$Me₂AsAsMe₂ (0.74 mmol, 0.16 g),$ and the tube was flame-sealed. When the tube was warmed to room temperature, ³¹P NMR analysis revealed CF_3PH_2 as the only phosphorus species in solution. After the tube was heated at 70 °C for 1 month, ³¹P and ¹⁹F NMR analysis revealed the presence of Me₂AsP(CF₃)H. After 2 more weeks, observation by ³¹P NMR showed no further product formation and the position **of** equilibrium to be far toward the reactants.
Reaction of $(CF_3)_2$ PH with $(MeP)_5$. In a glovebox, an NMR tube was

charged with (MeP) ₅ (1.3 mmol, 0.61 g) and then attached to the vac-
uum line and degassed. Solvent (0.2 mL of benzene-d₆) and (CF₃)₂PH (0.65 mmol, 0.1 1 g) were then transferred into the tube and flame-sealed. When the tube was warmed to room temperature, the initially biphasic solution became homogeneous, but there was no reaction as monitored by ³¹P NMR spectroscopy. After 24 h, spectroscopic analysis revealed the formation of a small amount of $(CF_3)_2 PP(Me)H$, which increased only slightly in concentration over the next several days. The sample was then heated at 60 °C for several days after which ³¹P and ¹⁹F NMR analysis indicated less than 50% conversion of the product $(CF_3)_2$ PP-(Me)H. NMR parameters for the compound $(CF_3)_2PP(Me)H: \delta(^{31}P (P-H)$) = +2.5; $\delta({}^{31}P(P-CF_3))$ = -120.6; $\delta({}^{19}F)$ = -48.9; ${}^{1}J_{PP}$ = 230.5, $^{1}J_{\text{PH}} = 205.1$, $^{2}J_{\text{PF}} = 65.5$, $^{2}J_{\text{PH}} = 5.9$.

Conclusions

A secondary phosphine or arsine will react quickly with (C- $F_3P)_{4,5}$ to produce chiral dipnicogens to the type $R_2EP(CF_3)H$ $(E = P \text{ or } As)$. The dipnicogens are quite stable when isolated but undergo further reaction with either reactants or other products via a four-centered intermediate to produce a complex equilibrium system. The reaction to produce the chiral dipnicogens appears to be general, requiring only that one of the reactants contains relatively acidic phosphorus atoms (by having pendant CF₃ groups); thus $(CF_3)_2PH$ reacts with $(MeP)_5$ to yield $(CF_3)_2PP$ -(Me)H. The use of these dipnicogens as ligands is under investigation.

Acknowledgment. The support of the Robert A. Welch Foundation is gratefully acknowledged.

Registry No. $(CF_3P)_4$, 393-02-2; Me₂PH, 676-59-5; Me₂PP(CF₃)H, 117583-73-0; CF₃PH₂, 420-52-0; CF₃(H)PP(H)CF₃, 462-57-7; Me₂PP- $(CF_3)PMe_2$, 19307-60-9; $Me_2PP(CF_3)P(CF_3)PMe_2$, 117583-74-1; $Me₂PP(CF₃)P(CF₃)H$, 117583-75-2; $Me₂PPMe₂$, 3676-91-3; $Et₂PP (CF_3)H$, 117583-76-3; Ph(Me)PH, 6372-48-1; Ph(Me)PP(CF_3)H, 117583-77-4; Ph(Me)PP(CF,)P(CF,)H, 117583-78-5; Ph(Me)PP- $(CF_3)P(Me)Ph$, 117583-79-6; $Ph(Me)PP(Me)Ph$, 3676-96-8; Ph_2PH , 829-85-6; Ph₂PP(CF₃)H, 117583-80-9; Ph₂PPPh₂, 1101-41-3; Me₂AsH, 593-57-7; Me₂AsAsMe₂, 471-35-2; Me₂AsP(CF₃)H, 117583-81-0; $Me₂AsP(CF₃)AsMe₂$, 24595-87-7; $(CF₃)₂PH$, 460-96-8; $(MeP)₅$, 1073-98-9; (CF₃)₂PP(Me)H, 1840-12-6; Et₂PP(CF₃)PEt₂, 117583-82-1; (C- $F_3P_3, 745-23-3.$

Contribution from the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061

Exchange Reactions of Tetrakis(trifluoromethy1)diphosphine with Pnicogen-Pnicogen, Phosphorus-Hydrogen, and Phosphorus-Chlorine Bonds

Larry R. Avens,[†] Leonard V. Cribbs, and Jerry L. Mills*

Received August 21, I987

Tetrakis(trifluoromethyl)diphosphine, $(CF_3)_2$ PP($CF_3)_2$, reacts quantitatively with Me₂PPMe₂ via a four-centered intermediate to produce the unsymmetric diphosphine $(CF_3)_2$ PPMe₂. There is no tendency for $(CF_3)_2$ PPMe₂ to disproportionate to the reactant symmetric phosphines because of the stabilization provided by the large difference in relative basicities of the phosphorus atoms. In analogous exchange reactions, $(CF_3)_2PP(CF_3)_2$ mixed with Me₂AsAsMe₂, Me₂PNMe₂, and $(CF_3)_2A$ sAs($CF_3)_2$ produces the unsymmetric dipnicogens (CF₃)₂PAsMe₂, (CF₃)₂PNMe₂, and (CF₃)₂PAs(CF₃)₂, respectively, where the last compound is produced in an equilibrium exchange process. The reaction of the secondary diphosphine or arsinophosphine Me₂EP(CF₃)H, $E = P$ or As, with $(CF_3)_2PP(CF_3)_2$ produces $Me_2EP(CF_3)_2$ in addition to $(CF_3)_2PP(CF_3)H$, which disproportionates to $(CF_3P)_{4,5}$ and $(CF_3)_2PH$. When a secondary phosphine reacts with $(\tilde{CF}_3)_2PP(CF_3)_2$, P-H bond exchange occurs; thus the reaction of $(CF_3)_2PP(CF_3)_2$ with Ph₂PH or Ph(Me)PH yields $(CF_3)_2$ PPPh₂ and $(CF_3)_2$ PP(Me)Ph, respectively, in addition to $(CF_3)_2$ PH. In a similar reaction with $H(Ph)P(CH_2)$, $P(Ph)H$, the interesting tetraphosphine $(CF_3)_2P(Ph)P(CH_2)_3P(Ph)P(CF_3)_2$ is formed. Reaction of $(CF_3)_2PP(CF_3)_2$ with substituted phosphonous chlorides RPC1₂, R = Ph or NMe₂, involves P-C1 bond cleavage producing $(CF_3)_2$ PP(C1)R. However, reaction of MePCl₂ with $(CF_3)_2$ PP($CF_3)_2$ required photolysis to initiate; the products are the triphosphine $(CF_3)_2$ PP(Me)P($CF_3)_2$ and $(CF_3)_2$ PCI.

Introduction

Unsymmetric diphosphines normally are subjected to dispro-Unsymmetric uphosphines normally are subjectionation to form more symmetric species.¹
 $2R_2PPR'_2 \rightarrow R_2PPR_2 + R'_2PPR'_2$

$$
2R_2PPR'_2 \rightarrow R_2PPR_2 + R'_2PPR'_2 \tag{1}
$$

The reverse reaction of eq 1, i.e., scrambling reactions to two symmetric diphosphines to yield unsymmetric diphosphines, is well-known,¹⁻⁴ however, these reactions rarely proceed to completion and frequently result in polymer formation instead of the desired unsymmetric diphosphine. The reactions are highly solvent dependent, and isolation of the unsymmetric diphosphine is usually not possible due to disproportionation. The exception to the above generalization is when the relative basicities of the two phosphorus atoms in a diphosphine greatly differ. For example, a diphosphine such as $(CF_3)_2$ PPMe₂ has no tendency toward disproportionation.⁵ Considerable evidence points toward a four-centered intermediate in diphosphine exchange reactions.^{1,6,7} For a diphosphine such as $(CF_3)_2$ PPMe₂, the relatively basic Me₂P phosphorus atom will

always attack the relatively acidic $(CF_3)_2P$ phosphorus atom.

$$
(CF3)2P \longrightarrow PMe2
$$

\n
$$
\downarrow \qquad \qquad |
$$

\n
$$
Me2P \longrightarrow P(CF3)2
$$
 (2)

Such an exchange reaction is nonproductive, yielding only the initial reactants. When the relative basicities are similar, as when R and R' are both alkyl groups, then more subtle thermodynamic effects, including solvent interactions, favor the symmetric species. If R is an alkyl group and R' is an aryl group as in Ph_2PPMe_2 ,

- **(2)** Ale, A. M.; Harris, R. K. *J. Chem. Soc., Dalton Tram.* 1983, 583. (3) McFarlane, H. C. E.; McFarland, W. *J. Chem. Soc., Chem. Commun.* 1972,1189.
-
-
- (4) Burg, A. B. *Inorg. Chem.* 1981, 20, 3731.
(5) Grant, L. R.; Burg, A. B. *J. Am. Chem. Soc.* 1962, 84, 1834.
(6) Avens, L. R.; Wolcott, R. A.; Cribbs, L. V.; Mills, J. L. *Inorg. Chem.*,
- first of two preceeding papers in this issue. (7) Avens, L. R.; Cribbs, L. **V.;** Mills, J. L. *Znorg. Chem.,* preceeding paper **in** this issue.

^{&#}x27;Present address: MS E501, **Los** Alamos National Laboratory, Los Ala**mos,** NM 87545.

⁽¹⁾ Harris, R. K.; Nowal, E. M.; Fild, M. *J. Chem. Soc., Dalron Trans.* 1979, 826.

^a Chemical shift relative to external CFCl₃. Negative values indicate upfield chemical shift. ^b Chemical shift relative to external 85% H₃PO₄. Negative values indicate upfield chemical shifts. $\epsilon d =$ doublet, $t =$ triplet, $q =$ quartet, $s =$ septet, and $m =$ multiplet. ϵ^d Decoupling fluorine yields a sharp singlet. 'Shift for $(CF_3)_2$ P fluorines, where CF_3 groups, although anisochronous, have very similar shifts. See text. Shift for $H(\dot{C}F_3)$ P fluorines. ϵ Anisochronous CF₃ groups. See text. ϵ Approximate appearance of spectrum.

then the electron-withdrawing effects of the aromatic group might be expected to render the pendant phosphorus atom relatively acidic, resulting in a unsymmetric diphosphine that was stable in disproportionation. Indeed, Ph₂P-PMe₂ is a stable species in $CH₂Cl₂$ solvent.¹

This paper reports the exchange (or scrambling) reactions of $(CF_1)_2PP(CF_1)_2$ with a variety of compounds containing pnicogen-pnicogen, phosphorus-hydrogen, and phosphorus-chlorine honds.

Results and Discussion

Consideration of the reverse reaction to eq 1 suggests a very simple preparation for unsymmetric diphosphines where the electronegativity of the pendant R groups are sufficiently different. We find, for example, that

$$
\text{Me}_2\text{PPMe}_2 + (\text{CF}_3)_2\text{PP}(\text{CF}_3)_2 \rightarrow 2(\text{CF}_3)_2\text{PPMe}_2 \tag{3}
$$

is benzene solvent is rapid and quantitative. The reaction will occur without solvent, but leads to a considerable amount of a red-orange oil. The analogous reaction of $(CF_3)_2 PP(CF_3)_2$ with either Me₂AsAsMe₂ or Me₂NPMe₂ quantitatively yields $(CF_3)_2$ PAsMe₂ and $(CF_3)_2$ PNMe₂, respectively. NMR data are
given in Table I. The dipnicogens $(CF_3)_2$ PPMe₂,⁵ $(CF_3)_2PAsMe_2$ ^{8,9} and $(CF_3)_2PNMe_2^{10}$ have all been made previously, but by less direct methods. As expected, the reaction of $(CF_3)_2PP(CF_3)_2$ with $(CF_3)_2AsAs(CF_3)_2$, yields an equilibrium mixture of reactants plus $(CF_3)_2PAs(CF_3)_2$, in an approximately statistical distribution, since there is little acid-base driving force for the reaction.

In an exchange reaction between $(CF_3)_2 PP(CF_3)_2$ and a dipnicogen containing a P-H bond, two reaction schemes are possible, one involving P-H bond cleavage and the other, as above, involving pnicogen-pnicogen bond cleavage. Thus, the reaction of (C- F_3 ₂PP(CF₃)₂ with either Me₂PP(CF₃)H or Me₂AsP(CF₃)H yields the expected dipnicogens $(CF_3)_2$ PPMe₂ and $(CF_3)_2$ PAsMe₂, respectively, in addition to $(CF_3)_2 PP(CF_3)H$, $(CF_3P)_{4,5}$, and $(C$ F_3 ₂PH. The chiral diphosphine, as has been noted previously,¹¹ cannot be isolated because of disproportionation into $(CF_3P)_{4,5}$

and $(CF_3)_2$ PH. However, the compound has a distinctive and unequivocal ³¹P and ¹⁹F NMR spectrum (Table I). The compound $(CF_3)_2$ PH could also be formed directly from the reactants if P-H bond cleavage were the initial step. Since all products are seen upon immediate observation by NMR spectroscopy, a distinction between the reactions mechanisms is not possible.

Phosphorus-hydrogen bond breaking is the only mode of reaction when a secondary phosphine reacts with $(CF_3)_2 PP(CF_3)_2$. It has been previously been shown¹¹ that Me₂PH reacts with (CF_1) , PP($C\dot{F}_1$), to form (CF_1) , PPMe₂ and (CF_3) , PH. An analogous reaction using Ph₂PH, rather than Me₂PH, quantitatively produces $(CF_3)_2$ PPPh₂ and $(CF_3)_2$ PH. NMR data for $(CF_3)_2$ PPPh₂ is given in Table I. The proposed mechanism involves, as in eq 2, a four-centered intermediate.

$$
^{\text{CCF}_3}e^P \longrightarrow \text{P(CF}_3e_2
$$

\n
$$
^{\text{P}}\downarrow
$$

\n
$$
\text{Ph}_2P \longrightarrow H
$$

\n(4)

In an entirely similar reaction, the reaction of $(CF_3)_2 PP(CF_3)_2$ with Ph(Me)PH proceeds quantitatively to produce $(CF_3)_2$ PP-(Me)Ph and $(CF_3)_2$ PH. Because the $P(Me)$ Ph phosphorus atom in $(CF_3)_2 PP(Me) Ph$ is a chiral center, there are two diastereomers; additionally the CF_3 groups are anisochronous, making interpretation of the NMR data (Table I) somewhat complex (vide infra)

A potentially very interesting multidentate ligand can be synthesized by using an analogous reaction of $(CF_3)_2PP(CF_3)_2$ with bis(1,3-phenylphosphino)propane $H(Ph)P(\overline{CH_2})_3P(Ph)H$ to produce $(CF_3)_2P(Ph)P(CH_2)_3P(Ph)P(CF_3)_2$ and $(CF_3)_2PH$. The compound was not isolated, but the NMR data (Table I), as well as the reaction mass balance and compound volatility, are consistent with the assigned structure.

In an attempt to prepare the previously unknown diphosphine $(CF_3)_2$ PPCl₂, Me₂NPCl₂ was mixed with $(CF_3)_2$ PP($CF_3)_2$. The new diphosphine, along with $Me₂NP(CF₃)₂$, would be produced if P-N bond exchange occurred. The analogous difluoro derivative $(CF_1)_2$ PPF₂ is a known compound¹² that is reasonably stable. The desired product $(CF_3)_2$ PPCl₂ was not observed by either ³¹P or ¹⁹F NMR spectroscopy, but Me₂NP(CF₃)₂, the other expected product, was observed. Thus, the reaction may proceed as expected, but with the product $(CF_3)_2$ PPCl₂ disproportionation to

Cavell, R. G.; Dobbie, R. C. J. Chem. Soc. A 1968, 1406.
Cullen, W. R.; Can. J. Chem. 1963, 41, 322. (8)

 (9)

⁽¹⁰⁾ Kober, F. Chem.-Ztg. 1976, 100, 197. Harris, G. S. J. Chem. Soc. 1958,

⁽¹¹⁾ Burg, A. B.; Joshi, K. K. J. Am. Chem. Soc. 1964, 86, 353.

⁽¹²⁾ Schiller, H. W.; Rudolph, R. W. Inorg. Chem. 1971, 10, 2500.

yield $(CF_3)_2$ PCl and $(PCl)_n$ polymer. Both products were observed as the reaction proceeds, $(CF_3)_2$ PCI spectroscopically and $(PCl)_n$ scheme could involve the P-C1 bond, however.

as an observed yellow solid. An alternate or competing reaction
scheme could involve the P–Cl bond, however.
\n
$$
M_{P2}N(C1)P - C1
$$
\n
$$
M_{P2}N(C1)P - C1
$$
\n
$$
N_{P2}N P (C1)P (C F_3)_2 + (C F_3)_2 P C1
$$
\n
$$
C F_3)_2 P - P (C F_3)_2
$$

The new tripnicogen $Me₂NP(Cl)P(CF₃)₂$ is indeed formed and has a very interesting 19 F NMR spectrum (Table I); since the $Me₂NPCl$ phosphorus atom is a chiral center, the $CF₃$ groups, as well as the Me groups, as anisochronous (vide infra). The reactivity of a P-Cl bond with $(CF_3)_2PP(CF_3)_2$ was further studied by its reaction with PhPC1₂. The reaction occurs slowly under ambient conditions to form an equilibrium mixture of reactants and the expected $(CF_3)_2 PP(Cl) Ph$ species together with $(CF_3)_2 PCl$. Reaction of the methyl substituent MePCl₂ with $(CF_3)_2$ PP($CF_3)_2$ proved to be a more complex. No reaction occurred after 12 days at ambient temperature, so UV photolysis was **used** to aid the reaction. NMR analysis indicated high yields of $(CF_3)_2$ PCl and the tripnicogen $(CF_3)_2PP(Me)P(CF_3)_2$, together with only a trace quantity of the expected $(CF_3)_2 PP(C1)Me$. The tripnicogen $(CF_3)_2PP(Me)P(CF_3)_2$ could arise either from disproportionation of $(CF_3)_2PP(Cl)Me$ (also regenerating MePCl₂, which was observed) or from reaction of the remaining P-Cl bond in $(CF_3)_2$ PP(Cl)Me with $(CF_3)_2$ PP(CF₃)₂. The photolysis of a mixture of MePCl₂ and $(CF_3)_2$ PP(CF₃)₂ is a more rapid and direct synthesis of $(CF_3)_2PP(Me)P(CF_3)_2$ than previous methods.^{6,11} The difference in the reactivity and product distribution of the methylversus phenyldichlorophosphine reaction with $(CF_3)_2PP(CF_3)_2$ is poorly understood but presumably must result from a subtle combination of steric and electronic effects.

NMR **Data. As** can be seen in Table I, the multinuclear NMR data for the compounds $(CF_3)_2$ PPMe₂, $(CF_3)_2$ PAsMe₂, $(CF_3)_2$ PNMe₂, and $(CF_3)_2$ PAs($CF_3)_2$, while informative as an aid in structural elucidation, are ordinary in both aspects of chemical shifts and coupling constants. However, as noted earlier, the compound $(CF_3)_2PP(CF_3)H$ deserves some comments relative to interpretation of NMR data.

In addition to the ³¹P[¹H] NMR data in Table I, the ³¹P[¹⁹F] NMR spectrum of $(CF_3)_2PP(CF_3)H$ consists of doublet of doublets centered at -87.8 ppm due to the $P(CF_3)$ H phosphorus coupled to an adjacent proton and to a nonequivalent phosphorus, and a second doublet or doublets centered at -10.5 ppm. Chemical shifts and coupling constants were verified by computer simulation of the slightly second-order spectrum. Analysis of the 19 F NMR spectra was more difficult for several reasons. First, the two $CF₃$ groups bonded to the $(CF_3)_2P$ phosphorus are anisochronous¹³ because the adjacent $P(CF_3)$ H phosphorus is chiral. The ¹⁹F chemical shift difference between these two anisochronous groups is only about 0.5 ppm; only the average is listed in Table I. Because of the similarities in chemical shifts, the degree of fluorine to fluorine coupling, and thus the extreme number of overlapping peaks, it was not possible to extract all the coupling constants.

For the diphosphine $(CF_3)_2$ PPPh₂, in addition to the ³¹P[¹H] and 19F['H] NMR data in Table I, the 31P[19F] NMR spectrum gives is a doublet at +6.2 ppm for the $(CF_3)_2P$ phosphorus and a doublet of multiplets at -29.3 ppm for the PPh_2 phosphorus atom with a spacing of about 18 Hz due to phenyl proton coupling. The ¹H NMR spectrum is a broad, poorly resolved multiplet $+7.1$ ppm.

The chiral diphosphine $(CF_3)_2$ PP(Me)Ph again has anisochronous CF_3 groups, due to the neighboring chiral phosphorus atom, resulting in two ¹⁹F NMR resonances, centered at -46.9 and -48.2 ppm with two different ${}^{3}J_{FP}$ couplings and a ${}^{4}J_{FF}$ coupling, as indicated in Table **I.** Proton NMR observation indicated a poorly resolved multiplet at $+7.1$ ppm (Ph) and a doublet of doublets at **+1.3** ppm (Me).

Two additional chiral diphosphines having anisochronous CF₃ groups are $(CF_3)_2P'$ (Cl)NMe₂ and $(CF_3)_2PP(Cl)Ph$. In the compound $(CF_3)_2PP(CI)NMe_2$, $^2J_{PF}$ is indistinguishable for both

anisochronous groups, but ${}^{3}J_{\text{PF}}$ differs. In $(\text{CF}_3)_2 \text{PP}(\text{Cl})\text{Ph}$, the ³¹P[¹⁹F] NMR spectrum (in addition to the data in Table I), further supports the structural characterization, yielding a doublet at +64.9 ppm for the $(CF_3)_2P$ phosphorus atom and a doublet of triplets at $+11.4$ ppm for the $P(C)$ Ph phosphorus atom, the triplet arising from coupling to the two ortho protons on the phenyl group.

The diphosphine $(CF_3)_2 PP(Me)H$ was first prepared by Burg,¹¹ but NMR data were not reported. Since the compound is closely related to those reported here, NMR parameters for $(CF_3)_2$ PP-(Me)H are reported. Using benzene- d_6 , we have observed the 31P, 19F, and 'H NMR spectra. Considering first the **31P** spectrum, the $(CF_3)_2P$ phosphorus resonance is at +2.8 ppm and that for the $P(Me)H$ is at -120.7 ppm, which separates the resonances sufficiently for a first-order interpretation. Even though first order, the 31P coupled spectrum is somewhat complicated by the presence of three spin-active species and the overlap of multiplets. The **perfluoroalkyl-substituted** phosphorus is split into a doublet of septets of doublets of quartets by the adjacent phosphorus, six fluorines, a proton, and methyl group protons, respectively. With $\mathrm{d}J_{\text{PP}}$ = 230 Hz, the two septets overlap considerably, making analysis difficult. Separated by an additional bond from the fluorines, the alkyl-substituted phosphorus gives a portion of the spectrum that appears as a doublet of doublets of multiplets, as expected. Decoupling the protons greatly simplifies the spectrum to yield a downfield of septets and an upfield doublet of septets. The ¹H NMR spectrum appears as a multiplet centered at $+1.8$ ppm for the methyl group and a doublet of multiplets centered at $+4.1$ ppm for the phosphorus-bonded proton. Since the CF_3 groups are anisochronous, the observed ¹⁹F NMR spectrum appears very much like four multiplets; however, closer inspection reveals the spectrum to consist of two doublets of doublets of quartets. Coupling of each set of nonequivalent fluorine atoms to the two nonequivalent phosphorus atoms and the other $CF₃$ group, respectively, yields the observed spectrum. The slight difference in appearance of the multiplet representing each $CF₃$ group results from different values for ${}^{2}J_{PF}$ and ${}^{3}J_{PF}$ for the nonequivalent CF₃ groups. Thus, ²J_{PF} for CF₃ \neq ²J_{PF} for CF'₃, and the same is true for ${}^{3}J_{\text{PF}}$. Fluorine chemical shifts for the two CF_3 groups are -50.6 and -52.1 ppm, a difference of 1.5 ppm.

Experimental Section

The standard experimental methods and instrumentation have been previously described.^{6,7} The following chemicals were synthesized and/or characterized by literature procedures: Me_2PPMe_2 ,¹⁴ $Me_2AsAsMe_2$,¹⁵ $(CF_3)_2PP(CF_3)_2$ ^{8,16} $(CF_3)_2AsAs(CF_3)_2$ ^{8,17} $(CF_3)_2PP(CF_3)H$,¹¹ Me_2PP - $(CF_3)H,^{11}$ Me₂AsP(CF_3) $H,^{6}$ (CF_3)₂PH,¹⁸ ($CF_3P)_{4,5}$,¹⁹ Me₂NPCl₂,²⁰ MePH₂²¹ and $(CF_3)_2$ PI.¹⁹ Obtained commercially and used without further purification were Ph(Me)PH (Strem), Ph₂PH (Strem), Ph(H)- $P(CH_2)_3-P(H)Ph$ (Strem), MePCl₂ (Strem), and PhPCl₂ (Aldrich).
Reaction of Me₂PPMe₂ with (CF₃)₂PP(CF₃)₂. To an NMR tube on

the vacuum line were added approximately 0.10 mL of benzene- d_6 , $Me₂PPMe₂$ (0.19 mmol, 0.023 g), and $(CF₃)₂PP(CF₃)₂$ ((0.19 mmol, 0.064 g). The tube was flame-sealed and allowed to warm to room temperature, at which point no outward sign of reaction was observed. Immediate ³¹P NMR analysis showed qualitative conversion to the diphosphine $Me₂P-P(CF₃)₂$.

Reaction of Me₂AsAsMe₂, Me₂NPMe₂, or $(CF_3)_2A$ sAs($CF_3)_2$ with $(CF_3)_2$ **PP** $(CF_3)_2$. In a similar manner to the above reaction, equimolar amounts of Me₂AsAsMe₂, Me₂NPMe₂, or $(CF_3)_2$ AsAs $(CF_3)_2$, were added to $(CF_3)_2PP(CF_3)_2$ in benzene- d_6 . Immediate ³¹P NMR analysis

- Niebergall, H.; Langenfeld, B. *Chem. Ber.* 1962, 95, 64.
-
- Waser, J.; Schomaker, V. J. Am. Chem. Soc. 1945, 67, 2014. Rhein-gold, A. L.; Choudhury, P. J. Organomet. Chem. 1977, 128, 155.
Bennett, F. W.; Emeleus, H. J.; Haszeldine, R. N. J. Chem. Soc. 1953, 1565.
- Emeleus, H. J.; Haszeldine, R. N.; Walachewski, E. G. *J. Chem. Soc.* 1953, 1552.
-
- Cavell, R. G.; Dobbie, R. C. *J. Chem. Soc. A* 1967, 1308.
Burg, A. B.; Mahler, W. *J. Am. Chem. Soc.* 1961, 83, 2388. Cowley,
A. H.; Dierdorf, D. S. *J. Am. Chem. Soc.* 1969, 91, 6609. (19)
- (20)
- Burg, **A.** B. *J. Am. Chem. SOC.* 1958,80, 1107. Mahler, W.; **Burg, A. B.** *J. Am. Chem SOC.* 1958.80, 6161. Cowley, (21) **A.** H. *J. Am. Chem. SOC.* 1967,89, 5990.

showed quantitative conversion to the arsinophosphine $Me₂AsP(CF₃)₂$, in the first reaction, and to $Me₂NP(CF₃)₂$ and $Me₂PP(CF₃)₂$ in the second reaction. The third reaction yielded an approximately statistical

equilibrium mixture of reactants plus $(CF_3)_2ASP(CF_3)_2$.
Reaction of Me₂PP(CF₃)H with $(CF_3)_2PP(CF_3)_2$. To an NMR tube on the vacuum line was added approximately 0.15 mL of benzene-d₆, $Me₂PP(CF₃)H (0.11 mmol, 0.018 g)$ and $(CF₃)₂PP(CF₃)₂ (0.13 mmol,$ 0.044 g). The tube was sealed and removed from the vacuum line. When the tube was warmed to room temperature, no visible signs of reaction were observed. Analysis by ^{31}P NMR showed not only that the reaction was relatively slow but also that more than one process was occurring. Initially $Me_2PP(CF_3)_2$ and $(CF_3)_2PP(CF_3)H$ were formed, but the latter diphosphine slowly disproportionated to yield (CF_3) , PH and $(CF_3P)_{4,5}$.

Reaction of Me₂AsP(CF₃)H with $(CF_3)_2$ **PP(CF₃)₂. As the solution** warmed to room temperature, there were no obvious signs of reaction, but spectroscopic analysis indicated an immediate and quantitative reaction had occurred to form $Me₂AsP(CF₃)₂$ and $(CF₃)₂PP(CF₃)H.$ As in the reaction described immediately above, the diphosphine $(CF_3)_2$ PP- (CF_3) H is unstable relative to disproportionation, with spectra observed over time reflecting an increase in the concentrations of (CF_3) ,PH and $(CF_3P)_{4,5}$ at the expense of $(CF_3)_2PP(CF_3)H$. In an attempt to isolate the diphosphine $(CF_3)_2 PP(CF_3)H$, the reaction was repeated and vacuum fractionated to yield the following: -45 °C trap contents, $(CF_3P)_{4,5}$; -64 °C trap contents, Me₂As-P(CF₃)₂; -84 °C trap contents, Me₂AsP(CF₃₎₂; -196 °C trap contents, $(CF_3)_2P-P(CF_3)H$ and $(CF_3)_2PH$. The isolated yield of $(CF_3)_2 PP(CF_3)H$ was quite low, further attempts at purification and isolation were ineffective.

Reaction of $(CF_3)_2$ **PP(** $CF_3)_2$ **with Ph₂PH.** In a dry box, Ph₂PH (0.60) mmol, 0.11 g) was syringed into an NMR tube, which was then attached to the vacuum line and degassed. An equimolar quantity of $(CF_3)_2$ PP- $(CF_3)_2$ together with approximately 0.2 mL of benzene- d_6 were con-
densed into the tube, and the tube was sealed. When the tube was warmed to room temperature, a biphasic solution with no obvious appearance of reaction was observed. After 2 days at room temperature, the solution was homogeneous, and observation by ¹⁹F NMR revealed the presence of $(CF_3)_2 PP(CF_3)_2$, $(CF_3)_2 PH$, and the diphosphine (CF_1) , PPPh₂. Further observation by ³¹P and ¹⁹F NMR spectroscopy indicated the reaction was essentially quantitative.

Reaction of $(CF_3)_2 PP(CF_3)_2$ **with Ph(Me)PH.** In a reaction analogous to that directly above, equimolar quantities of $(CF_3)_2PP(CF_3)_2$ and Ph(Me)PH were mixed together in benzene- d_6 . Analysis of NMR indicated essentially quantitative production of the new unsymmetric diphosphine (CF_1) , $PP(Me)Ph$ and (CF_1) , PH_2 .

Reaction of $\overline{(CF_3)}_2\text{PP}(CF_3)_2$ **with Bis(1,3-phenylphosphino)propane, Ph(H)P(CH₂)₃P(H)Ph.** The phosphinopropane (0.843 mmol, 02.19 g) was transferred to an NMR tube in the drybox. The NMR tube was attached to the vacuum line and about 0.15 mL of benzene-d₆ and $(CF₃)₂PP(CF₃)₂$ (2.35 mmol, 0.803 g) were vapor transferred to the tube. The tube was flame-sealed and allowed to warm to room temperature, at which point two phases separated. Reaction was complete in 2 days at ambient temperature, yielding $(CF_3)_2$ PH and the tetraphosphine $(CF_1)_2P-P(Ph)-(CH_2)_3-P(Ph)-P(CF_3)_2.$

Reaction of Me₂NPCI₂ with $(CF_3)_2$ **PP(** $CF_3)_2$ **.** To an NMR tube on the vacuum line was added approximately 0.15 mL of benzene- d_6 , $Me₂NPCl₂$ (1.18 mmol, 0.172 g) and $(CF₃)₂PP(CF₃)₂$ (1.20 mmol, 0.406 9). The tube was flame-sealed and allowed to warm to room temperature; two clear, colorless layers separated. Over a period of several days at room temperature, the lower layer of $(CF_3)_2PP(CF_3)_2$ was consumed with concurrent yellowing and solid formation. Small amounts of $Me₂NP(CF₃)₂$ was observed in the ³¹P NMR spectrum, but the expected compound $(CF_3)_2$ PPCl₂ was not found. After 2 weeks at 23 °C, the reaction achieved equilibrium. The tube contents were fractionally distilled, and the new compound $(CF_3)_2$ PP(Cl)NMe₂ was retained in a -37 ^oC trap together with unreacted Me₂NPCI₂. Repeated fractional distillation led to an enrichment of about equal quantities of (CF_1) , PP-(Cl)NMe₂ and Me₂NPCl₂. The tripnicogen $(CF_3)_2$ PP(Cl)NMe₂ is stable indefinitely at 23 °C and showed no decomposition after heating at 70 °C for 2 h in solution with benzene and $Me₂NPCl₂$.

Reaction of $(CF_3)_2$ **PP** $(CF_3)_2$ with PhPCI₂. Under N₂ flow, PhPCI₂ (1.72 mmol, 0.308 g) was syringed into an NMR tube and then degassed on the vacuum line. Approximately 0.2 mL of benzene- d_6 and $(\overline{CF}_3)_2$ - $PP(CF₃)₂$ (3.34 mmol, 1.16 g) were then vapor transferred into the tube, and the tube was sealed. When the tube was warmed to room temperature, the resulting solution was biphasic, and analysis by 31P NMR revealed no discernible reaction. Agitation of the solution over 4 days yielded a homogeneous solution. Analysis of ³¹P and ¹⁹F NMR data indicated an equilibrium was established between $PhPC1₂, (CF₃)₂PP(C (F_3)_2$, $(CF_3)_2$ PCl, and the new diphosphine $(CF_3)_2$ PP(CI)Ph. Due to similar low volatilities, $(CF_3)_2 PP(CI) Ph$ could not be isolated from Ph₂PCl.

Reaction of $(CF_3)_2 PP(CF_3)_2$ **with MePCI₂.** On the vacuum line, MePCI₂ (0.80 mmol, 0.094 g) and $(CF_3)_2$ PP($CF_3)_2$ (1.60 mmol, 0.54 g) were condensed into an NMR tube and the tube was flame-sealed. Immediate observation by NMR, as well as repeated observation over 12 days, revealed no detectable reaction. The sample was then photolyzed by irradiation with a 500-W, high-pressure Hanovia UV lamp for 3 h. Spectroscopic analysis indicated the presence of $(CF_3)_2$ PPMeP(CF₃)₂, $(\text{CF}_3)_2$ PCI, MePCI₂, and a trace quantity of the expected $(\text{CF}_3)_2$ PP-(CI)Me.

Preparation of $(CF_3)_2$ **PP(Me)H.** The diphosphine was prepared¹¹ by condensing MePH₂ (21.1 mmol, 1.02 g) into an ampule with $(CF_3)_2$ PI (12.5 mmol, 3.10 g) at -196 °C. The ampule was flame-sealed and allowed to warm slowly from -78 °C to room temperature overnight. The volatile components of the ampule were then transferred onto the vacuum line and purified by passage through traps at -45 , -64 , and -196
°C. The diphosphine slowly passed through a trap at -45 °C and was retained at -64 ^oC. Identification was by vapor pressure¹¹ and by ¹H, ¹⁹F, and ³¹P NMR spectroscopy.

Acknowledgment. The support of the Robert A. Welch Foundation is gratefully acknowledged.

Registry No. Me₂PPMe₂, 3676-91-3; (CF₃)₂PP(CF₃)₂, 2714-60-5; $Me₂PP(CF₃)₂$, 666-62-6; Me₂AsAsMe₂, 471-35-2; Me₂NPMe₂, 683-84-1; $(CF_3)_2$ AsAs($CF_3)_2$, 360-56-5; Me₂AsP($CF_3)_2$, 19863-20-8; Me₂NP- $(CF_3)_2$, 432-01-9; $(CF_3)_2AsP(CF_3)_2$, 19863-18-4; $Me_2PP(CF_3)H$, $(CF_3P)_4$, 393-02-2; $(CF_3P)_5$, 745-23-3; $Me₂AsP(CF_3)H$, 117583-81-0; $\overrightarrow{P_{h_2}PH}$, 829-85-6; $\overrightarrow{CF_3}_2$ PPP_{h₂, 117583-84-3; Ph(Me)PH, 6372-48-1;} $(CF_3)_2 PP(Me)Ph$, 117583-85-4; Ph(H)P(CH₂)₃P(H)Ph, 28240-66-6; (CF₃)₂PP(Ph)(CH₂)₃P(Ph)P(CF₃)₂, 117583-86-5; Me₂NPCl₂, 683-85-2; $(CF_3)_2$ PP(Cl)NMe₂, 117583-87-6; PhPCl₂, 644-97-3; $(CF_3)_2$ PCl, 650-52-2; (CF_3) , PP(Cl)Ph, 117583-88-7; MePCl, 676-83-5; (CF_3) , PPMeP- (CF_3) , 2195-42-8; (CF_3) ₂PP(Cl)Me, 117583-89-8; MePH₂, 593-54-4; $(CF₃)₂P1$, 359-64-8; $(CF₃)₂PP(Me)H$, 1840-12-6. 117583-73-0; $(CF_3)_2 PP(CF_3)H$, 117583-83-2; $(CF_3)_2 PH$, 460-96-8;