observed by NMR spectroscopy (Table I).

The unsymmetric tripnicogen Me₂PP(CF₃)AsMe₂ was prepared by transferring equimolar quantities of Me₂PP(CF₃)PMe₂ and Me₂AsP- $(CF_3)AsMe_2$ in benzene- d_6 solution into an NMR tube. Scrambling to yield the product was immediate, as monitored by NMR spectroscopy (Table I).

(Dimethylphosphino)(trifluoromethyl)phosphine, Me₂PP(CF₃)H, was prepared by the neutral water hydrolysis of $Me_2PP(CF_3)PMe_2$. A 1:1 mole ratio of Me₂PP(CF₃)PMe₂ and H₂O was condensed into a glass ampule fitted with a Teflon stopcock. This mixture was allowed to warm to room temperature at which time a white precipitate, Me₂P(O)OH, started to form. After about 1 h at room temperature, the volatile products were returned to the vacuum line and fractioned through traps held at -15, -78, and -196 °C. (Dimethylphosphino)(trifluoro-methyl)phosphine was retained in the -78 °C trap and was characterized by vapor pressure, IR spectroscopy, and ¹H, ¹⁹F, and ³¹P NMR spectroscopy (Table II). A gas-phase molecular weight determination yielded a value of 156 (calculated 162). The IR spectrum gave the following peaks (cm⁻¹): 2990 (m), 2950 (m), 2296 (m), 1435 (m), 1305 (m), 1170 (vs), 1130 (vs), 1050 (s), 1020 (s), 950 (m), 835 (m), and 735 (m). The product, which is stable for weeks at ambient temperature, is a clear liquid, which is soluble in organic solvents and has a vapor pressure of 19 Torr at 25 °C. An excess of water causes further hydrolysis to occur. The hydrolysis reaction was also performed in benzene- d_6 solvent in a sealed NMR tube. The reaction was complete by the time a spectrum was obtained. The chiral diphosphine $Me_2PP(CF_3)H$ will slowly react with the byproduct Me_2PH^{10} (identified by ¹H and ³¹P NMR spectroscopy). Dimethylphosphinic acid, Me₂P(O)OH, was the only nonvolatile product formed from hydrolysis of either Me₂PP(CF₃)PMe₂ or Me₂PP-(CF₃)H. This compound was identified by ³¹P NMR spectroscopy²⁵ and mass spectral evidence. The mass spectrum showed the following major peaks (mass (m/e), intensity): (CH₃)₂P(O)H⁺ (94, 100%), CH₃P(O)-OH⁺ (79, 100%), POO⁺ (63, 40%), CH₃PO⁺ (62, 41%), PO⁺ (47, 99%).

(Dimethylarsino)(trifluoromethyl)phosphine, Me₂AsP(CF₃)H, was prepared by the neutral water hydrolysis of bis(dimethylarsino)(trifluoromethyl)phosphine, Me₂AsP(CF₃)AsMe₂. Typically, a 1:1 mole ratio (stoichiometry is very critical) of Me₂AsP(CF₃)AsMe₂ and H₂O was condensed into a glass ampule at -196 °C. The ampule was sealed and allowed to warm slowly to room temperature. After a few minutes at room temperature, a white precipitate of cacodylic acid, Me₂As(O)-OH, began to appear. After approximately 2 h, precipitation was complete, and the ampule was reopened to the vacuum line and the volatile

(25) Crofts, P. C. In Organic Phosphorus Compounds; Kosolapoff, G. M., Maier, L., Eds., Wiley-Interscience: New York, 1973; Vol. VI, Chapter 14.

products transferred for analysis. Fractionation yielded Me₂AsH (-196 °C trap), Me₂AsP(CF₃)H (-84 °C trap), and unreacted Me₂AsP-(CF₃)AsMe₂ (-15 °C trap). Fractionation in a grease-stopcock highvacuum line, in contrast to one with Teflon stopcocks, always leads to some decomposition. The Me₂AsP(CF₃)H has a vapor pressure of 13.4 Torr at 22 °C and a gas-phase molecular weight of 212 (calculated 206). The IR spectrum has the following absorbtions (cm⁻¹): 2980 (m), 2910 (m), 2305 (m), 2070 (w), 1415 (m), 1255 (w), 1160-1180 (vs), 1060 (sh), 890 (m), 830 (s), 730 (m), and 665 (m). The compound was characterized by 1 H, 31 P, and 19 F NMR (Table II). It is less thermodynamically stable than the congeneric diphosphine Me₂PP(CF₃)H, disproportionating considerably after 1 day at ambient temperature. A cleaner and more rapid reaction can be effected in benzene solvent. The cacodylic acid Me₂As(O)OH produced as a byproduct in this reaction was isolated and identified by melting point, mass spectrum, and ¹H NMR measurements, as compared to an authentic sample.

The chiral dipnicogens Et₂PP(CF₃)H, Bu₂PP(CF₃)H, and Me₂PP- $(C_2F_5)H$ were synthesized by hydrolysis with neutral water of the tripnicogens Et₂PP(CF₃)PEt₂, Bu₂PP(CF₃)PBu₂, Me₂PP(C₂F₅)PMe₂, respectively. The hydrolysis times increased with steric bulk. These chiral dipnicogens were not isolated because of low volatility, but rather were characterized by NMR (Table II).

Hydrolysis of the dipnicogens $Me_2PP(CF_3)H$, $Me_2AsP(CF_3)H$, Et₂PP(CF₃)H, Bu₂PP(CF₃)H, and Me₂PP(C₂F₅)H was performed by the addition of an equimolar quantity of water to a benzene solution of the dipnictide. The products R_2PH (or R_2AsH), R_fPH_2 , and $R_2P(O)OH$ (or R₂As(O)OH) were identified by either NMR spectral parameters or by isolation. The hydrolysis times were all longer than the hydrolysis times of the parent tripnictide.

Acknowledgment. The support of the Robert A. Welch Foundation is gratefully acknowledged. We also thank Professor A. W. Cordes for attempts to obtain ESR spectra, Dr. J. P. Albrand for helpful discussions concerning interpretation of NMR data, and M. E. Grice for computer expertise.

Registry No. Me₂PP(CF₃)PMe₂, 19307-60-9; (CF₃P)₄, 393-02-2; Me₄P₂, 3676-91-3; (C₂F₅P)₃, 29634-17-1; Et₄P₂, 3040-63-9; Bu₄P₂, 13904-54-6; Me₄As₂, 471-35-2; (MeP)₅, 1073-98-9; Et₂PP(CF₃)PEt₂, 117583-82-1; $Bu_2PP(CF_3)PBu_2$, 117606-54-9; $Me_2PP(C_2F_5)PMe_2$, 117606-55-0; Me₂AsP(CF₃)AsMe₂, 24595-87-7; Me₂PP(CF₃)PEt₂, 117606-56-1; (CF₃)₂PPMeP(CF₃)₂, 2195-42-8; Me₂PP(CF₃)AsMe₂, 24595-95-7; Me₂PP(CF₃)H, 117583-73-0; Me₂P(O)OH, 3283-12-3; Me₂AsP(CF₃)H, 117583-81-0; Et₂PP(CF₃)H, 117583-76-3; Bu₂PP-(CF₃)H, 117606-57-2; Me₂PP(C₂F₅)H, 117606-58-3; (CF₃)₂PP(CF₃)₂, 2714-60-5; (CF₃)₅, 745-23-3; (C₂F₅P)₄, 35449-91-3.

Contribution from the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061

Reactions of Secondary Phosphines with a Phosphorus-Phosphorus Bond and Related Reactions

Larry R. Avens,[†] Leonard V. Cribbs, and Jerry L. Mills*

Received July 30, 1987

The reaction of a secondary alkyl- or arylphosphine or -arsine with the cyclic polyphosphine (CF₃P)_{4,5} produces chiral dipnicogens¹ of the type $R_2EP(CF_3)H$ (E = P or As). Thus, for example, $(CF_3P)_{4,5}$ plus either Me₂PH or Me₂AsH yields Me₂PP(CF₃)H or Me₂AsP(CF₃)H, respectively. In addition, a number of other products are produced in a complex equilibrium mixture. In the reaction of Me_2PH with $(CF_3P)_{4,5}$, other products identified at equilibrium in addition to $Me_2PP(CF_3)H$ are CF_3PH_2 , Me_2PPMe_2 , CF₃(H)PP(H)CF₃, Me₂PP(CF₃)PMe₂, Me₂PP(CF₃)P(CF₃)H, and Me₂PP(CF₃)P(CF₃)PMe₂. The origin of the complex equilibrium has been studied by examining the reaction of pairs of reactants and/or products, and a reaction mechanism has been proposed. Other secondary phosphines used as a reactant with (CF₃P)_{4,5} were Ph₂PH and Ph(Me)PH. In an analogous reaction $(CF_3)_2$ PH reacts with the alkyl-substituted cyclic polyphosphine (MeP)₅ to produce $(CF_3)_2$ PP(Me)H.

Introduction

In the previous paper² we reported the general reaction of a dipnicogen,¹ such as Me₂PPMe₂ or Me₂AsAsMe₂, with an equimolar quantity of perfluoroalkylphosphinidine units R_fP from

a perfluoroalkylcyclopolyphosphine, such as $(CF_3P)_{4.5}$, to yield quantitatively a tripnicogen where the $R_f P$ species has undergone insertion into the original pnicogen-pnicogen bond.

^{*} Present address: MS E501, Los Alamos National Laboratory, Los Alamos, NM 87545.

⁽¹⁾ Pnicogens refer to main group V compounds. Therefore, for example, a dipnicogen simply refers to a compound containing two main group V elements such as a diphosphine, a diarsine, or a arsinophosphine. Suchow, L. Inorg. Chem. 1978, 17, 2041.
 Avens, L. R.; Wolcott, R. A.; Cribbs, L.; Mills, J. L. Inorg. Chem.

preceding paper in this issue.

 $R_2 EER_2 + (1/n)(R_f P)_n \rightarrow R_2 EP(R_f)ER_2$ E = P or As (1)

The tripnicogens are easily hydrolyzed by 1 equiv of water to yield chiral dipnicogens of the type $R_2EP(R_f)H$. Addition of a second equivalent of water to the chiral dipnicogen $R^2 EP(R_f)H$ quantitatively produces the primary phosphine R_fPH₂.

The product distribution of these reactions is highly dependent on stoichiometry; if other than equimolar quantities of reactants are used, a number of products with competing equilibria result. In this paper, we report the results of our study of some of these complex equilibria and related chemistry.

Results and Discussion

Chiral phosphines are very useful reagents in asymmetric organic syntheses. Due to the potential usefulness of chiral dipnicogens of the type $R_2 EP(R_f)H$, where E = P or As and $R_f =$ perfluoroalkyl, which can be generated by the hydrolysis of tripnicogens, we decided to examine alternate synthetic pathways. Another goal was to study the chemistry of the chiral dipnicogens, particularly relative to the reactivity of the P-H bond versus either the P-P or P-As bond. A possible route to compounds of the type $R_2 EP(R_f)H$ is

$$R_2 EH + (R_f P)_n \rightarrow R_2 PP(R_f) H$$
(2)

The desired product would result from the "insertion" of the $R_f P$ moiety into the P-H bond of the secondary pnicogen. Albrand used a similar reaction to prepare Ph(H)PP(H)Ph.³

$$PhPH_2 + (PhP)_6 \rightarrow Ph(H)PP(H)Ph$$
 (3)

Interestingly, the reaction proposed in eq 2 was performed by Cowley in 1967 as a synthesis for the tripnicogen $Me_2PP(CF_3)$ -PMe₂.⁴ However, an excess of Me₂PH was used, which obscured much of the chemistry that we have studied. We find that if Me₂PH is used in either equimolar, or less, quantities relative to CF₃P units, then the chiral diphosphine, Me₂PP(CH₃)H, is quickly produced at room temperature. As time passes, additional compounds are formed that are clearly products of the further reaction of the diphosphine with other species in solution. The overall reaction can be represented by

$$Me_{2}PH + (CF_{3}P)_{4,5} \xrightarrow{23 \text{ °C}, C_{6}D_{6}} CF_{3}PH_{2} + Me_{2}PPMe_{2} + CF_{3}(H)PP(H)CF_{3} + Me_{2}PP(CF_{3})H + Me_{2}PP(CF_{3})P(CF_{3})PMe_{2} + Me_{2}PP(CF_{3})P(CF_{3})PMe_{2} (4)$$

The origin of the products, together with their characterization, is discussed below. The number of products and the complexity of their NMR spectra make analysis difficult. This complexity is graphically demonstrated by the calculated ³¹P[¹⁹F] second-order NMR pattern exhibited by the relatively simple compound $CF_3(H)PP(H)CF_3$ (Figure 1), which exists in a d,l pair and meso isomers.⁵ In this figure, the AA' portion of the AA'XX' spin system is shown for each isomer as compared to the observed spectrum.

The first clearly identified product formed (as monitored by NMR spectroscopy; see Table I in ref. 2) in the reaction represented by eq 4 was Me₂PP(CF₃)H. The proposed mechanism involves a four-centered intermediate, as proposed for a similar system by Cavell and Dobbie.⁷

$$\begin{array}{c} \mathsf{Me}_{2}\mathsf{P} \longrightarrow \mathsf{H} \\ \downarrow & \uparrow \\ \mathsf{CF}_{3}\mathsf{P} \longrightarrow \mathsf{PCF}_{3} \longrightarrow [\mathsf{Me}_{2}\mathsf{PP}(\mathsf{CF}_{3})\mathsf{P}(\mathsf{CF}_{3})\mathsf{P}(\mathsf{CF}_{3})\mathsf{P}(\mathsf{CF}_{3})\mathsf{H}] \\ \downarrow & \downarrow \\ \mathsf{CF}_{3}\mathsf{P} \longrightarrow \mathsf{PCF}_{3} \end{array}$$
(5)

- (4)
- Albrand, J. P.; Gaignaire, D. J. Am. Chem. Soc. 1972, 94, 8630. Cowley, A. H. J. Am. Chem. Soc. 1967, 89, 5990. Albrand, J. P.; Robert, J. B.; Goldwhite, H. Tetrahedron Lett. 1976, (5) 949.
- NMR data, both ³¹P and ¹⁹F, for the dipnicogens $Me_2PP(CF_3)H$, $Et_2PP(CF_3)H$, $Me_2AsP(CF_3)H$, and the tripnicogens $Me_2P-P(CF_3)$ -(6) PMe₂, Et₂PP(CF₃)PEt₂, Me₂AsP(CF₃)AsMe₂ are tabulated in the previous paper, ref 2.

Figure 1. ³¹P[¹⁹F] NMR spectra of CF₃(H)PP(H)CF₃: (A) computer-simulated spectrum of isomer a; (B) computer-simulated spectrum of isomer b; (C) computer-simulated spectrum combining spectra A and B; (D) observed spectrum of $CF_3(H)PP(H)CF_3$. NMR parameters for isomer a: $\delta({}^{19}F[{}^{1}H] = -45.9 \text{ (doublet)}; \\ \delta({}^{31}P) = -90.3 \text{ (multiplet)}; \\ {}^{2}J_{PF}$ Solution 1. Solution (1) $J_{PF} = 135, J_{PH} = 205.6, J_{PH} = 3.2, J_{HH} = 9.2$ Hz. NMR parameters for isomer b: $\delta({}^{19}F[{}^{11}H]) = -46.3$ (doublet); $\delta({}^{31}P) = -92.0$ (multiplet); ${}^{2}J_{PF} = 55.5, {}^{3}J_{PF} = 7.3, {}^{1}J_{PP} = -184, {}^{1}J_{PH} = -184, {}^{11}J_{PH} = -184, {}^{11$ 213.9, ${}^{2}J_{PH} = 15.5$, ${}^{3}J_{HH} = 3.0$ Hz. Data were taken from ref 5.

Rapid reaction of the intermediate with additional Me₂PH yields the observed chiral diphosphine $Me_2PP(CF_3)H$.

It is clear that a large number of reactions are possible among the numerous products in this system. To study some of these reactions and to aid in product identification, several reactions among the pairs of the molecules present in the reaction mixture, particularly those involving $Me_2PP(CF_3)H$, were undertaken. These reactions are discussed below.

Reaction between $Me_2PP(CF_3)H$ and $CF_3(H)PP(H)CF_3$. The reaction of Me₂PP(CF₃)H with CF₃(H)PP(H)CF₃ produces CF_3PH_2 and the new triphosphine $Me_2PP(CF_3)P(CF_3)H$ (see Experimental Section, vide infra). The proposed mechanism is

$$Me_{2}PP(CF_{3})H + CF_{3}(H)PP(H)CF_{3} \rightleftharpoons \begin{bmatrix} Me & H \\ H & H \\ Me - P - P - CF_{3} \\ CF_{3} - P - H \\ H \\ P(H)CF_{3} \end{bmatrix} \rightleftharpoons$$

 $Me_2PP(CF_3)P(CF_3)H + CF_3PH_2(7)$

The reaction reaches equilibrium in several days at room temperature. It is instructive to note that no nonvolatile polymeric tars or noncondensable gases are created by this reaction or in any reactions reported in this section. The ${}^{31}P[{}^{1}H]$ and ${}^{31}P[{}^{1}F]$ NMR spectra of this reaction mixture are shown in Figure 2. While the triphosphine has not been unambiguously characterized,

⁽⁷⁾ Cavell, R. G.; Dobbie, R. C. J. Chem. Soc. A 1968, 1406.

Figure 2. (A) ³¹P[¹H] and (B) ³¹P[¹⁹F] NMR spectra of Me₂PP(CF₃)H + CF₃(H)PP(H)CF₃ reaction mixture at equilibrium. Chemical shifts are in ppm upfield from 85% H₃PO₄. A single asterisk denotes Me₂PP-(CF₃)H resonances (see ref 2) + CF₃(H)PP(H)CF₃ (see Figure 1). A double asterisk denotes CF₃PH₂ resonances. All other resonances are due to Me₂PP(CF₃)P(CF₃)H.

material balance, volatility, and multinuclear NMR spectra support the assigned structure, as evidenced by the following reaction.

Reaction between Me₂PPMe₂ and CF₃(H)PP(H)CF₃. Further evidence for the triphosphine Me₂PP(CF₃)P(CF₃)H arises from the reaction of Me₂PPMe₂ with CF₃(H)PP(H)CF₃. Figure 3 shows the progress of this reaction as monitored by ¹⁹F NMR spectroscopy. The first product seen is Me₂PP(CF₃)P(CF₃)H, followed after a short time by both Me₂PP(CF₃)H and Me₂PP-(CF₃)PMe₂ in equal amounts. Finally, CF₃PH₂ is produced, which probably arises from reaction 7, since both reactants are present.

The foregoing reactions strongly support the structural assignment for the triphosphine $Me_2PP(CF_3)P(CF_3)H$. For this compound, there are four stereoisomers, two d,l pairs, *threo* and *erythro*:

Since the solvent is achiral, only the two diastereomers can potentially be observed in the NMR spectra. However, the problem of two isomers, the possibility of second-order character in the spectra, and the large number of spins prohibit definitive interpretation of the ³¹P and ¹⁹F NMR spectra. Nevertheless, chemical shift trends and multiplicity support the structural assignment of Me₂PP(CF₃)P(CF₃)H, as follows.

The ³¹P NMR spectrum shows, in the downfield region where the central CF₃P phosphorus atom should be expected, an approximate triplet of multiplets ($\delta = -31.8$) arising from coupling to the two terminal phosphorus atoms. This is similar both in chemical shift and in appearance to that of the $P(CF_3)$ group in Me₂PP(CF₃)PMe₂.² The $P(CF_3)$ H phosphorus appears as a doublet of multiplets slightly downfield of the phosphorus resonance in CF₃(H)PP(CF₃)H ($\delta = -80.4$), as would be expected from coupling to the neighboring phosphorus, while the Me₂P phosphorus atom is seen as an approximate doublet of doublets ($\delta = -55.5$) between the chemical shift extremes of the other two phosphorus atoms in the molecule. The ¹⁹F[¹H] NMR spectrum of the P(CF₃)H fluorine appears as the expected doublet of doublets of multiplets; while proton coupled, the resonances become

Figure 3. ¹⁹F[¹H] NMR spectra of the Me₂PPMe₂ + CF₃(H)PP(H)CF₃ reaction mixture: (a) after 0.5 h; (b) after 5 h; (c) after 18 h; and (d) after 2 weeks. Chemical shifts are in ppm upfield from CFCl₃. The doublet of doublets at -43.7 ppm arises from Me₂PP(H)CF₃, while the doublet of triplets at -41.6 ppm is from Me₂PP(CF₃)PMe₂. The doublet at -41.7 ppm is due to CF₃PH₂ (spectrum D). The doublet of doublets near -45.5 ppm (spectrum A) results from F₃C(H)PP(H)CF₃. All other resonances (most clearly apparent in spectrum A) are attributed to Me₂PP(CF₃)P(CF₃)H.

a doublet of triplets of multiplets. The spectral appearance is a doublet of triplets of multiplets due to the similarity in magnitude of ${}^{3}J_{\text{PPCF}}$ and ${}^{3}J_{\text{HPCF}}$. The central CF₃P fluorine appears as a doublet of doublets of doublets of multiplets ($\delta = -46.5$) as expected from coupling to two nonequivalent phosphorus atoms, a proton, and fluorine atoms. The spectral argument is for an approximately first-order system in gross appearances only.

Since the first products in the reaction of Me_2PPMe_2 with $CF_3(H)PP(H)CF_3$ are $Me_2PP(CF_3)P(CF_3)H$ and Me_2PH , and not the chiral diphosphine $Me_2PP(CF_3)H$, then the mechanism for the reaction initially involves not PP bond fission as in eq 8a, but rather P-H bond fission as in eq 8b. As the reaction proceeds

$$Me_{2}PPMe_{2} + CF_{3}(H)PP(H)CF_{3} \rightarrow \begin{bmatrix} Me_{2}P \rightarrow PMe_{2} \\ \downarrow & \downarrow \\ CF_{3}P \rightarrow PCF_{3} \\ \downarrow & \downarrow \\ H & H \end{bmatrix} \rightarrow 2Me_{2}PP(CF_{3})H (Ba)$$

$$Me_{2}PPMe_{2} + CF_{3}(H)PP(H)CF_{3} \longrightarrow \begin{bmatrix} Me_{2}P \rightarrow PMe_{2} \\ \downarrow \\ HP - P \rightarrow H \\ \downarrow \\ F_{3}C \\ CF_{3} \end{bmatrix} \longrightarrow$$

 $Me_2PH + Me_2PP(CF_3)P(CF_3)H$ (8b)

towards equilibrium, two more products, $Me_2PP(CF_3)$ -PMe₂ and $Me_2PP(CF_3)H$, are seen to form simultaneously in approximately equal amounts, both of which can be formed by the action of excess Me_2PPMe_2 on $Me_2PP(CF_3)P(CF_3)H$, as shown in eq 9. The $Me_2P=(CF_3)P=P(CF_3)H$

$$\begin{array}{ccc} \uparrow & \uparrow & \longrightarrow & \mathsf{Me}_2\mathsf{PP}(\mathsf{CF}_3)\mathsf{H} + & \mathsf{Me}_2\mathsf{PP}(\mathsf{CF}_3)\mathsf{PMe}_2 \\ \mathsf{Me}_2\mathsf{P} & \longrightarrow & \mathsf{PMe}_2 \end{array}$$
(9)

compound Me₂PP(CF₃)H could also be formed by the slow re-

Figure 4. ${}^{2}J_{FCP}$ as a function of temperature for free CF₃PH₂ and a 1:1 mixture of CF₃PH₂-Me₃P in methylcyclohexane.

action (eq 8a) (relative to the rate of eq 8b). If eq 9 proceeds as indicated, then eq 8a would be expected to occur at approximately the same rate. The last product formed, bringing this reaction to equilibrium, is CF_3PH_2 . We assume that the reaction in eq 7 is the source for CF_3PH_2 , since both reactants are present in solution. The high concentration of Me_2PPMe_2 in this reaction mixture forces the equilibrium away from $Me_2PP(CF_3)P(CF_3)H$ via reaction 9. Thus only $Me_2PP(CF_3)H$, CF_3PH_2 , and $Me_2PP(CF_3)PMe_2$ are seen in equilibrium (Figure 3D).

Reaction between Me₂PH and Me₂PP((CF_3) H and between CF₃PH₂ and Me₂PPMe₂. Next, consider the reaction between Me₂PH and Me₂PP(CF₃)H. Both of these species are present when Me₂PH reacts with (CF₃P)₄ (eq 4). When mixed in benzene they do react to produce Me₂PPMe₂ and CF₃PH₂. To confirm that this is indeed an equilibrium process, a separate experiment was executed. Thus Me₂PPMe₂ and CF₃PH₂ were mixed in benzene, and after several hours Me₂PP(CF₃)H and Me₂PH were observed. The equilibrium lies largely to the right (~80%).

$$Me_{2}PH + Me_{2}PP(CF_{3})H \rightleftharpoons \begin{bmatrix} CF_{3}(H)P - H \\ | \\ Me_{2}P - PMe_{2} \end{bmatrix} \rightleftharpoons \\ CF_{3}PH_{2} + Me_{2}PPMe_{2}$$
(10)

The formation of CF_3PH_2 seems to be a thermodynamic driving force in many of the equilibria in this study.

It is interesting that CF_3PH_2 must act as an acid as well as a base in this process. This interaction was examined more closely. Figure 4 shows the result of an experiment where the FCP coupling constant ${}^{2}J_{FCP}$ was measured as a function of temperature both for free CF_3PH_2 and for a 1:1 mixture of CF_3PH_2 and Me_3P . The equilibrium interaction between Me_3P and CF_3PH_2 is clearly indicated by the change in the coupling constant with temperature. The acidic nature of CF_3PH_2 has also been shown in a much different manner, i.e., by passing gaseous CF_3PH_2 over solid KOH to yield the two novel species $FC \equiv P$ and $F_2C = PH$ via HF elimination.⁸

Action of Heat on Diphosphines. Isolated diphosphines of the type $R_2PP(CF_3)H$ are stable for months at room temperature.² However, heating the diphosphines causes disproportionation.

$$2R_2PP(CF_3)H \rightarrow R_2PP(CF_3)PR_2 + CF_3PH_2 \qquad (11)$$

When R = Me, a temperature of 60 °C for 24 h was sufficient to effect reaction. Further heating produced small amounts of Me₂PH and (CF₃P)_{4,5}, presumably from a hydrogen atom shift in Me₂PP(CF₃)H. When R = Et, 100 °C was necessary to give a good conversion rate to the tripnicogen and CF₃PH₂ (eq 11). The ¹⁹F[¹H] NMR spectra is shown in Figure 5. Extended heating at 100 °C did not produce Et₂PH or (CF₃P)_{4,5}. It can be assumed that steric crowding in the transition state causes both the higher reaction temperature necessary for disproportionation of Et₂PP(CF₃)H relative to the methyl analogue and the lack of

Figure 5. ¹⁹F NMR spectrum of $Et_2PP(CF_3)H$ at equilibrium after heating. Chemical shifts are in ppm upfield from CFCl₃. Low-field peaks are the second-order pattern of $Et_2PP(CF_3)PEt_2$. The doublet at -42.2 ppm is CF₃PH₂, while the doublet of doublets upfield is from $Et_2PP(CF_3)H$ (see ref 2).

further reaction of the ethyl derivative tripnicogen.

Reaction of (CF_3P)_{4,5} with Me₂PP(CF₃)H and with Me₂PP-(CF₃)PMe₂. Since the triphosphine Me₂PP(CF₃)P(CF₃)H can be considered as the product of CF₃P "insertion" into Me₂PP-(CF₃)H (eq 7), an attempt was made to produce Me₂PP(CF₃)-P(CF₃)H by reaction of Me₂PP(CF₃)H with (CF₃P)_{4,5}. Reaction gave the triphosphine in addition to other products. The success of this insertion reaction suggested a route to the tetraphosphine Me₂PP(CF₃)P(CF₃)PMe₂. The reaction apparently occurs as written:

$$Me_2PP(CF_3)PMe_2 + (CF_3P)_{4,5} \rightarrow Me_2PP(CF_3)P(CF_3)PMe_2$$
(12)

As expected, the tetraphosphine exhibits very complex NMR spectra (see Experimental Section), the general features of which are consistent with the structure, as is the compound volatility.

Reaction between Ph(Me)PH and (CF₃P)_{4,5}. To demonstrate the generality of the reaction between secondary phosphines and $(CF_3P)_{4,5}$, the reaction between Ph(Me)PH and the perfluoroalkylcyclopolyphosphine was studied. For several reasons an extremely complex system arises. These include the second-order character of the NMR spectra, the large number of isomers present, and the inability to separate the product mixture into its components due to low volatility.

In this reaction the first products seen are the expected $Ph(Me)PP(CF_3)H$, which exists as two diastereometers, and CF_3 -(H)PP(H)CF₃ (Figure 1).

Each d_i pair of Ph(Me)PP(CF₃)H exhibits the X portion of an ABX spin system in the ¹⁹F proton-coupled and proton-decoupled NMR spectrum as shown in Figure 6. As is observed in general, the two diastereoisomers are indistinguishable. As time passes, two additional compounds are formed; by analogy with the ¹⁹F NMR spectrum of the Me₂PH system, the tripnicogens Ph- $(Me)PP(CF_3)P(CF_3)H$ and $Ph(Me)PP(CF_3)P(Me)Ph$ were identified. These two triphosphines should exhibit numerous distinct NMR observable isomers. Just as the triphosphine Me₂PP(CF₃)PMe₂ gives a doublet of triplets pattern in the ¹⁹F NMR spectrum, in the reaction mixture of Ph(Me)PH with (CF₃P)_{4.5}, a doublet of triplets occurs with a similar chemical shift and similar coupling constants and is assigned to the compound $Ph(Me)PP(CF_3)P(Me)Ph$. The other triphosphine Ph(Me)PP-(CF₃)P(CF₃)H exhibits a complex ¹⁹F NMR spectrum very similar to its dimethyl analogue. The ³¹P NMR spectrum also shows resonances at the expected chemical shifts (by analogy) for both isomers of Ph(Me)PP(Me)Ph, to further complicate an already complex spectrum.

Figure 7 shows a series of reactions consistent with both the observed products and with previous mechanistic arguments.

The reaction of Ph_2PH with excess $(CF_3P)_{4,5}$ was also briefly studied. The results were in accord with the above Ph(Me)PH + $(CF_3P)_{4,5}$ reaction. Thus the first observed products were

⁽⁸⁾ Hossein, H. E.; Kroto, H. W.; Nixon, J. F. J. Chem. Soc. Chem. Commun. 1979, 653.

Figure 6. ¹⁹F NMR spectrum of Ph(Me)PH + (CF₃P)_{4,5} after 1 h at 23 °C. Chemical shifts are in ppm upfield from CFCl₃. Low-field peaks are from the two isomers of Ph(Me)PP(CF₃)H, while the high-field peaks are due to $CF_3(H)PP(H)CF_3$ (see Figure 1). The lower spectrum is proton decoupled, and the upper spectrum is proton coupled. NMR data for isomer a: $\delta({}^{19}\text{F}) = -44.1$ (doublet of doublets); ${}^2J_{\text{PF}} = 54$, ${}^2J_{\text{PF}} = 4.1$ (lower field doublet separation), 2.6 Hz (upfield doublet separation). NMR data for isomer b: $\delta(^{19}F) = -44.0$ (doublet of doublets); $^{2}J_{PF} =$ 27, ${}^{2}J_{PF} = 2.6$ (lower field doublet separation), 4.1 Hz (upfield doublet separation). Chemical shifts and coupling constants are approximate; the second-order spectrum was not solved.

 $Ph_2PP(CF_3)H$ (see Experimental Section) and $CF_3(H)PP(H)CF_3$. At equilibrium the additional compounds CF₃PH₂ and Ph₂P-PPh₂ were clearly identifiable. Spectral evidence also indicated higher oligomers, as in the above reaction between Ph(Me)PH and $(CF_{3}P)_{4.5}$.

Reaction between (CF₃P)_{4.5} and Me₂AsH. Having demonstrated the generality of the reaction of the P-H bond in secondary diphosphines with the phosphorus-phosphorus bond, we extended our study to secondary arsines. The reaction of $(CF_3P)_{4,5}$ with a stoichiometric amount of Me₂AsH yielded products analogous to the reaction of $(CF_3P)_{4,5}$ with Me₂PH (eq 4).

$$Me_{2}AsH + (CF_{3}P)_{4,5} \rightarrow CF_{3}PH_{2} + Me_{2}AsAsMe_{2} + CF_{3}(H)PP(H)CF_{3} + Me_{2}AsP(CF_{3})H + Me_{2}AsP(CF_{3})AsMe_{2}$$
(13)

Immediately when Me₂AsH was mixed with $(CF_3P)_{4,5}$ in C₆D₆, a yellow color developed and ³¹P and ¹⁹F NMR resonances indicated the presence of high catenates (vide supra), as expected from a reaction scheme analogous to that proposed for eq 4, where the products can be formed from a four-centered intermediate involving either four pnicogen atoms (and thus an apparent CF₃P "insertion" into a pnicogen-pnicogen bond), or three pnicogen atoms and a hydrogen atom (and thus CF₃P "insertion" into a pnicogen-hydrogen bond). The first clearly observed product in eq 14 was Me₂AsP(CF₃)H^{2,6}, exactly analogous to eq 4. After

$$Me_2AsH + Me_2AsP(CF_3)H \rightleftharpoons CF_3PH_2 + Me_2AsAsMe_2$$

(14)

several hours at ambient temperature, CF₃PH₂ and Me₂AsAsMe₂ were observed spectroscopically, which would be expected from the reaction of Me_2AsH with $Me_2AsP(CF_3)H$, analogous to eq 10. To demonstrate that the system containing CF_3PH_2 , Me₂AsAsMe₂, Me₂AsP(CF₃)H, and Me₂AsH is an equilibrium system, equimolar amounts of CF₃PH₂ and Me₂AsAsMe₂ were mixed in C_6D_6 in an NMR tube. After several days at 70 °C, an equilibrium was achieved, lying largely to the right, analogous to the all-phosphorus system (eq 10).

Reaction between $(CF_3)_2PH$ and $(MeP)_5$. All of the above reactions are dependent on the relative acidity of CF3-substituted phosphorus atoms. The CF3-substituted phosphorus atoms are derived from the $(CF_3P)_{4.5}$ ring. To extend the analogy and to examine the generality of secondary phosphines or arsines reacting with cyclic polyphosphine rings to produce chiral dipnicogens, we examined one system where the electronegative CF₃ group originated on the secondary phosphine rather than on the cyclic polyphosphine. The reaction of equimolar quantities of (CF₁)PH and (MeP)₅ in benzene does indeed produce the chiral dipnocogen $(CF_3)_2 PP(Me)H$. The reaction is much slower than that in eq 4, and although the reaction is quite clean, the equilibrium lies far in favor of the reactants. Burg has previously synthesized CF3 CF3 CF3 CF3

CF3-P-P-CF3

Figure 7. Mechanistic scheme for the reaction of (CF₃P)₄ with Ph-(Me)PH. The underlined products were observed spectroscopically.

 $(CF_3)_2 PP(Me)H$ from the reaction of $(CF_3)_2 PCl$ with MePH₂, but no NMR data were reported.9 The anisochronicity of the two CF3 groups results in a very complex ¹⁹F NMR spectrum (see Experimental Section).

Experimental Section

General experimental and instrumental methods have been described previously.² The following compounds were prepared and/or characterized according to literature procedures: Me_2PH ,¹⁰ Me_2AsH ,¹¹ (C-F₃)₂PH,¹² CF₃PH₂,⁴ Ph₂PH,¹³ Me_3P ,¹⁴ Me_2PPMe_2 ,¹⁵ $Me_2AsAsMe_2$,¹⁶ Ph_2PPPh_2 ,¹⁷ Me_2PP(CF_3)H,² Et_2PP(CF_3)H,² Me_2AsP(CF_3)H,² CF_3-

- (9) Grant, L. R.; Burg, A. B. J. Am. Chem. Soc. 1962, 84, 1834.
 (10) Parshall, G. W. In Inorganic Syntheses; Jolly, W. L., Ed.; McGraw-Hill: New York, 1968; Vol. 11, pp 157-159. Maier, L. In Organic Phosphorus Compounds; Kosolapoff, G. M., Maier, L., Eds.; Wiley-Interscience: New York, 1972; Vol. 1, Chapter 1.
 (11) Feltherm P. D. Schurchter, W. L. Lander, C., Matteria, States, (10)
- Feltham, R. D.; Silverthorn, W. In Inorganic Syntheses; Muetterties, E. L., Ed.; McGraw-Hill: New York, 1967; Vol. 10, pp 159–164.
 Cavell, R. G.; Dobbie, R. C. J. Chem. Soc. A 1967, 1308.
- (13) Bianco, V. D.; Doronzo, S. In Inorganic Syntheses; Basolo, F., Ed.; McGraw-Hill: New York, 1976; Vol. 16, pp 161-163. (14) Markham, R. T.; Dietz, Jr., E. A.; Martin, D. R. In Inorganic
- Syntheses; Basolo, F., Ed.; McGraw-Hill: New York, 1976; Vol. 16, pp 153-155. Niebergall, H.; Langenfeld, B. Chem. Ber. 1962, 95, 64.
- (16) Waser, J.; Schomaker, V. J. Am. Chem. Soc. 1945, 67, 2014. Rhein-gold, A. L.; Choudhury, P. J. Organomet. Chem. 1977, 128, 155.
 (17) Kuchen, W.; Buchward, H. Chem. Ber. 1958, 91, 2871. Fluck, E.;
- Issleib, K. Chem. Ber. 1965, 98, 2674.

(H)PP(H)CF₃,¹⁸ (CF₃P)_{4,5},¹⁹ (MeP)₅,²⁰ Me₂PP(CF₃)PMe₂,² Et₂PP-(CF₃)PEt₂,² and Me₂AsP(CF₃)AsMe₂.² The compound Ph(Me)PH was obtained commercially (Strem) and used without further purification.

Reaction of Me₂PH with (CF₃P)_{4.5}. To a thin-walled NMR tube containing ca. 0.15 mL of benzene-d₆ were added (CF₃P)_{4,5} (1.71 mmol, 0.181 g) and Me₂PH (1.55 mmol, 0.096 g). Upon warming to room temperature, the solution developed a slight yellow color, which persisted for about 1 h. Initially many unidentified resonances centered at -60 ppm were found in the ³¹P[¹H] NMR spectrum. After about 1 h, a considerable amount of Me₂PP(CF₃)H was observed spectroscopically. The reaction proceeded to equilibrium after several days at 23 °C. The following compounds were observed in solution via ³¹P and ¹⁹F NMR spectral analysis: (CF₃P)_{4,5}, CF₃PH₂, Me₂PP(CF₃)H, CF₃(H)PP(H)C- F_3 , Me₂PP(CF₃)PMe₂, and two new compounds, which were identified as Me₂PP(CF₃)P(CF₃)PMe₂ and Me₂PP(CF₃)P(CF₃)H. Both of the latter compounds exhibit complex second-order ³¹P and ¹⁹F NMR patterns.²¹ Neither of these compounds could be isolated by using vacuum-line techniques due to the similar volatility of these products and (CF₃P)_{4,5}. Structural assignments were arrived at by analysis of NMR spectra and by numerous experiments, which are described below. Fractional distillation of the products on the vacuum line afforded the following separation: -196 °C trap contents, benzene- d_6 CF₃PH₂, Me₂PP(CF₃)H, CF₃(H)PP(H)CF₃; -63 °C trap contents, benzene-d₆ Me₂PP(CF₃)H, Me₂PP(CF₃)P(CF₃)H; -37 °C trap contents, (CF₃P)_{4.5}, Me₂PP(CF₃)P(CF₃)H, Me₂PP(CF₃)P(CF₃)PMe₂

Reaction of Me₂PP(CF₃)H with CF₃(H)PP(H)CF₃. The contents of the -196 °C trap from the previous reaction was distilled through a -126 °C trap to remove CF₃PH₂, leaving a solution of the reactants in benzene- d_6 . While the quantity of each reactant could not be determined exactly, the concentrations were judged essentially equal via NMR spectroscopy. After the reaction was allowed to proceed in an NMR tube for 1 week at 23 °C, the products of the reaction were observed to be CF₃PH₂ and Me₂PP(CF₃)P(CF₃)H. After 2 weeks, no change was seen in the spectra. Thus, the reaction attained equilibrium in less than 1 week.

Reaction of CF₃(H)PP(H)CF₃ with Me₂PPMe₂. To an NMR tube containing ca. 0.15 mL of benzene- d_6 were added CF₃(H)PP(H)CF₃ (0.13 mmol, 0.026 g) and an excess of Me₂PPMe₂ (0.56 mmol, 0.068 g). The NMR tube was sealed and allowed to warm to room temperature, at which point no obvious reaction occurred. Immediate ¹⁹F NMR spectral analysis showed that the reaction proceeded at a rate appropriate for observation at room temperature. The first product observed was the triphosphine Me₂PP(CF₃)P(CF₃)H. The second product, Me₂PP-(CF₃)PMe₂, was formed concurrently with the third product Me₂PP-(CF₃)H. After several days only CF₃PH₂, Me₂PP(CF₃)H, and Me₂PP-(CF₃)PMe₂ were seen in the ¹⁹F NMR spectrum. ³¹P NMR spectral analysis revealed the presence of both Me₂PPMe₂ and Me₂PH.

Reaction of Me₂PH with Me₂PP(CF₃)H. To an NMR tube containing ca. 0.15 mL of benzene- d_6 were added Me₂PH (0.59 mmol, 0.036 g) and Me₂PP(CF₃)H (0.23 mmol, 0.037 g). The tube was flame-sealed and allowed to warm to room temperature, at which point no obvious reaction occurred. Daily ³¹P NMR analysis showed the formation of Me₂PPMe₂ and CF₃PH₂ at the expense of the reactants. Equilibrium was established after ca. 7 days at 23 °C.

Reaction of CF₃PH₂ with Me₂PPMe₂. To an NMR tube containing ca. 0.15 mL of benzene- d_6 were added CF₃PH₂ (1.1 mmol, 0.11 g) and Me₂PPMe₂ (0.18 mmol, 0.011 g). The tube was flame-sealed and allowed to warm to room temperature, at which point no obvious reaction occurred. Immediate ³¹P NMR spectral analysis confirmed the presence of Me₂PH. After several hours at 23 °C, Me₂PP(CF₃)H was observed. After 2 weeks, the reaction was found to be at equilibrium.

Action of Heat on $Me_2PP(CF_3)H$. To an NMR tube containing ca. 0.15 mL of benzene- d_6 was added $Me_2PP(CF_3)H$ (0.25 mmol, 0.039 g). After 24 h at 60 °C about half of the starting material had been consumed to give CF_3PH_2 and $Me_2PP(CF_3)PMe_2$. After 48 h at 60 °C, the following compounds were observed spectroscopically: CF_3PH_2 , Me_2PH , $Me_2PP(CF_3)H$, $(CF_3P)_{4.5}$, and $Me_2PP(CF_3)PMe_2$. NMR analysis after 80 h at 60 °C showed no change in product distribution, and the system was assumed to be at equilibrium after 40 h of heating.

Action of Heat on $Et_2PP(CF_3)H$. A spectroscopically pure sample of $Et_2PP(CF_3)H$ obtained from the tripnicogen,² which contained benzene- d_6 , was sealed in the NMR tube. It was necessary to heat this diphosphine to 100 °C for 24 h to reach equilibrium, where the products were again CF_3PH_2 and the tripnicogen $Et_2PP(CF_3)PEt_2$. Further heating caused no change.

Reaction of Me₂PP(CF₃)H with (CF₃P)_{4,5}. To an NMR tube containing ca. 0.15 mL of benzene- d_6 were added (CF₃P)_{4,5} (0.50 mmol, 0.050 g) and Me₂PP(CF₃)H (0.44 mmol, 0.071 g). The tube was sealed, and when it was warmed to room temperature, the resulting solution yellowed for a few moments and then lost its color. After 24 h at 23 °C, NMR analysis showed that CF₃PH₂, Me₂PP(CF₃)H, Me₂PP(CF₃)PMe₂, and Me₂PP(CF₃)P(CF₃)H were present. After 4 days at 23 °C, no change was seen in the spectrum.

Reaction of Me₂PP(\dot{CF}_3)PMe₂ with (CF_3P)_{4,5}. To an NMR tube containing ca. 0.15 mL of benzene-d_6 and Me₂PP(CF_3)PMe₂ (0.62 mmol, 0.14 g) was added, on the vacuum line, (CF_3P)_{4,5} (0.63 mmol, 0.063 g). The tube was flame-sealed and allowed to warm to room temperature. Near 0 °C, the solution yellowed and remained yellow for about 10 min and then turned colorless. ³¹P and ¹⁹F NMR analysis showed the following compounds in the solution: (CF_3P)_{4,5}, Me₂PP(CF_3)PMe₂, and Me₂PP(CF_3)P(CF_3)PMe₂. Spectra acquired several days later showed no change in product distribution, and the system was assumed to be at equilibrium.

Reaction of Ph(Me)PH with (CF₃P)_{4.5}. In the glovebox, Ph(Me)PH (0.54 mmol, 0.066 g) was syringed into an NMR tube, which was placed on the vacuum line. Solvent and $(CF_3P)_{4.5}$ (0.5 mmol, 0.050 g) were distilled into the tube, which was then flame-sealed. As the tube warmed to room temperature, a slight yellow color developed, which persisted for about 24 h. Immediate ¹⁹F NMR spectral analysis showed that the first two products were CF₃(H)PP(H)CF₃ and Ph(Me)PP(CF₃)H. Slowly, the additional compounds Ph(Me)PP(CF₃)P(CF₃)H. Slowly the additional compounds Ph(Me)PP(CF₃)P(CF₃)H, ²¹ Ph(Me)PP-(CF₃)P(Me)PH was still present, and two resonances occurred at the expected chemical shift (by interpolation between Ph₂PPPh₂ and Me₂PPMe₂) for the two isomers of Ph(Me)PP(Me)Ph.²¹ NMR data for the diphosphine Ph(Me)PP(CF₃)H is given in Figure 6.

Reaction of Ph2PH with (CF3P)4.5. In a glovebox, Ph2PH (0.63 mmol, 0.12 g) was syringed into an NMR tube and then attached to the vacuum line and degassed. Next, ca. 0.2 mL of benzene- d_6 and $(CF_3P)_{4,5}$ (1.46 mmol, 0.146 g) were vacuum transferred into the tube. As the solution reached room temperature, the characteristic yellow tint of analogous reactions was not observed; ³¹P NMR indicated only reactants in the solution. Within a few days, ³¹P and ¹⁹F NMR revealed the reaction progressing, although at a rate considerably slower than that observed for secondary alkylphosphines with (CF₃P)_{4,5}. The first products observed spectroscopically were Ph₂PP(CF₃)H and CF₃(H)PP(H)CF₃. After several days of heating at 50 °C, spectroscopy revealed the reaction had reached equilibrium and the additional compounds CF3PH2 and Ph2PPPh2 were identified. NMR data for the new compound Ph2PP- $(\tilde{CF}_3)H$: $\delta(^{31}P(P-H)) = -54.5$; $\delta(^{31}P(PPh_2)) = -31.8$; $\delta(^{19}F) = -44.6$; ${}^{2}J_{PP} = 168.0, {}^{2}J_{PF} = 44.2, {}^{3}J_{PF} = 14.0, {}^{1}J_{PH} = 207.2$. NMR spectra are slightly second order, so chemical shifts and coupling constants are approximate.

Reaction of Me₂AsH with (CF₃P)_{4,5}. On a Teflon-stopcock highvacuum line, (CF₃P)_{4,5} (1.68 mmol, 0.16 g) was transferred into an NMR tube followed by the addition of an equimolar quantity of Me_2AsH (1.1 mmol, 0.18 g). The two reactants, either with or without benzene- d_6 solvent, were warmed to room temperature, and after about 10 min, the solution developed a slight yellow color indicative of reaction. The progress of the reaction was followed by observation of $^{31}\mathrm{P}$ and $^{19}\mathrm{F}$ NMR spectra, and the following compounds were detected in solution: CF3PH2, Me₂AsAsMe₂, CF₃(H)PP(H)CF₃, Me₂AsP(CF₃)H, and Me₂AsP(CF₃)-AsMe2. After several hours were allowed for the reaction equilibrium, the mixture was separated into the following components by fractional distillation on the vacuum line: -196 °C trap contents, CF3PH2; -84 °C trap contents, Me₂AsP(CF₃)H; -45 °C trap contents, Me₂AsAsMe₂; -15 °C trap contents, Me₂AsP(CF₃)AsMe₂. The lower thermal stability and apparent decomposition by stopcock grease made isolation of Me₂AsP-(CF₃)H much more difficult than the congeneric phosphorus compound Me₂PP(CF₃)H. Significant decomposition of the arsinophosphine Me₂AsP(CF₃)H over several hours at room temperature led to the appearance of peaks corresponding to CF₃PH₂ and Me₂AsP(CF₃)AsMe₂ in the ³¹P and ¹⁹F NMR spectra.

Reaction of Me₂AsAsMe₂ with CF₃PH₂. To an NMR tube containing ca. 0.2 mL of benzene- d_6 were added CF₃PH₂ (1.6 mmol, 0.16 g) and

Mahler, W.; Burg, A. J. Am. Chem. Soc. 1958, 80, 6161. Dobbie, R. C.; Gosling, P. D. J. Chem. Soc., Chem. Commun. 1975, 585. Albrand, J. P.; Anderson, S. P.; Goldwhite, H.; Huff, L. Inorg. Chem. 1975, 14, 570.

Burg, A. B.; Mahler, W. J. Am. Chem. Soc. 1961, 83, 2388. Cowley, A. H.; Dierdorf, D. S. J. Am. Chem. Soc. 1969, 91, 6609.

 ⁽²⁰⁾ Smith, L. R.; Mills, J. L. J. Am. Chem. Soc. 1976, 98, 3852. Cowley, A. H.; Furtsch, T. A.; Dierdorf, D. S. J. Chem. Soc. D 1970, 523; Elmes, P. S.; Redwood, M. E.; West, B. O. J. Chem. Soc. D 1970, 1120.

⁽²¹⁾ Reporting of chemical shifts, coupling constants, and peak multiplicities for compounds with very complex spin systems and several NMR observable isomers is impractical, particularly when several compounds are present in the reaction mixture. The gross spectral appearance and position are predicatable by analogy with simpler compounds such as those reported in this paper and ref 2.

Me₂AsAsMe₂ (0.74 mmol, 0.16 g), and the tube was flame-sealed. When the tube was warmed to room temperature, ³¹P NMR analysis revealed CF₃PH₂ as the only phosphorus species in solution. After the tube was heated at 70 °C for 1 month, ³¹P and ¹⁹F NMR analysis revealed the presence of Me₂AsP(CF₃)H. After 2 more weeks, observation by ³¹P NMR showed no further product formation and the position of equilibrium to be far toward the reactants.

Reaction of $(CF_3)_2$ PH with (MeP)₅. In a glovebox, an NMR tube was charged with (MeP)₅ (1.3 mmol, 0.61 g) and then attached to the vacuum line and degassed. Solvent (0.2 mL of benzene- d_6) and (CF₃)₂PH (0.65 mmol, 0.11 g) were then transferred into the tube and flame-sealed. When the tube was warmed to room temperature, the initially biphasic solution became homogeneous, but there was no reaction as monitored by ³¹P NMR spectroscopy. After 24 h, spectroscopic analysis revealed the formation of a small amount of $(CF_3)_2 PP(Me)H$, which increased only slightly in concentration over the next several days. The sample was then heated at 60 °C for several days after which ³¹P and ¹⁹F NMR analysis indicated less than 50% conversion of the product (CF₃)₂PP-(Me)H. NMR parameters for the compound $(CF_3)_2 PP(Me)H$: $\delta(^{31}P-$ (P-H) = +2.5; $\delta(^{31}P(P-CF_3)) = -120.6$; $\delta(^{19}F) = -48.9$; $^{1}J_{PP} = 230.5$, $^{1}J_{PH} = 205.1$, $^{2}J_{PF} = 65.5$, $^{2}J_{PH} = 5.9$.

Conclusions

A secondary phosphine or arsine will react quickly with (C- $F_3P)_{4,5}$ to produce chiral dipnicogens to the type $R_2EP(CF_3)H$ (E = P or As). The dipnicogens are quite stable when isolated but undergo further reaction with either reactants or other products via a four-centered intermediate to produce a complex equilibrium system. The reaction to produce the chiral dipnicogens appears to be general, requiring only that one of the reactants contains relatively acidic phosphorus atoms (by having pendant CF₃ groups); thus (CF₃)₂PH reacts with (MeP)₅ to yield (CF₃)₂PP-(Me)H. The use of these dipnicogens as ligands is under investigation.

Acknowledgment. The support of the Robert A. Welch Foundation is gratefully acknowledged.

Registry No. (CF₃P)₄, 393-02-2; Me₂PH, 676-59-5; Me₂PP(CF₃)H, 117583-73-0; CF₃PH₂, 420-52-0; CF₃(H)PP(H)CF₃, 462-57-7; Me₂PP-(CF₃)PMe₂, 19307-60-9; Me₂PP(CF₃)P(CF₃)PMe₂, 117583-74-1; Me₂PP(CF₃)P(CF₃)H, 117583-75-2; Me₂PPMe₂, 3676-91-3; Et₂PP-(CF₃)H, 117583-76-3; Ph(Me)PH, 6372-48-1; Ph(Me)PP(CF₃)H, 117583-77-4; Ph(Me)PP(CF₃)P(CF₃)H, 117583-78-5; Ph(Me)PP-(CF₃)P(Me)Ph, 117583-79-6; Ph(Me)PP(Me)Ph, 3676-96-8; Ph₂PH, 829-85-6; Ph₂PP(CF₃)H, 117583-80-9; Ph₂PPPh₂, 1101-41-3; Me₂AsH, 593-57-7; Me₂AsAsMe₂, 471-35-2; Me₂AsP(CF₃)H, 117583-81-0; Me₂AsP(CF₃)AsMe₂, 24595-87-7; (CF₃)₂PH, 460-96-8; (MeP)₅, 1073-98-9; (CF₃)₂PP(Me)H, 1840-12-6; Et₂PP(CF₃)PEt₂, 117583-82-1; (C-F₃P)₅, 745-23-3.

Contribution from the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061

Exchange Reactions of Tetrakis(trifluoromethyl)diphosphine with Pnicogen-Pnicogen, Phosphorus-Hydrogen, and Phosphorus-Chlorine Bonds

Larry R. Avens,[†] Leonard V. Cribbs, and Jerry L. Mills*

Received August 21, 1987

Tetrakis(trifluoromethyl)diphosphine, $(CF_3)_2PP(CF_3)_2$, reacts quantitatively with Me_2PPMe_2 via a four-centered intermediate to produce the unsymmetric diphosphine $(CF_3)_2PPMe_2$. There is no tendency for $(CF_3)_2PPMe_2$ to disproportionate to the reactant symmetric phosphines because of the stabilization provided by the large difference in relative basicities of the phosphorus atoms. In analogous exchange reactions, (CF₃)₂PP(CF₃)₂ mixed with Me₂AsAsMe₂, Me₂PNMe₂, and (CF₃)₂AsAs(CF₃)₂ produces the unsymmetric dipnicogens (CF₃)₂PAsMe₂, (CF₃)₂PNMe₂, and (CF₃)₂PAs(CF₃)₂, respectively, where the last compound is produced in an equilibrium exchange process. The reaction of the secondary diphosphine or arsinophosphine $Me_2EP(CF_3)H$, E = P or As, with (CF₃)₂PP(CF₃)₂ produces Me₂EP(CF₃)₂ in addition to (CF₃)₂PP(CF₃)H, which disproportionates to (CF₃P)_{4,5} and (CF₃)₂PH. When a secondary phosphine reacts with $(CF_3)_2 PP(CF_3)_2$, P-H bond exchange occurs; thus the reaction of $(CF_3)_2 PP(CF_3)_2$ with Ph_2PH or Ph(Me)PH yields $(CF_3)_2PPPh_2$ and $(CF_3)_2PP(Me)Ph$, respectively, in addition to $(CF_3)_2PH$. In a similar reaction with $H(Ph)P(CH_2)_3P(Ph)H$, the interesting tetraphosphine $(CF_3)_2P(Ph)P(CH_2)_3P(Ph)P(CF_3)_2$ is formed. Reaction of $(CF_3)_2PP(CF_3)_2$ with substituted phosphonous chlorides $RPCl_2$, R = Ph or NMe_2 , involves P-Cl bond cleavage producing $(CF_3)_2PP(Cl)R$. However, reaction of MePCl₂ with $(CF_3)_2PP(CF_3)_2$ required photolysis to initiate; the products are the triphosphine $(CF_3)_2PP(Me)P(CF_3)_2$ and (CF₃)₂PCl.

Introduction

Unsymmetric diphosphines normally are subjected to disproportionation to form more symmetric species.¹

$$2R_2PPR'_2 \rightarrow R_2PPR_2 + R'_2PPR'_2 \tag{1}$$

The reverse reaction of eq 1, i.e., scrambling reactions to two symmetric diphosphines to yield unsymmetric diphosphines, is well-known,¹⁻⁴ however, these reactions rarely proceed to completion and frequently result in polymer formation instead of the desired unsymmetric diphosphine. The reactions are highly solvent dependent, and isolation of the unsymmetric diphosphine is usually not possible due to disproportionation. The exception to the above generalization is when the relative basicities of the two phosphorus atoms in a diphosphine greatly differ. For example, a diphosphine such as (CF₃)₂PPMe₂ has no tendency toward disproportionation.⁵ Considerable evidence points toward a four-centered intermediate in diphosphine exchange reactions.^{1,6,7} For a diphosphine such as $(CF_3)_2$ PPMe₂, the relatively basic Me₂P phosphorus atom will always attack the relatively acidic $(CF_3)_2P$ phosphorus atom.

$$\begin{array}{c} (CF_3)_2 P & \longrightarrow & PMe_2 \\ & & | & & | \\ Me_2 P & \longrightarrow & P(CF_3)_2 \end{array}$$

$$(2)$$

Such an exchange reaction is nonproductive, yielding only the initial reactants. When the relative basicities are similar, as when R and R' are both alkyl groups, then more subtle thermodynamic effects, including solvent interactions, favor the symmetric species. If R is an alkyl group and R' is an aryl group as in Ph_2PPMe_2 ,

- Ale, A. M.; Harris, R. K. J. Chem. Soc., Dalton Trans. 1983, 583. (3) McFarlane, H. C. E.; McFarland, W. J. Chem. Soc., Chem. Commun. 1972,1189
- (5)
- Burg, A. B. Inorg. Chem. 1981, 20, 3731. Grant, L. R.; Burg, A. B. J. Am. Chem. Soc. 1962, 84, 1834. Avens, L. R.; Wolcott, R. A.; Cribbs, L. V.; Mills, J. L. Inorg. Chem., (6)
- first of two preceeding papers in this issue. Avens, L. R.; Cribbs, L. V.; Mills, J. L. Inorg. Chem., preceeding paper (7)in this issue.

[†] Present address: MS E501, Los Alamos National Laboratory, Los Alamos, NM 87545.

⁽¹⁾ Harris, R. K.; Nowal, E. M.; Fild, M. J. Chem. Soc., Dalton Trans. 1979, 826