ination of the unstable species:

$$5S_2NH_3 \rightleftharpoons S_6^{2-} + S_4N^- + 3NH_4^+ + NH_3$$
 (15)

or

$$9S_2NH_3 \Rightarrow 2S_6^{2-} + 2S_3N^- + 6NH_4^+ + NH_3$$
 (15')

These equilibria are complex but may be reached through a small number of simple steps. This model for the solubilization process takes into account the nonobservation of S₇N⁻. It should be noted that the formation of S_4N^- from S_2N^- considered as intermediate species has already been suggested by Chivers et al.¹⁷ The present model takes into account our observation that S3N⁻ is the precursor species of S_4N^- . Consequently, it has been assumed that S_2N^- is the precursor species of S_3N^- .

Conclusion

The experimental results reported in the present paper give a new insight into the process of formation of chemical species in the solutions of sulfur in liquid ammonia and lead unambiguously to the description of the equilibrium state. A model is proposed for the reaction mechanism between $c-S_8$ and liquid ammonia, which also explains the formation process of sulfur-nitrogen species such as S_4N^- and S_3N^- in liquid ammonia. It must be noted that the heptasulfur imido anion $S_7 N^-$ is not involved in this mechanism. Two points are somewhat speculative: S_2NH_3 is the zerovalent sulfur species at equilibrium, but this species has already been suggested by other investigators; our analysis of the disproportionation constant supports this point. The other speculative point is that S_2N^- could be the precursor species of S_3N^- .

It is shown that the disproportionation of sulfur in ammonia leads to an equilibrium. The quantitative determination of the amount of solubilized sulfur that remains in the zero state of oxidation (S_{am}) is given.

Acknowledgment. This research was suported by the CNRS (ATP Application de l'électricité à la chimie No. 249) and by the AFME (décision d'aide à la Recherche No. 4213 9261). We acknowledge a reviewer for mentioning the relevance of ref 19 and 20 to the present work.

Registry No. S, 7704-34-9; NH₃, 7664-41-7; NH₄Cl, 12125-02-9.

Contribution from the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061

Some Perfluoroalkyl-Substituted Tripnicogens and Their Hydrolysis To Yield Chiral Dipnicogens¹

Larry R. Avens,[†] Richard A. Wolcott, Leonard V. Cribbs, and Jerry L. Mills*

Received July 30, 1987

The insertion of a perfluoroalkylphosphinidene moiety R_f from perfluoroalkylcyclopolyphosphines ($R_f P$)_n into the pnicogen-pnicogen bond of tetraalkyldipnicogens appears to be general. Thus a CF_3P unit from $(CF_3P)_{4,5}$ reacts either with R_2PPR_2 (where R =Me, Et, Bu) or with Me₂AsAsMe₂ to form the tripnicogen compounds R₂PP(CF₃)PR₂ and Me₂AsP(CF₃)AsMe₂, respectively. Similarly $(C_2F_3P)_{3,4}$ reacts with Me₂PPMe₂ to form Me₂PP(C_2F_3)PMe₂. Any two symmetric tripnicogens, such as Me₂PP-(CF₃)PMe₂ and Et₂PP(CF₃)PEt₂, undergo a scrambling reaction to form an equilibrium mixture containing the asymmetric tripnicogen. The tripnicogens undergo neutral water hydrolysis surprisingly easily to form chiral dipnicogens. For example, Me₂PP(CF₃)PMe₂ hydrolyzes immediately at ambient temperature with an equimolar quantity of water to yield the new chiral secondary phosphine Me₂PP(CF₃)H plus Me₂P(O)OH and Me₂PH. Similarly, hydrolysis of the appropriate tripnicogen yields the chiral dipnicogen secondary phosphines $Me_2PP(C_2F_5)H$, $Et_2PP(CF_3)H$, $Bu_2PP(CF_3)H$, and $Me_2AsP(CF_3)H$. A second equivalent of water hydrolyzes the dipnicogens to the primary perfluoroalkylphosphine. Possible reaction mechanisms are discussed together with NMR data.

Introduction

The RP moiety in a cyclopolyphosphine $(RP)_n$ is isoelectronic with sulfur. Burg synthesized the phosphinidene complex $Me_3P \rightarrow P(CF_3)$ from the reaction of Me_3P with $(CF_3P)_{4,5}$, analogous to the formation of Me₃P=S.² Cowley and Dierdorf observed that the reaction of Me₂PPMe₂ with (CF₃P)_{4.5} yields neither the mono- nor the diphosphinidene complex, but rather the insertion product $Me_2PP(CF_3)PMe_2$.³ We observed that the phosphorus-phosphorus bond in the triphosphine $Me_2PP(CF_3)$ -PMe₂ is surprisingly easily hydrolyzed by neutral water at ambient temperature to quantitatively yield the new chiral diphosphine $Me_2PP(CF_3)H.^4$ Because of the potentially interesting chemistry of this type of chiral diphosphine relative to addition to alkenes, alkynes, or metal-metal bonds, we have examined the generality of the insertion reaction of perfluoroalkylphosphinidenes and the subsequent hydrolysis to the tripnicogens to yield chiral dipnicogens. These chiral disphosphines may also be of interest because of the catalytic properties of chiral phosphines in asymmetric syntheses. Perfluoroalkyl-substituted polyphosphines are of current general interest.5

Results

Insertion of Perfluoroalkylphosphinidene into the Pnicogen-Pnicogen Bond of Diphosphines and Diarsines. As reported by Cowley and Dierdorf, the reaction of equimolar amounts⁶ of tetramethyldiphosphine Me_2PPMe_2 with $(CF_3P)_{4,5}$ quantitatively

- (1) Pnicogens refer to main group V compounds. Therefore, for example, dipnicogen simply refers to a compound containing two main group V elements such as a diphosphine or arsinophosphine. Suchow, L. Inorg. Chem. 1978, 17, 2041. (a) Burg, A. B.; Mahler, W. J. Am. Chem. Soc. 1961, 83, 2388. (b)
- (2) Burg, A. B. J. Inorg. Nucl. Chem. 1971, 33, 1575. (a) Cowley, A. H.; Dierdorf, D. S. J. Am. Chem. Soc. 1969, 91, 6609.
- (b) Cowley, A. H. J. Am. Chem. Soc. 1967, 89, 5990.
 (4) Presented in part at the Second International Conference on Phosphorus
- (4) Presented in part at the Second International Conference on Phosphorus Chemistry, Durham, NC, June, 1981.
 (5) Burg, A. B. Inorg. Chem. 1986, 25, 4751. Burg, A. B. Inorg. Chem. 1985, 24, 3342. Burg, A. B. Inorg. Chem. 1985, 24, 2573. Burg, A. B. Inorg. Chem. 1981, 20, 3731. Burg, A. B. Inorg. Chem. 1981, 20, 3734. Grobe, J.; Haubold, R. Z. Anorg. Allg. Chem. 1986, 534, 121. Grobe, J.; Le Van, D.; Schulze, L. Z. Naturforsch. 1985, 640, 1753.
 Steare, B.; Ohesharmen, H.; Grobe, L.; Lo Van, D. Inorg. Chem. 1986 Steger, B.; Oberhammer, H.; Grobe, J.; Le Van, D. Inorg. Chem. 1986, 25, 3177. Khokhryakov, K. A.; Maslennikov, I. G.; Grigorov, E. I.; Kukushkin, Yu., N. Zh. Obshch. Khim. 1985, 55, 2622. Maslennikov, I. G.; Lyubimova, M. V.; Krutikov, V. I.; Lavrent'ev, A. N. Zh. Obshch. Khim. 1983, 53, 2646 and references therein.
- (6) Equimolar quantities of $(R_f P)_n$ means equimolar quantities of $R_f P$ units.

[†]Present address: MS E501, Los Alamos National Laboratory, Los Alamos, NM 87545.

Table I. NMR Parameters for Tripnicogens

		δ(³¹ P[¹ H]) ^{b,c}	
compd	$\delta({}^{19}\mathrm{F}[{}^{1}\mathrm{H}])^{a,c}$	$P(R_f)$	PR ₂	coupling const, Hz
$Me_2PP(CF_3)PMe_2^d$	-41.6, d of t	-8.7, d of t	-57.7, d of m ^{f.g}	${}^{1}J_{\rm PP} = 242, {}^{2}J_{\rm PF} = 42$ ${}^{3}J_{\rm PF} = 7^{i}$
Et ₂ PP(CF ₃)PEt ₂	-40.9, d of d of d ^{f,h}	ca30.0, m	ca30.0, m	
$Bu_2PP(CF_3)PBu_2^d$	-42.9, d of d of d ^{f,h}	-25.2, d of q ^f	-42.3, d of d of q ¹	${}^{1}J_{\rm PP} = 293, {}^{2}J_{\rm PF} = 43, {}^{3}J_{\rm PF} = 4$
$Me_2AsP(CF_3)AsMe_2$	-40.5, d	-11.7, q	-	${}^{2}J_{\rm PF} = 34.0^{i}$
$Me_2PP(C_2F_5)PMe_2^e$	-102.5 (CF ₂), d of d of q^f -82.8 (CF ₃), d of t of q^f	-11.9, d of d of m ^f	-56.9, d of m ^f	${}^{1}J_{PP} = 280, {}^{3}J_{PF} = 41, {}^{3}J_{FF} = 12$ ${}^{4}J_{PF} = 3$
Me ₂ PP(CF ₃)PEt ₂ ^e	-42.1, d of m	-19.4, d of q	-32.8 (P'Et ₂), d of q -62.2 (PMe ₂), d of q	${}^{1}J_{PP} = 222, {}^{2}J_{PF} = 41$ ${}^{1}J_{PP} = 210, {}^{3}J_{PF} = 7, {}^{3}J_{P'F} = 7$
Me ₂ PP(CF ₃)PAs ₂	-41.2, d of d	-10.8, d of q	-60.5, d of q	${}^{1}J_{\rm PP} = 252, {}^{2}J_{\rm PF} = 38, {}^{3}J_{\rm PF} = 7$
$(CF_3)_2$ PPMeP $(CF_3)_2$	-47.7, d of m	-68.6 (PMe), t of m ^f	+4.0 (PR _f), d of m^{f}	${}^{1}J_{\rm PP} = 260, {}^{2}J_{\rm PH} = 8$

^aChemical shift relative to external CFCl₃. Negative values indicate upfield chemical shift. ^bChemical shift relative to external 85% H₃PO₄. Negative values indicate upfield chemical shifts. ^cd = doublet, t = triplet, q = quartet, m = multiplet. ^dChemical shifts and coupling constants accurate for second-order specta solved by computer simulation. ^eChemical shifts and coupling constants approximate. Second-order spectra not completely solved. ^fApproximate appearance of resonance. ^gFigure 1. ^hFigure 2. ⁱThis work; compare to ref 3a.

Figure 1. ³¹P[¹H] spectrum of $Me_2PP(CF_3)PMe_2$: experimental spectrum above; computer-simulated spectrum below. Shifts are given in Hz upfield from 85% H₃PO₄. See Table I for data.

produces the triphosphine Me₂PP(CF₃)PMe₂. NMR data are tabulated in Table I. The ³¹P data have not been previously reported. While the ¹⁹F and ¹H spectra are consistent with a first-order interpretation, the ³¹P[¹H] spectrum is distinctly second order, as expected for an AB₂X₃ spin system where $[(\delta(A) - \delta(B)]/J_{AB} = 0.12$. The second-order effects result in the phosphorus spectrum appearing as in Figure 1, rather than as a doublet of quartets (Me₂P phosphorus) and a triplet of quartets (CF₃P phosphorus), as would be the case for a completely first-order spectrum. Little spectral change occurs from -40 to +200 °C, except for some broadening of resonances and slight decomposition.

In an analogous fashion, reaction of equimolar quantities⁶ of $(CF_3P)_{4,5}$ with either Et_2PPEt_2 or Bu_2PPBu_2 produces $Et_2PP-(CF_3)PEt_2$ and $Bu_2PP(CF_3)PBu_2$, respectively. Both compounds exhibit ³¹P[¹H] spectral patterns of an AB₂ portion of an AB₂X₃ spin system that are more second order than in Me₂PP(CF₃)PMe₂ (Table I). For $Et_2PP(CF_3)PEt_2$, the chemical shift of the two types of phosphorus atoms are so similar that the exact spectral parameters are not easily attainable without simultaneously decoupling both proton and fluorine atoms. The second-order effects are also manifest in the ¹⁹F NMR spectrum (X₃ portion), where the appearance is more that of two sets of doublets of doublets for $Bu_2PP(CF_3)PBu_2$, rather than a first order doublet of triplets (Figure 2) as expected from the phosphorus spectrum; the fluorine

spectrum of $Et_2PP(CF_3)PEt_2$ is even more complex.

The perfluoroethylcyclopolyphosphine $(C_2F_5\dot{P})_{3,4}$ also serves as a perfluoroalkylphosphinidene source.⁷ The reaction of $(C_2F_5P)_{3,4}$ with Me₂PPMe₂ produces Me₂PPC₂F₅PMe₂ essentially quantitatively. Chemical shifts, coupling constants, and spectral multiplicity for ³¹P proton-decoupled and ¹⁹F proton-decoupled spectra are consistent with an AB₂M₂X₃ spin system (Table I) and the proposed structures.

As previously reported,^{3a} $(CF_3P)_{4,5}$ also reacts with Me₂AsAsMe₂ to produce the tripnictide compound Me₂AsP- $(CF_3)AsMe_2$. Spectral data are presented in Table I.

An alkylcyclopolyphosphine can provide a source for an alkylphosphinidene. Tetrakis(trifluoromethyl)diphosphine (C- F_3)₂PP(CF₃)₂ reacts slowly with pentamethylcyclopentaphosphine (MeP)₅ to yield the tripnictide (CF₃)₂PPMeP(CF₃)₂. The compound (CF₃)P₂PMeP(CF₃)₂ has been made by a different method,⁸ but no NMR data were reported (Table I). The ³¹P[¹⁹F] spectrum again is an AB₂X₃ spin system, but is only slightly second order, while the ¹⁹F[¹H] spectrum is quite second order consisting of only

 ⁽⁷⁾ Smith, L. R.; Mills, J. L. J. Am. Chem. Soc. 1976, 98, 3852. Cowley,
 A. H.; Furtsch, T. A.; Dierdorf, D. S. J. Chem. Soc. D 1970, 523.
 Elmes, P. S.; Redwood, M. E.; West, B. O. J. Chem. Soc. D 1970, 1120.

⁽⁸⁾ Burg, A. B.; Joshi, K. K. J. Am. Chem. Soc. 1964, 86, 353.

		$\delta({}^{31}\mathrm{P}[{}^{1}\mathrm{H}])^{b,c}$			
compd	$\delta({}^{19}\mathrm{F}[{}^{1}\mathrm{H}])^{a,c}$	$P(\mathbf{R}_{\mathbf{f}})\mathbf{H}$	PR ₂	coupling const, Hz	
 $Me_2PP(CF_3)H^{d,e}$	-43.7, d of d	-57.1, d of q	-68.5, d of q	${}^{1}J_{PP} = 198, {}^{2}J_{PH} = 11, {}^{2}J_{PF} = 45$ ${}^{1}J_{PH} = 200, {}^{3}J_{PF} = 11, {}^{3}J_{PF} = 12$	
$Me_2PP(C_2F_5)H^{f}$	-83.6 (CF ₃), m -101.4 (CF ₂), m	-70.8, d of m	-56.5, d of d of m	${}^{1}J_{\text{PH}} \simeq 180, {}^{1}J_{\text{PP}} \simeq 180, {}^{2}J_{\text{PF}} \simeq 55, {}^{3}J_{\text{PF}} \simeq 25, {}^{3}J_{\text{FF}} \simeq 3.0$	
$Et_2 PP(CF_3)H^d$	-43.6, d of d	-65.5, d of q	-35.5, d of q	${}^{1}J_{pp} = 210, {}^{1}J_{PH} = 209,$ ${}^{2}J_{PF} = 46, {}^{3}J_{PF} = 10, {}^{3}J_{FH} = 11$	
$Bu_2PP(CF_3)H^d$	-43.3, d of d	-62.6, d of q	-44.3, d of q	${}^{1}J_{\rm PP} = 209, {}^{1}J_{\rm PH} = 201,$ ${}^{2}J_{\rm PE} = 46, {}^{2}J_{\rm PH} = 11, {}^{3}J_{\rm PE} = 11$	
$Me_2AsP(CF_3)H$	-42.0, d	-58.6, q		${}^{1}J_{\rm PH} = 194, {}^{2}J_{\rm PF} = 40, {}^{3}J_{\rm FH} = 12$	

^aChemical shift relative to external CFCl₃. Negative values indicate upfield chemical shift. ^bChemical shift relative to external 85% H₃PO₄. Negative values indicate upfield chemical shifts. ^cd = doublet, t = triplet, q = quartet, m = multiplet. ^dSpectra slightly second order. Appearance approximates first order. ^eProton chemical shift data: CH_3 's = δ 1.38, m; P-H = δ 3.8, d of d of q. ^fSince [¹H] NMR spectra are for an ABM₂X₃ spin system, the coupling constants, chemical shifts, and description of spectral appearance are approximate.

Figure 2. ¹⁹F[¹H] spectrum of Bu₂PP(CF₃)PBu₂: experimental spectrum above; computer-simulated spectrum below. See Table I for data.

two broad featureless resonances. No reaction is observed between $(MeP)_5$ and Me_2PPMe_2 .

If Me_2PPMe_2 , Et_2PPEt_2 , and $(CF_3P)_{4,5}$ are mixed in a 1:1:2 mole ratio, respectively, then three compounds are produced: $Me_2PP(CF_3)PMe_2$, $Et_2PP(CF_3)PEt_2$, and $Me_2PP(CF_3)PEt_2$. The mixed triphosphine, as expected, exhibits very complex ABCX₃ ³¹P[¹H] and ¹⁹F[¹H] NMR spectra, which overlap with the spectra of the two symmetric triphosphines. Trends in chemical shifts and general spectral appearance support the proposed structure, as does a scrambling experiment. Thus, if equimolar quantities of $Et_2PP(CF_3)PEt_2$ and $Me_2PP(CF_3)PMe_2$ are mixed in benzene solvent, within a few minutes at ambient temperature the mixed triphosphine $Me_2PP(CF_3)PEt_2$ is produced, yielding spectra essentially identical with those mentioned above. Similarly, if $Me_2PP(CF_3)PMe_2$ and $Me_2AsP(CF_3)AsMe_2$ are mixed in benzene solvent, the metathesized tripnictide $Me_2PP(CF_3)AsMe_2$ is formed rapidly.

In a cursory experiment⁹ equimolar quantities of Me_2PP -(CF₃)PMe₂ were mixed with (CF₃)₂PPMeP(CF₃)₂. The diphosphine $Me_2PP(CF_3)_2$ is formed, together with a compound tentatively identified as the tetraphosphine $Me_2PP(CF_3)PMeP$ -(CF₃)₂ (see Discussion).

In most of the reactions above, the stoichiometry is important. For example, an excess of the perfluoroalkylcyclopolyphosphine $(R_f P)_n$, the phosphinidene source, leads to additional compounds, as observed by ³¹P and ¹⁹F NMR spectroscopy.¹⁰ These com-

(9) Unpublished results.

pounds presumably arise from the tripnictide reaction with $(R_fP)_n$ to form higher linear polyphosphines. In general, reactivity and reaction rates of the tripnicogens can be approximately correlated with steric bulk. Thus, the reaction of Bu₂PP(CF₃)PBu₂ with an excess $(CF_3P)_{4,5}$ occurs very slowly, while reaction of Me₂PP-(CF₃)PMe₂ with (CF₃P)_{4,5} occurs rapidly and to an appreciable extent in benzene solvent. The solvents must also be scrupulously dry or hydrolysis will occur very rapidly. The progress of the reactions is highly dependent on whether or not a solvent is used.

While some of the above insertion reactions can be carried out neat, others yield polymers without solvent. Thus, as originally reported by Cowley,³ (CF₃P)_{4,5} reacts cleanly with either Me₂PPMe₂ or Me₂AsAsMe₂ without solvent. However, we observe that most of our reactions involving other diphosphines rapidly produce a black, viscous polymer if the reactions are performed neat. The rate of reaction of the dipnicogens with $(\mathbf{R}_{\mathbf{f}}\mathbf{P})_n$ phosphinidene source to produce the tripnicogens are roughly related to steric bulk. The reaction of $(CF_3P)_{4,5}$ with Me₂PPMe₂ is complete within several minutes at room temperature, while reaction with Bu₂PPBu₂ requires about a day to reach completion. Arsenic compounds react more slowly than analogous phosphorus compounds, as do perfluoroethyl derivatives relative to perfluoromethyl compounds. During reaction, the solutions are yellow, possibly indicating free radicals. Numerous attempts to find ESR signals, either at ambient or liquid-nitrogen temperature, were unsuccessful, however.

Synthesis of Chiral Dipnicogens from Hydrolysis of Tripnicogens. If equimolar amounts of Me₂PP(CF₃)PMe₂ and water are allowed to react, the chiral diphosphine Me₂PP(CF₃)H, Me₂P-(O)OH, and Me₂PH are formed quantitatively. The chiral diphosphine is a clear liquid that is soluble in organic solvents, has a vapor pressure of 19 Torr at 25 °C, and exhibits ³¹P[¹H] and ¹⁹F[¹H] NMR spectra consistent with an ABX₃ spin system (Table II). The diphosphine $Me_2PP(CF_3)H$ can be additionally characterized by its gas-phase molecular weight, the P-H stretching frequency at 2295 cm⁻¹ in the IR spectrum, and the complex ¹H NMR spectrum showing P-H coupling of approximately 200 Hz of relative intensity of 1 compared to the six methyl protons. The pure diphosphine is stable for weeks at room temperature, showing almost no evidence of disproportionation. The other hydrolysis product, $Me_2P(O)H$, disproportionates (as monitored by ¹H and ³¹P NMR spectroscopy) to form $Me_2P(O)OH$ and Me_2PH , the rate being dependent on solvent and whether the volatile Me_2PH is removed.¹¹ The stoichiometry for the reaction is important. Too much water results in further hydrolysis of the diphosphine.

The triphosphines $Et_2PP(CF_3)PEt_2$, $Bu_2PP(CF_3)PBu_2$, and $Me_2PP(C_2F_3)PMe_2$ all are hydrolyzed by equimolar amounts of water to form the chiral diphosphines $Et_2PP(CF_3)H$, $Bu_2PP-(CF_3)H$, and $Me_2PP(C_2F_5)H$, respectively. The rate of hydrolysis is dependent on the steric bulk of the triphosphine, as well as whether or not the hydrolysis is carried out in solution or by simply

⁽¹⁰⁾ See: Avens, L. R.; Gribbs, L.; Mills, J. L. Inorg. Chem., following paper in this issue.

⁽¹¹⁾ Trenkle, A.; Vahrenkamp, H. Z. Naturforsch. 1979, 34B, 642.

adding water to neat triphosphine. Addition of water to the neat triphosphine forms two layers, slowing the reaction rate. The chiral diphosphines $Et_2PP(CF_3)H$, $Bu_2PP(CF_3)H$, and $Me_2PP(C_2F_5)H$ are characterized by NMR spectral parameters (Table II).

The diarsinophosphine Me₂AsP(CF₃)AsMe₂ also undergoes facile hydrolysis by neutral water to yield the chiral arsinophosphine $Me_2AsP(CF_3)H$, as well as Me_2AsH and $Me_2As(O)$ -OH. The chiral arsinophosphine is characterized by its gas-phase molecular weight (vapor pressure 13.4 Torr at 22 °C) and by the P-H stretching frequency in the IR region at 2305 cm⁻¹. The NMR data (Table II) are consistent with the assigned structure. The methyl protons are anisochronous because of the chiral phosphorus atom. Thus the ¹H[¹⁹F] spectrum in the methyl region consists of two doublets, one doublet (from phosphorus coupling) for each set of methyl protons. The anisochronicity is confirmed by observing ¹H NMR spectra at both 60 and 100 MHz and is also apparent in the ³¹P NMR spectrum. The methyl groups on any one arsenic atom in Me₂AsP(CF₃)AsMe₂ are similarly anisochronous.^{3a} (Obviously, several other compounds such as $Me_2PP(CF_3)H$ contain diastereotopic groups. Only in the compounds with the simplest spin systems is it possible to directly observe anisochronicity.) The arsinophosphine Me₂AsP(CF₃)H is considerably less thermodynamically stable than is the congeneric diphosphine $Me_2PP(CF_3)H$. In 1 day at ambient temperature the neat arsinophosphine undergoes significant decomposition, the extent of decomposition being dependent on initial compound purity and exposure to apparent catalysts such as stopcock grease.

Hydrolysis of Chiral Dipnicogens. The diphosphine $Me_2PP_{(CF_3)}H$ is quantitatively hydrolyzed over several minutes at room temperature by neutral water to form CF_3PH_2 , Me_2PH , and $Me_2P(O)OH$ in a ratio of 2:1:1. (An excess of water seems to prolong the disproportionation of $Me_2P(O)H$ to Me_2PH and $Me_2P(O)OH$.) The hydrolysis occurs more slowly than the hydrolysis of the parent triphosphine. Hydrolysis of the other chiral diphosphines and the chiral arsinophosphine proceeds in an analogous manner.

Discussion

As shown by Cowley and Dierdorf, the reaction of tetramethyldiphosphine with either $(CF_3P)_4$ or $(CF_3P)_5$ forms the triphosphine $Me_2PP(CF_3)PMe_2$.³ This reaction might proceed through the initial formation of a phosphinidene adduct:

$$Me_{2}PPMe_{2} + \frac{1}{n}(CF_{3}P)_{n} - [Me_{2}PP - PCF_{3}] - [Me_{2}PP - PCF_{3}] - [Me_{2}PP(CF_{3})PMe_{2}]$$

$$Me_{2}PP(CF_{3})PMe_{2} = (1)$$

followed by rapid rearrangement to the triphosphine. The phosphinidene adduct is similar to the well-known $Me_3P \rightarrow PCF_3$.² We find that the *apparent* insertion of a (perfluoroalkyl)phosphinidene into a dipnictide bond of tetraalkyldipnictides is general: thus

$$R_2 PPR_2 + (1/n)(CF_3P)_n \rightarrow R_2 PP(CF_3)PR_2$$
$$R = Me, Et, Bu$$

$$Me_2PPMe_2 + (1/n)(C_2F_5P)_n \rightarrow Me_2PP(C_2F_5)PMe_2$$

$$Me_2AsAsMe_2 + (1/n)(CF_3P)_n \rightarrow Me_2AsP(CF_3)AsMe_2$$

The pure tripnictides are indefinitely stable when dissolved in benzene.

The reaction sequence proposed in eq 1 should yield free radicals resulting from the opened ring of the cyclopolyphosphine. Indeed, the solutions are colored during the reaction. We are unable to observe an ESR signal, however. Attempts to observe the proposed phosphinidene intermediate by monitoring the ³¹P and ¹⁹F NMR spectra during reaction at low temperature show no new resonances. In other related work, we observe that (perfluoroalkyl)phosphinidene phosphorus atoms in trialkylphosphinephosphinidene complexes exhibit resonances at high field in ³¹P NMR experiments (approximately -100 ppm).¹² Therefore any phosphinidene complex, as proposed in eq 1, must be very short-lived or nonexistent. The solution color might arise from conjugation of transient linear phosphorus chains (vide infra).

An alternate mechanism that explains (1) the observed tripnicogen product, (2) the stability of the tripnicogen, (3) the absence of an ESR signal during reaction, and (4) the results of scrambling experiments between tripnicogens (vide infra) is as follows. The initial step in the reaction sequence involves a four-centered intermediate formed by the nucleophilic attack by both phosphorus atoms in Me_2PPMe_2 on the perfluoroalkylcyclopolyphosphine. For the specific example of the cyclotetraphosphine, the reaction is

The linear six-phosphorus chain is subsequently attacked at the (perfluoroalkyl)phosphorus site by Me₂PPMe₂:

Me₂P(PCF₃)PMe₂ (3)

Continued attack on the five-phosphorus chain will lead only to $Me_2P(PCF_3)PMe_2$ (as long as the stoichiometry is one PCF₃ unit per Me_2PPMe_2 molecule), due to the basicity of Me_2P phosphorus atoms and the relative acidity of the CF_3P phosphorus atoms. Attack of $Me_2P(PCF_3)PMe_2$ upon itself is nonproductive.

This type of mechanism is also consistent with a number of scrambling experiments. If two diphosphines (Me₂PPMe₂ and Et₂PPEt₂) are mixed with (CF₃P)_{4.5}, the two symmetric triphosphines Me₂P(PCF₃)PMe₂ and Et₂P(PCF₃)PEt₂ are formed. Also formed is the mixed unsymmetric triphosphine Me₂P-(PCF₃)PEt₂, the presence of which can be explained by the reaction of the intermediate Me₂P(PCF₃)_nPMe₂ with Et₂PPEt₂, as in eq 3. In a separate experiment, we find that equimolar amounts of Me₂P(PCF₃)PMe₂ and Et₂P(PCF₃)PEt₂ mixed in benzene solvent at ambient temperature also immediately yield the asymmetric triphosphine Me₂P(PCF₃)PEt₂, again probably via a four-centered intermediate, as originally proposed by Cowley^{3a} and also supported by Krannich¹³ in his studies of alkyldiarsine exchange reactions.

Me

The ease of this exchange at ambient temperature is surprising in light of Cowley's scrambling reaction of $Me_2PP(CF_3)PMe_2$ with either $Me_2NP(CF_3)NMe_2$ or $Me_2AsP(CF_3)AsMe_2$ in the absence of solvent, which required a temperature of 130 °C before reaction ensued.^{3a} Modifying Cowley's experiment by using benzene solvent and mixing of $Me_2PP(CF_3)PMe_2$ with $Me_2AsP(CF_3)AsMe_2$ at ambient temperature immediately yields the mixed unsymmetric tripnicogen $Me_2AsP(CF_3)PMe_2$. Thus both the rate of these polypnicogen reactions and the product stability are solvent dependent. Diphosphine exchange reactions are known to be greatly solvent dependent.¹⁴ Four-centered intermediates also have been used to explain dipnicogen exchange reactions.^{13,15} Such a

(15) Cavell, R. G.; Dobbie, R. C. J. Chem. Soc. A 1968, 1406.

⁽¹²⁾ Unpublished results. Also see: Cowley, A. H.; Cushner, M. C. Inorg. Chem. 1980, 19, 515.

⁽¹³⁾ Gupta, V. K.; Krannich, L. K.; Watkins, C. L. Inorg. Chem. 1986, 25, 2553. The article contains an excellent set of references to the formation of the homonuclear-bonded main group V compounds.

⁽¹⁴⁾ Harris, R. K.; Norval, E. M.; Flid, M. J. Chem. Soc., Dalton. Trans. 1979, 826.

mechanism is also consistent with the relative rates of reaction; that is, the larger the R groups on the diphosphines or diarsines and the larger the R_f group on $(R_f P)_n$, the slower is the rate of formation of the tripnicogens.

A four-centered intermediate with basic phosphorus atoms attacking acidic phosphorus atoms is also consistent with the reaction of $(CF_3)_2 PP(CF_3)_2$ with $(MeP)_5$ to form $(CF_3)_2$ PPMeP $(CF_3)_2$, as it is with the scrambling reaction between $(CF_3)_2$ PPMeP(CF₃)₂ and Me₂PP(CF₃)PMe₂ to form Me₂PP- $(CF_3)_2$ and $(CF_3)_2PPMeP(CF_3)PMe_2$.

Finally, perhaps the strongest evidence arguing in favor of a four-centered intermediate, as in eq 2, and against phosphinidene formation, as in eq 1, is the lack of reaction of the asymmetric diphosphine $(CF_3)_2 PPMe_2$ with $(CF_3P)_{4,5}$. If phosphinidene formation were the operative mechanism, then the alkyl-substituted phosphorus atom of $(CF_3)_2$ PPMe₂ should be sufficiently basic to produce $(CF_3)_2 PPMe_2 \rightarrow PCF_3$, which would be expected to rearrange to yield $(CF_3)_2 PP(CF_3)PMe_2$. However, if nucleophilic attack by both phosphorus atoms of the diphosphine on the ring is required, as in the four-centered mechanism, then no reaction would be expected between $(CF_3)_2PPMe_2$ and $(CF_3P)_{4,5}$, since the perfluoroalkyl-substituted phosphorus atom is insufficiently basic. The lack of reaction between Me₂PPMe₂ and (MeP)₅ also strongly supports the four-centered mechanism.

The phosphorus-phosphorus bond is normally very resistant to hydrolysis by neutral water at ambient temperature.¹⁶ However, the phosphorus-phosphorus bond in the triphosphines in this study (or the As-P bond in the case of $Me_2AsP(CF_3)AsMe_2$) undergoes facile and quantitative hydrolysis. Specifically in the case of Me₂PP(CF₃)PMe₂, neutral water hydrolysis occurs in a few seconds at room temperature (or somewhat longer with bulkier substituents) to yield the diphosphine $Me_2PP(CF_3)H$ and Me₂POH. The reactive intermediate Me₂POH forms $Me_2P(O)H$ and finally disproportionates to $Me_2PO(OH)$ and Me_2PH^{-1} .

$$R_2 EP(R_f) ER_2 \rightarrow R_2 EP(R_f) H + [R_2 E(OH)]$$
(5)

$$[R_2 E(OH)] \rightarrow R_2 E(O)H \tag{6}$$

$$2R_2E(O)H \rightarrow R_2E(O)(OH) + R_2EH$$
(7)

R = Me, Et, Bu; E = P;
$$R_f = CF_3$$

R = Me; E = P; $R_f = C_2F_5$

$$R = Me; E = As; R_f = CF_3$$

Although nucleophilic attack by H₂O might be expected to be at the R_fP site, the observed products are as expected considering the hydrochlorination reaction of $Me_2PP(CF_3)_2$, where the presumably less basic phosphorus atom captures the proton to yield HP(CF₃)₂.¹⁷ Similarly hydrochlorination of Me₂PP(CF₃)PMe₂ has been shown to yield Me₂PCl and H₂PCF₃.^{3a}

Addition of a second equivalent of water to the diphosphines (or the arsinophosphine) produces quantitatively the (perfluoroalkyl)phosphine $R_f PH_2$.

$$R_2 EP(R_f)H + H_2O \rightarrow R_f PH_2 + [R_2E(OH)]$$
(8)

$$[R_2 E(OH)] \rightarrow R_2 E(O)H \tag{9}$$

$$2R_2E(O)H \rightarrow R_2E(O)(OH) + R_2EH$$
(10)

The hydrolysis rate of the tripnictides is much more rapid than that of the derivative dipnictides. Thus addition of 1 equiv of H₂O to, e.g., $Me_2PP(CF_3)PMe_2$, yields quantitatively $Me_2PP(CF_3)H$; CF₃PH₂ would be expected if hydrolysis rates of the tri- and dipnictides were comparable.

Experimental Section

Standard vacuum-line and inert-atmosphere techniques were used throughout the study.^18 Working vacuums were maintained at $10^{-3} - 10^{-6}$

- Grant, Jr., L. R.; Burg, A. B. J. Am. Chem. Soc. 1962, 84, 1834. Shriver, D. F. The Manipulation of Air Sensitive Compounds;
- (18)McGraw-Hill: New York, 1969.

Torr. The argon-filled glovebox was kept free of water and oxygen by the use of a stirred sodium/potassium alloy. All solvents were scrupulously dried by using accepted literature methods. Nuclear magnetic resonance measurements were performed on a Varian Associates NMR spectrometer Model XL-100-15 operating at 100.1 MHz for 1 H, 40.5 MHz for 31 P, and 94.1 MHz for 19 F, respectively, or an EM-360 spectrometer. All NMR data are reported relative to the following external standards: ¹H, TMS; ³¹P, 85% H₃PO₄; ¹⁹F, CFCl₃. Positive values are downfield. Second-order NMR spectra were simulated by using NMREN, obtained from the Quantum Chemistry Exchange Program. Mass spectral data were obtained by using a Varian MAT-311 mass spectrometer operating at 20 eV, and IR spectra were recorded on a Perkin-Elmer Model 457 grating spectrophotometer or on a Nicolet MS-X FT IR spectrometer. ESR spectra were recorded on a Varian E-109 spectrometer.

Chemicals. Tetraalkyldiphosphines were prepared by the desulfurization¹⁹ of the tetraalkyldiphosphine disulfides (Alfa, Strem, or Pressure). The diphosphines Me_4P_2 , Et_4P_2 , and Bu_4P_2 were identified by vapor pressure and/or ³¹P NMR spectral data.²⁰ The desulfurization with copper usually produces small quantities of the dialkylphosphine, which must be separated from the tetraalkyldiphosphine by vacuum distillation. Tetramethyldiarsine was produced by reduction of cacodylic acid Me₂As(O)OH (Pfaultz and Bauer) with H₃PO₂²¹ or by the coupling of Me₂AsH with dibenzylmercury²² and was identified by boiling point and ¹H NMR spectra. The diphosphine $(CF_3)_2PP(CF_3)_2^{23}$ and the cyclo-polyphosphines $(CF_3P)_{4,5}$,²⁴ $(C_2F_5P)_{3,4}$,⁷ and $(MeP)_5$ ⁷ were prepared and purified by literature procedures.

Reactions. Bis(dimethylphosphino)(trifluoromethyl)phosphine, $Me_2PP(CF_3)PMe_2$, was prepared by the vacuum-line reaction of (CF₃- $P_{4,5}$ with Me_4P_2 . In a neat reaction 1.0 mmol equiv of Me_4P_2 was condensed into a reaction vessel equipped with a Teflon stopcock containing 1.0 mmol equiv of (CF_3P) units from $(CF_3P)_{4,5}$. The vessel was allowed to warm slowly to room temperature over a 12-h period. At that time, the volatile products were purified by trap-to-trap distillation through traps at -5, -45, and -196 °C. The product Me₂PP(CF₃)PMe₂ was held in the -5 °C trap, and unreacted tetramethyldiphosphine was caught in the -45 °C trap. Typical yields for this reaction were approximately 70% based on $(CF_3P)_{4,5}$. In an alternate procedure, 0.12 g (1.0 mmol) of Me_4P_2 was condensed into a medium-walled NMR tube together with 0.15 mL of benzene- d_6 and 0.10 g (1.0 mmol) of (CF₃P) units from $(CF_3P)_{4,5}$. As monitored by NMR spectroscopy, the reaction was essentially quantitative. The bis(dimethylphosphino)(trifluoromethyl)phosphine produced was identified by vapor pressure and ¹H, ¹⁹F, and ³¹P NMR spectroscopy.³

The tripnicogens Et₂PP(CF₃)PEt₂, Bu₂PP(CF₃)PBu₂, Me₂PP(C₂F₅)-PMe₂, and Me₂AsP(CF₃)AsMe₂ were prepared in an NMR tube in an analogous fashion to the preparation of Me₂PP(CF₃)PMe₂. An equimolar quantity of a dipnicogen Me₄P₂, Et₄P₂, Bu₄P₂, or Me₄As₂ was transferred into an NMR tube either on the vacuum line or in the glovebox, depending on the volatility, together with benzene- d_6 and an equimolar quantity of the R_fP units from the appropriate cyclopolyphosphine $(CF_3P)_{4.5}$ or $(C_2F_5P)_{3.4}$. Then NMR tube was flame-sealed from the vacuum line. Analysis by multinuclear NMR (Table I) indicated the preparations were essentially quantitative. Reaction times increased with steric bulk, with all reactions being complete after 20 h, except for the reaction with $(C_2F_5P)_{3,4}$, which required several days. Attempts to produce the tripnicogens without solvent yielded polymers (except for Me₂PP(CF₃)PMe₂ and Me₂AsP(CF₃)AsMe₂, which can be made neat).

The tripnicogen (CF₃)₂PPMeP(CF₃)₂ was prepared in an NMR tube by condensing an equimolar quantity of $(CF_3)_2 PP(CF_3)_2^{22}$ onto $(MeP)_5^7$ in benzene- d_6 on the vacuum line. As monitored by NMR (Table I), the reaction took several days to reach completion.

The unsymmetric tripnicogen Me₂PP(CF₃)PEt₂ was prepared in a similar fashion by allowing equimolar amounts of Me_4P_2 and Et_4P_2 to react with 2 equiv of (CF_3P) units from $(CF_3P)_{4,5}$. The unsymmetric dipnicogen was also prepared by transferring equal quantities of $Me_2PP(CF_3)PMe_2$ and $Et_2PP(CF_3)PEt_2$ in benzene- d_6 solution into an NMR tube in a glovebox. Scrambling was immediately apparent as

- (19)Niebergall, H.; Langenfeld, B. Chem. Ber. 1962, 95, 64.
- Maier, L. In Organic Phosphorus Compounds, Kosolapoff, C. M., Maier, L., Eds.; Wiley-Interscience: New York, 1972; Vol. I, Chapter (20)
- (21) Waser, J.; Schomaker, V. J. Am. Chem. Soc. 1945, 67, 2014.
- (22) Rheingold, A. L.; Choudhury, P. J. Organomet. Chem. 1977, 128, 155.
- (23) Bennett, F. W.; Emeleus, H. J.; Haszeldine, R. N. J. Chem. Soc. 1953,
- (24) Mahler, W.; Burg, A. B. J. Am. Chem. Soc. 1958, 80, 6161.

⁽¹⁶⁾ Cowley, A. H. Chem. Rev. 1965, 617.

observed by NMR spectroscopy (Table I).

The unsymmetric tripnicogen Me₂PP(CF₃)AsMe₂ was prepared by transferring equimolar quantities of Me₂PP(CF₃)PMe₂ and Me₂AsP- $(CF_3)AsMe_2$ in benzene- d_6 solution into an NMR tube. Scrambling to yield the product was immediate, as monitored by NMR spectroscopy (Table I).

(Dimethylphosphino)(trifluoromethyl)phosphine, Me₂PP(CF₃)H, was prepared by the neutral water hydrolysis of $Me_2PP(CF_3)PMe_2$. A 1:1 mole ratio of Me₂PP(CF₃)PMe₂ and H₂O was condensed into a glass ampule fitted with a Teflon stopcock. This mixture was allowed to warm to room temperature at which time a white precipitate, Me₂P(O)OH, started to form. After about 1 h at room temperature, the volatile products were returned to the vacuum line and fractioned through traps held at -15, -78, and -196 °C. (Dimethylphosphino)(trifluoro-methyl)phosphine was retained in the -78 °C trap and was characterized by vapor pressure, IR spectroscopy, and ¹H, ¹⁹F, and ³¹P NMR spectroscopy (Table II). A gas-phase molecular weight determination yielded a value of 156 (calculated 162). The IR spectrum gave the following peaks (cm⁻¹): 2990 (m), 2950 (m), 2296 (m), 1435 (m), 1305 (m), 1170 (vs), 1130 (vs), 1050 (s), 1020 (s), 950 (m), 835 (m), and 735 (m). The product, which is stable for weeks at ambient temperature, is a clear liquid, which is soluble in organic solvents and has a vapor pressure of 19 Torr at 25 °C. An excess of water causes further hydrolysis to occur. The hydrolysis reaction was also performed in benzene- d_6 solvent in a sealed NMR tube. The reaction was complete by the time a spectrum was obtained. The chiral diphosphine $Me_2PP(CF_3)H$ will slowly react with the byproduct Me_2PH^{10} (identified by ¹H and ³¹P NMR spectroscopy). Dimethylphosphinic acid, Me₂P(O)OH, was the only nonvolatile product formed from hydrolysis of either Me₂PP(CF₃)PMe₂ or Me₂PP-(CF₃)H. This compound was identified by ³¹P NMR spectroscopy²⁵ and mass spectral evidence. The mass spectrum showed the following major peaks (mass (m/e), intensity): (CH₃)₂P(O)H⁺ (94, 100%), CH₃P(O)-OH⁺ (79, 100%), POO⁺ (63, 40%), CH₃PO⁺ (62, 41%), PO⁺ (47, 99%).

(Dimethylarsino)(trifluoromethyl)phosphine, Me₂AsP(CF₃)H, was prepared by the neutral water hydrolysis of bis(dimethylarsino)(trifluoromethyl)phosphine, Me₂AsP(CF₃)AsMe₂. Typically, a 1:1 mole ratio (stoichiometry is very critical) of Me₂AsP(CF₃)AsMe₂ and H₂O was condensed into a glass ampule at -196 °C. The ampule was sealed and allowed to warm slowly to room temperature. After a few minutes at room temperature, a white precipitate of cacodylic acid, Me₂As(O)-OH, began to appear. After approximately 2 h, precipitation was complete, and the ampule was reopened to the vacuum line and the volatile

(25) Crofts, P. C. In Organic Phosphorus Compounds; Kosolapoff, G. M., Maier, L., Eds., Wiley-Interscience: New York, 1973; Vol. VI, Chapter 14.

products transferred for analysis. Fractionation yielded Me₂AsH (-196 °C trap), Me₂AsP(CF₃)H (-84 °C trap), and unreacted Me₂AsP-(CF₃)AsMe₂ (-15 °C trap). Fractionation in a grease-stopcock highvacuum line, in contrast to one with Teflon stopcocks, always leads to some decomposition. The Me₂AsP(CF₃)H has a vapor pressure of 13.4 Torr at 22 °C and a gas-phase molecular weight of 212 (calculated 206). The IR spectrum has the following absorbtions (cm⁻¹): 2980 (m), 2910 (m), 2305 (m), 2070 (w), 1415 (m), 1255 (w), 1160-1180 (vs), 1060 (sh), 890 (m), 830 (s), 730 (m), and 665 (m). The compound was characterized by 1 H, 31 P, and 19 F NMR (Table II). It is less thermodynamically stable than the congeneric diphosphine Me₂PP(CF₃)H, disproportionating considerably after 1 day at ambient temperature. A cleaner and more rapid reaction can be effected in benzene solvent. The cacodylic acid Me₂As(O)OH produced as a byproduct in this reaction was isolated and identified by melting point, mass spectrum, and ¹H NMR measurements, as compared to an authentic sample.

The chiral dipnicogens Et₂PP(CF₃)H, Bu₂PP(CF₃)H, and Me₂PP- $(C_2F_5)H$ were synthesized by hydrolysis with neutral water of the tripnicogens Et₂PP(CF₃)PEt₂, Bu₂PP(CF₃)PBu₂, Me₂PP(C₂F₅)PMe₂, respectively. The hydrolysis times increased with steric bulk. These chiral dipnicogens were not isolated because of low volatility, but rather were characterized by NMR (Table II).

Hydrolysis of the dipnicogens $Me_2PP(CF_3)H$, $Me_2AsP(CF_3)H$, Et₂PP(CF₃)H, Bu₂PP(CF₃)H, and Me₂PP(C₂F₅)H was performed by the addition of an equimolar quantity of water to a benzene solution of the dipnictide. The products R_2PH (or R_2AsH), R_fPH_2 , and $R_2P(O)OH$ (or R₂As(O)OH) were identified by either NMR spectral parameters or by isolation. The hydrolysis times were all longer than the hydrolysis times of the parent tripnictide.

Acknowledgment. The support of the Robert A. Welch Foundation is gratefully acknowledged. We also thank Professor A. W. Cordes for attempts to obtain ESR spectra, Dr. J. P. Albrand for helpful discussions concerning interpretation of NMR data, and M. E. Grice for computer expertise.

Registry No. Me₂PP(CF₃)PMe₂, 19307-60-9; (CF₃P)₄, 393-02-2; Me₄P₂, 3676-91-3; (C₂F₅P)₃, 29634-17-1; Et₄P₂, 3040-63-9; Bu₄P₂, 13904-54-6; Me₄As₂, 471-35-2; (MeP)₅, 1073-98-9; Et₂PP(CF₃)PEt₂, 117583-82-1; $Bu_2PP(CF_3)PBu_2$, 117606-54-9; $Me_2PP(C_2F_5)PMe_2$, 117606-55-0; Me₂AsP(CF₃)AsMe₂, 24595-87-7; Me₂PP(CF₃)PEt₂, 117606-56-1; (CF₃)₂PPMeP(CF₃)₂, 2195-42-8; Me₂PP(CF₃)AsMe₂, 24595-95-7; Me₂PP(CF₃)H, 117583-73-0; Me₂P(O)OH, 3283-12-3; Me₂AsP(CF₃)H, 117583-81-0; Et₂PP(CF₃)H, 117583-76-3; Bu₂PP-(CF₃)H, 117606-57-2; Me₂PP(C₂F₅)H, 117606-58-3; (CF₃)₂PP(CF₃)₂, 2714-60-5; (CF₃)₅, 745-23-3; (C₂F₅P)₄, 35449-91-3.

Contribution from the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061

Reactions of Secondary Phosphines with a Phosphorus-Phosphorus Bond and Related Reactions

Larry R. Avens,[†] Leonard V. Cribbs, and Jerry L. Mills*

Received July 30, 1987

The reaction of a secondary alkyl- or arylphosphine or -arsine with the cyclic polyphosphine (CF₃P)_{4,5} produces chiral dipnicogens¹ of the type $R_2EP(CF_3)H$ (E = P or As). Thus, for example, $(CF_3P)_{4,5}$ plus either Me₂PH or Me₂AsH yields Me₂PP(CF₃)H or Me₂AsP(CF₃)H, respectively. In addition, a number of other products are produced in a complex equilibrium mixture. In the reaction of Me_2PH with $(CF_3P)_{4,5}$, other products identified at equilibrium in addition to $Me_2PP(CF_3)H$ are CF_3PH_2 , Me_2PPMe_2 , CF₃(H)PP(H)CF₃, Me₂PP(CF₃)PMe₂, Me₂PP(CF₃)P(CF₃)H, and Me₂PP(CF₃)P(CF₃)PMe₂. The origin of the complex equilibrium has been studied by examining the reaction of pairs of reactants and/or products, and a reaction mechanism has been proposed. Other secondary phosphines used as a reactant with (CF₃P)_{4,5} were Ph₂PH and Ph(Me)PH. In an analogous reaction $(CF_3)_2$ PH reacts with the alkyl-substituted cyclic polyphosphine (MeP)₅ to produce $(CF_3)_2$ PP(Me)H.

Introduction

In the previous paper² we reported the general reaction of a dipnicogen,¹ such as Me₂PPMe₂ or Me₂AsAsMe₂, with an equimolar quantity of perfluoroalkylphosphinidine units R_fP from

a perfluoroalkylcyclopolyphosphine, such as $(CF_3P)_{4.5}$, to yield quantitatively a tripnicogen where the $R_f P$ species has undergone insertion into the original pnicogen-pnicogen bond.

^{*} Present address: MS E501, Los Alamos National Laboratory, Los Alamos, NM 87545.

⁽¹⁾ Pnicogens refer to main group V compounds. Therefore, for example, a dipnicogen simply refers to a compound containing two main group V elements such as a diphosphine, a diarsine, or a arsinophosphine. Suchow, L. Inorg. Chem. 1978, 17, 2041.
 Avens, L. R.; Wolcott, R. A.; Cribbs, L.; Mills, J. L. Inorg. Chem.

preceding paper in this issue.