH ₂ CH ₂ OH	8.1ª	19.4	19.5	20.0	5.88	
HEPES	8.1ª	4.6	4.6	4.4	25.3	
HEPES	6.8 ^a	20.0	19.8	19.7	5.82	
HEPES	6.8 ^b	22.0	22.0	24.0	5.10	

^a [substrate]₀ = 0.05 M, [batho] = 2.5 mM, [KH₂PO₄] = 0.10 M adjusted to the required pH with KOH, 25 °C. ^bSame conditions except no phosphate buffer and [NaCl] = 1.0 M. ^cAverage for three [Cu(II)]₀ concentrations.

Table II. Effect of Structure on the Rate of (batho)₂Cu^{II} Oxidations^a

	$10^4 k_{obsd}$		$10^4 k_{obsd}$	
compd	s ⁻¹	compd	s ⁻¹	
(CH ₃) ₂ NCH ₂ CH ₂ OH	6.0	H ₂ NCH ₂ CH ₂ OH	0.027	
(CH ₃) ₂ NCH ₂ CH ₂ OCH ₃	4.8	(C ₁ H ₄ N)CH ₂ CH ₂ OH ^b	0.014	
CH ₃ NHCH ₂ CH ₂ OH	1.8			

 $[substrate]_0 = 0.05 \text{ M}, [Cu(II)]_0 = 0.25 \text{ mM}, [batho] = 2.5 \text{ mM},$ [KH₂PO₄] = 0.10 M adjusted to pH 8.1 with KOH, 25.0 °C. ^b2-(2-Hydroxyethyl)pyridine.

Table III. Effect of pH on the Rate of Oxidation of Buffers by (batho)₂Cu^{II}

		$10^4 k_{obsd}, s^{-1}$					
	pKa ^b	pH = 5.5	pH = 6.8	pH = 8.1	pH = 10.7		
MES	6.15	0.029	0.13	0.27	0.020		
PIPES	6.80	0.22	2.7	5.5	0.11		
HEPES	7.55	0.29	5.9	25.0	0.91		
HEPES	7.55		5.1		0.28		
HEPES ^d	7.55		5.9		1.9		

 a [substrate]₀ = 0.05 M, [Cu(II)]₀ = 0.25 mM, [batho] = 2.5 mM, $[KH_2PO_4] = 0.10$ M adjusted to the required pH with KOH, 25.0 °C. Sigma Chemical Co. 1988 catalog, p 313. Same as above except [batho] = 1.0 mM. ^dSame as above except [batho] = 5.0 mM.

sponding methyl ether, (ii) the successively lower oxidation rates of the secondary and primary amine analogues of the tertiary amine DMEA,¹¹ (iii) the minimal reactivity of 2-(2-hydroxyethyl)pyridine, which should possess at least some of the coordinating potential of DMEA, and (iv) the observed oxidations of the two common non-alcoholic tertiary amine buffers PIPES and MES. The slower oxidation of the morpholine-based buffer MES compared to that of the piperazine-based buffers PIPES and HEPES undoubtedly arises from the electron-withdrawing effect of the β -oxygen. Thus, the previously reported unreactivity of simple alcohols is not a consequence of their poor coordinating capacity but merely of the unfavorable potential for their oxidation by (batho)₂Cu^{II}. Moreover, the inertness of Tris, which, in view of its ability to complex metal ions¹² was unexpected, is now easily understood in terms of it being a primary rather than tertiary amine.11

The data listed in Table III are consistent with the previous report³ that the rates of the (batho)₂Cu^{II} oxidations increase with increasing pH up to the pK_a of the amine. Clearly, the free-base form of the amine is required if the reaction involves oxidation at nitrogen. At even higher pH, however, the rate again declines. This decrease is believed to be a consequence of the conversion of (batho)₂Cu^{II} to a hydroxide complex, which is an ineffective oxidant. The fact that increasing [batho] at high pH (but not low pH) increases the reaction rate (Table III, entries 4 and 5) suggests that the unreactive complex formed is the dihydroxybridged dimer $[(batho)Cu(OH)_2Cu(batho)]^{2+}$, with displacement of one batho ligand per copper, rather than the pentacoordinate $(batho)_2CuOH^+$ species.¹³ We have confirmed the general occurrence of a bell-shaped pH rate profile for the oxidation of a large series of amines by the aqueous Cu(II)-batho reagent.¹⁴

Our demonstration of first-order dependence in Cu(II) is consistent with a rate-limiting electron transfer from amine to (batho)₂Cu^{II}, analogous to the mechanism proposed by Lindsay Smith^{15,16} for ferricyanide oxidation of amines (tertiary amines are ultimately dehydrogenated to iminium species, which hydrolyze to secondary amine and aldehyde). In fact, the ferricyanide studies made us suspect the reported³ inability of (phen)₃Fe^{III} to oxidize HEPES, especially considering that $E^{\circ} = 1.1$ V vs NHE for this complex⁶ compared to 0.75-1.05 V for tertiary amines.^{11,16} Using the authentic (phen)₃Fe^{III} perchlorate complex,¹⁷ we found that HEPES was rapidly oxidized, even at low pH, where the amino nitrogen is protonated.¹⁸ Perhaps the failure of the previous workers to observe reactions is that they had used $[(phen)FeCl_3]_2$, a doubly chloride-bridged dimer that forms in the attempted preparation of (phen)₃Fe^{III} from FeCl₃ and phen in acetic acid.¹⁹ This dimeric complex, containing only a single phen ligand per Fe(III), is a much weaker oxidant, and we have found it incapable of oxidizing even very reactive tertiary amines such as Nmethylpyrrolidine.¹⁶ We do not dispute the claimed lower affinity of Fe(III) than of Cu(II) for aliphatic amines. However, the ferricyanide oxidations reported by Lindsay Smith, as well as those observed by us for (batho)₂Cu^{II} and (phen)₃Fe^{III} in the current study, are probably best described in terms of outer-sphere electron transfer, for which a coordinative interaction between oxidant and reductant is not required.

In conclusion, the previous observation that cautioned against the use of HEPES buffer in studies involving the Cu(II)-batho complex³ is well served. However, since the cause of this reactivity is the presence of the tertiary amine function, all tertiary amine buffers should be avoided in such cases. Moreover, it is expected that any metal ion complex with a redox potential in excess of 0.6 V vs NHE will be capable of oxidizing such tertiary amine buffers, whether by inner- or outer-sphere mechanisms. An extensive study on the kinetics and mechanism of aqueous (batho)₂Cu^{II} oxidations of amines in general will be reported in a full paper.14

Acknowledgment. We thank M. P. Singh for preliminary work on this project, Prof. Fred Urbach for helpful discussions, and the NSF (Grant No. CHE 87-06263) for financial support.

Registry No. HEPES, 7365-45-9; PIPES, 4432-31-9; MES, 5625-37-6; (batho)₂Cu^{II}, 72244-80-5; (CH₃)₂NCH₂CH₂OH, 108-01-0; (C-H₃)₂NCH₂CH₂OCH₃, 3030-44-2; ČH₃NHCH₂CH₂OH, 109-83-1; H₂NCH₂CH₂OH, 141-43-5; (C₅H₄N)CH₂CH₂OH, 103-74-2.

- Sayre, L. M.; Wang, F. Manuscript in preparation.
 Lindsay Smith, J. R.; Mead, L. A. V. J. Chem. Soc., Perkin Trans. 2
- 1973, 206. (16) Lindsay Smith, J. R.; Masheder, D. J. Chem. Soc., Perkin Trans. 2 1976, 47.
- (17) Schilt, A. A.; Taylor, R. C. J. Inorg. Nucl. Chem. 1959, 9, 211.
 (18) Kinetics of oxidation by (phen)₃Fe^{II} were followed by monitoring the appearance of (phen)₃Fe^{II} at 510 nm: Sutin, N.; Gordon, B. M. J. Am. Chem. Soc. 1961, 83, 70. The measured k_{obsd} values are 5.8 × 10⁻³ and 1.1 × 10⁻² s⁻¹ at pH 3.4 and 4.5, respectively. This reaction may even represent an alcohol rather than an amine oxidation at these pH values, but simple tertiary amines are also oxidized.14
- (19) Brandt, W. W.; Howsmon, W. B., Jr. J. Am. Chem. Soc. 1954, 76, 6319.

Department of Chemistry

Case Western Reserve University Cleveland, Ohio 44106

Fengjiang Wang Lawrence M. Sayre*

Received July 8, 1988

⁽¹¹⁾ One-electron oxidation of amines follows the trend $3^{\circ} > 2^{\circ} > 1^{\circ}$: Mann, C. K. Anal. Chem. 1964, 36, 2424. Masui, M.; Sayo, H.; Tsuda, . J. Chem. Soc. B 1968, 97

⁽¹²⁾ Masi, D.; Mealli, L.; Sabat, M.; Sabatini, A.; Vacca, A.; Zanobini, F. Helv. Chim. Acta 1984, 67, 1818.

⁽¹³⁾ The analogous phenanthroline complex $[(phen)Cu^{II}(OH)Cu^{II}(phen)]^{2+}$ is known: Harris, C. M.; Sinn, E.; Walker, W. R.; Woolliams, P. R. Aust. J. Chem. 1968, 21, 631.