118319-04-3; **5-C₂H₅-2,4-C₂B₅H₆, 93243-43-7; 1,3-(C₂H₅₎₂-2,4-C₂B₅H₅, (C₂H₅)₂-2,4-C₂B₅H₄, 118319-13-4; 3-Cl-5,6-(C₂H₅₎₂-2,4-C₂B₅H₄,** 118319-05-4; 1,5-(C₂H₅)₂-2,4-C₂B₅H₅, 118319-06-5; 1,7-(C₂H₅)₂-2,4- 105930-50-5; 5-Cl-1,3-(C₂H₅)₂-2,4-C₂B₅H₄, 118319-14-5; 5-Cl-1,6- $C_2B_3H_5$, 118319-07-6; 3,5-(C₂H₅)₂-2,4-C₂B₅H₅, 105930-51-6; 5,6- (C₂H₅)₂-2,4-C₂B₅H₄, 118319-15-6; 5-Cl-1,7-(C₂H₅)₂-2,4-C₂B₅H₄, (C2H5)2-2,4-C2B5H,, 93243-42-6; **l-C1-3,5-(CzH5)2-2,4-CZB5H4,** 118319-16-7; **~-CI-~,~-(CZH~)Z-~,~-CZB~H~,** 118319-17-8; 3-Cl-5- 118319-08-7; 1-Cl-3,7-(C₂H₅)₂-2,4-C₂B₅H₄, 118319-09-8; 1-Cl-5,6- C₂H₅-2,4-C₂B₅H₅, 118334-42-2; 3-Cl-2,4-C₂B₅H₆, 28347-93-5; C₂B₅H₇, $(C_2H_5)_2$ -2,4-C₂B₅H₄, 118319-10-1; 1-CI-5,7- $(C_2H_5)_2$ -2,4-C₂B₅H₄, 20693-69-0; C₂H₅Cl, 75-00-3.

Registry No. 1-C₂H₅-2,4-C₂B₅H₆, 118319-03-2; 3-C₂H₅-2,4-C₂B₅H₆, 118319-11-2; 3-Cl-1,5-(C₂H₅)₂-2,4-C₂B₅H₄, 118319-12-3; 3-Cl-1,7-118319-04-3; 5-C₂H₅-2,4-C₂B₅H₄, 5-2,4-C₂B₅H₄

Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 91303

Reactions of Chlorine Fluorides and Oxyfluorides with the Nitrate Anion and Alkali-Metal Fluoride Catalyzed Decomposition of CIFS

Karl 0. Christe,* William W. Wilson, and Richard D. Wilson

Received July 12, 1988

The binary chlorine fluorides CIF_5 , CIF_3 , and CIF_6 , when used in an excess, all undergo facile fluorine-oxygen exchange reactions with the nitrate anion, forming \overline{FCIO}_2 , unstable \overline{FCIO} , and \overline{CIO}_2 , respectively, as the primary products. Whereas \overline{FCIO}_3 does not react with LiNO₃ at temperatures as high as 75 °C, FCIO₂ readily reacts with either LiNO₃ or N₂O₅ to give CIONO₂ and O_2 in high yield, probably via the formation of an unstable O_2 CION O_2 intermediate. With an excess of CIF, chlorine nitrate undergoes a slow reaction to give **FN02** and ClzO as the primary products, followed by ClzO reacting with CIF to give C12, CIF, and FC1O₂. The alkali-metal fluorides CsF, RbF, and KF catalyze the decomposition of ClF₅ to ClF₃ and F₂, which can result in the generation of substantial F_2 pressures at temperatures as low as 25 °C.

Introduction

Ionic nitrates are surprisingly reactive toward the fluorides and oxyfluorides of bromine, $1,2$ xenon, $3,4$ and iodine.⁵ The observed reaction chemistry is fascinating and often unpredictable. Thus, $BrF₅$ undergoes fluorine-oxygen exchange reactions that, depending **on** the choice of the nitrate salt or the reagent used in excess, yield either BrF_4O^- salts, free BrF_3O , or bromine nitrates. In the cases of XeF₆, XeOF₄, and IF₅, stepwise fluorine-oxygen exchange occurs, whereas for the closely related $IF₇$ molecule, reduction to $IF₅$ with simultaneous oxygen evolution was observed. **In** view of these results it was interesting to study the behavior of chlorine fluorides and oxyfluorides toward ionic nitrates.

The previous reports on reactions of ionic nitrates with chlorine fluorides are limited to a statement by Ruff and **Krug** that KN03 does not react with liquid CIF_3 while AgNO₃ does⁶ and a synthesis of ClONO₂ from ClF and $M(NO₃)₂$ where M is either Ca, Sr, Ba, or Pb.⁷ In addition, the reactions of ClF,^{8,9} ClF₃,⁹ ClF₅,⁹ and $FCIO₂⁹$ with the covalent nitrate $HONO₂$ have previously been studied.

Experimental Section

Apparatus **and** Materials. The vacuum lines, handling techniques, and spectrometers used in this study have been described elsewhere.³ Commercial LiNO₃ (J. T. Baker, 99.7%), NaNO₃ (J. T. Baker, 99.5%), $KNO₃$ (J. T. Baker, 99.1%), and $RbNO₃$ (K&K Labs, Inc., 99.9%) were dried in vacuo at 120 °C for 1 day prior to their use. $CsNO₃$ was prepared from Cs₂CO₃ and HNO₃ and dried in the same manner. N_2O_5 ,¹⁰ CIF₅,¹¹ CIF,¹² and FCIO₂¹³ were prepared by literature methods.

- (1) Wilson, W. W.; Christe, **K.** 0. *Inorg. Chem.* **1987,** *26,* 916.
-
- (2) Wilson, W. W.; Christe, **K.** 0. *Inorg. Chem.* **1987,** *26,* 1573. (3) Christe, **K.** 0.; Wilson, W. W. *Inorg. Chem.* **1988,** *27,* 1296.
-
- (4) Christie, **K.** 0.; Wilson, W. W. *Inorg. Chem.,* in press.
- (5) Christe, K. O.; Wilson, W. W.; Wilson, R. D. *Inorg. Chem.*, in press.
(6) Ruff, O.; Krug, H. Z. *Anorg. Allg. Chem.* 1930, 190, 270.
(7) Schmeisser, M.; Eckermann, W.; Gundlach, K. P.; Naumann, D. Z. *Naturforsch.* **1980,** *358,* 1143.
-
-
- (8) Schack, C. J. *Inorg. Chem.* 1967, 6, 1938.
(9) Christe, K. O. *Inorg. Chem.* 1972, *11*, 1220.
(10) Wilson, W. W.; Christe, K. O. *Inorg. Chem.* 1987, 26, 1631.

FCIO, (Pennsalt) and CIF, (Matheson) were commercial materials and were purified by fractional condensation prior to their use.

Cuurion! Chlorine fluorides and oxyfluorides are powerful oxidizers and can react violently with most organic substances. The materials should be handled only in well-passivated metal-Teflon equipment with all the necessary safety precautions.

Reaction of CIF with an Excess of **NaNO,.** A mixture of NaN03 (17.32 mmol) and CIF (11.53 mmol) in a 30-mL stainless steel cylinder was allowed to slowly warm in a dry ice-liquid N_2 slush bath from -196 to -78 °C and then toward 0 °C. The cylinder was recooled to -196 °C and did not contain any gas noncondensible at this temperature. The material volatile at room temperature was separated on warm up of the cylinder from -196 °C by fractional condensation through traps kept at -112 , -126 , -142 , and -196 °C. The -112 °C trap contained CIONO₂¹⁴ (8.89 mmol) and Cl₂O¹⁵ (0.68 mmol), the one at -126 °C had ClONO₂ (0.09 mmol), the one at -142 °C had Cl₂ (0.35 mmol), while the one at -196 °C contained FNO_2^{16} (1.01 mmol). The white solid residue in the cylinder was a mixture of NaF and NaNO, (1046 mg; weight calculated for 9.99 mmol of NaF and 7.33 mmol of NaNO₃ = 1043 mg). The yield of CIONO₂, based on CIF, was 76%.

Reaction of NaNO, with an Excess of CIF. Finely powdered NaNO, (5.15 mmol) was loaded in the drybox into a prepassivated 30-mL stainless steel cylinder equipped with a valve. On the vacuum line, CIF (8.00 mmol) was added at -196 "C. The cylinder was allowed to slowly warm to room temperature, where it was kept for 3 days. It was cooled again to -196 °C and did not contain any gas noncondensible at this temperature. The material volatile at **room** temperature was separated on warm up of the cylinder from -196 °C by fractional condensation through traps kept at -142 and -196 °C. The -196 °C trap contained $FNO₂$ (2.88 mmol) and the one at -142 °C had 5.14 mmol of a mixture

- (11) Pilipovich, **D.;** Maya, W.;Lawton, E. A,; Bauer,H. F.;Sheehan,D. F.; Ogimachi, N. N.; Wilson, R. D.; Gunderloy, F. C.; **Bedvell,** V. E. *Inorg. Chem.* **1967,** *6,* 1918.
-
- (12) Schack, C. J.; Wilson, R. D. *Inorg. Synth.* **1986,** *24,* 1. (13) Christe, **K.** *0.;* Wilson, R. D.; Schack, C. J. *Inorg. Synth.* **1986,** *24, 3.* (14) Christe, K. 0.; Schack, C. J.; Wilson, R. D. *Inorg. Chem.* **1974,** *13,* 2811.
-
- (15) Siebert, H. Anwendungen der Schwingungsspektroskopie in der Anor-
ganischen Chemie. Anorganische und Allgemeine Chemie in Einzel-
darstellungen; Springer Verlag: Berlin, Heidelberg, FRG, New York, **1966** Vol. VII.
- (16) Bernitt, D. L.; Miller, R. J.; Hisatsune, I. C. *Spectrochim. Acta, Part A* **1967**, 23, 237.

consisting mainly of ClONO₂ and Cl₂O and small amounts of $FCIO₂¹⁷$ and Cl₂. The cylinder contained 215 mg of NaF (weight calculated for 5.15 mmol of $NAF = 216$ mg).

Reaction of **NaNO, with an Excess of** *CIF,.* Finely powdered NaNO, (1.02 mmol) was loaded in the drybox into a prepassivated 30-mL stainless-steel reactor, and ClF₃ (5.36 mmol) was added at -196 °C on the vacuum line. The cylinder was allowed to slowly warm to room temperature where it was kept for 10 days. It was recooled to -196 °C and checked for noncondensible gas (0.26 mmol of *0,).* The material volatile at room temperature was separated by fractional condensation through traps kept at -112 , -126 , and -196 °C. The -112 °C trap contained CIF₃¹⁸ (4.36 mmol), and one at -126 °C had FClO₂¹⁷ (0.25) mmol), and the one at -196 °C showed FNO_2^{16} (1.02 mmol) and CIF¹⁵ (0.77 mmol). The white solid residue (47 mg) consisted of NaF (weight calculated for 1.02 mmol of $NAF = 43$ mg).

Reaction of LiNO, with an Excess of CIF,. A 30-mL stainless-steel cylinder was loaded in the drybox with $LINO_3$ (2.68 mmol). ClF₅ (40.54 mmol) was added at -196 °C on the vacuum line. The cylinder was warmed from -196 °C to room temperature and kept at this temperature for 3 h with frequent agitation. The reactor was cooled back to -196 °C and did not contain any significant amount of noncondensible gas. The material volatile at room temperature was separated by fractional condensation through a series of traps kept at -95, -142, and -196 **"C,** while the cylinder was allowed to warm from -196 °C to room temperature. The -95 °C trap was empty, and the -196 °C trap contained $FNO₂$ ¹⁶ (2.48 mmol). The contents of the -142 "C trap (40.67 mmol) consisted of unreacted CIF_5 ¹⁹ FCIO₂,¹⁷ and a very small amount of FNO₂.¹⁶ The amount of $FCIO₂$ and $FNO₂$ in the $CIF₅$ was estimated by infrared spectroscopy and verified by complexing with AsF_5 and weighing of the resulting $CIO_2^+AsF_6^{-20}$ and $NO_2^+AsF_6^{-15}$ (409 mg, weight calculated for 1.34 mmol of $ClO_2^+AsF_6^-$ and 0.20 mmol of $NO_2^+AsF_6^- = 391$ mg). The white solid residue in the cylinder (71 mg; weight calculated for 2.68 mmol of L iF = 70 mg) consisted of L iF.

Reaction of NeNO, with CIF,. The reaction between NaNO, and CIF_5 was carried out as described for the $LINO_3-CIF_5$ system. After 10 days at 25 °C, the NaNO₃ had quantitatively reacted to yield 1 mol of NaF and $FNO₂$ and 0.5 mol of $FClO₂/mol$ of NaNO₃

Reaction of KNO, with CIF,. The reaction between KNO, and ClF, was carried out as described above for $LiNO₃$. After 28 days at 25 °C, the $KNO₃$ had quantitatively reacted to yield $FNO₂$ and $FCIO₂$ in a 2:1 mole ratio. About 16% of the byproduct KF had been converted to KCIF₄,²¹ and fluorine was found as noncondensible gas at -196 $^{\circ}$ C and identified by its reaction with mercury.

Reaction of RbNO, with CIF,. The reaction between RbNO, and ClF, was carried out as described above. After 31 days at 25 °C, 90% of the $RbNO₃$ had reacted to yield $FNO₂¹⁶$ and $FClO₂¹⁷$ in a 2:1 mole ratio. About 35% of the byproduct RbF had been converted to $RbClF_{4}^{21}$ and fluorine was identified as noncondensible gas at -196 °C.

Reaction of **CsNO, with CIF5.** The reactions between CsNO, and CIF, were carried out as described above. After 32 days at 25 $^{\circ}$ C, 16% of the CsNO₃ had reacted to yield $FNO₂¹⁶$ and $FClO₂¹⁷$ in a 2:1 mole ratio. About half of the CsF byproduct had been converted to $CsClF₄²¹$ When the reaction was carried out at $0 °C$ for 2 h, the conversion of $CsNO₃$ was 4.4%, whereas at 70 °C for 3 days it was 46%. The amount of fluorine evolved in these reactions increased with increasing temperature.

Reaction of CsNO, with CIF, in the Presence of Excess CsF. A mixture of finely powdered CsNO, (0.97 mmol) and CsF (8.89 mmol) was placed in the drybox into a prepassivated stainless-steel reactor of 32.3-mL volume. On the vacuum line, CIF_5 (14.57 mmol) was added at -196 °C. The cylinder was agitated on a shaker at 25 °C for 18 days and then cooled to -196 °C. It contained 0.56 mmol of a noncondensible gas, which reacted quantitatively with Hg giving a weight increase of 21 mg (weight increase calculated for 0.56 mmol of $F_2 = 21.3$ mg). The material volatile at 25 °C was separated by fractional condensation through traps kept at -142 and -196 °C. The -196 °C trap contained $FNO₂¹⁶$ (0.093 mmol) and $FONO₂¹⁴$ (0.028 mmol), while the one at -142 ^oC had CIF₅¹⁹ (13.97 mmol) corresponding to a CIF₅ consumption of 0.60 mmol. The white solid residue (1610 mg, weight calculated for the below given material balance $= 1593$ mg) was shown by Raman spectroscopy to contain significant amounts of $CsNO₃$ and $CsClF₄²¹$

- (17) Smith, D. **F.;** Begun, G. M.; Fletcher, W. H. *Spectrochim. Acfa* **1964,** *20,* 1763. **9.**
- (18) Claassen, H. H.; Weinstock, B.; Malm, J. G. *J. Chem. Phys.* **1958, 28,** 285.
- (19) Begun, G. M.; Fletcher, W. H.; Smith, D. F. *J. Chem. Phys.* **1965,** *42,* 2236. Christe, K. 0. *Spectrochim. Acta, Part A* **1971,** *27,* 631.
- (20) Christe, K. 0.; Schack, C. J.; Pilipovich, D.; Sawodny, W. *Inorg. Chem.* **1969, 8,** 2489.
- (21) Christe, K. 0.; Sawodny, W. *2. Anorg. Allg. Chem.* **1970,** *374,* 306.

These results are in excellent agreement with the following material balance: $0.59CIF_5 \rightarrow 0.59CIF_3 + 0.59F_2$

$$
0.59CIF_5 \rightarrow 0.59CIF_3 + 0.59F_2
$$

 $0.028F_2 + 0.028CsNO_3 \rightarrow 0.028CsF + 0.028FONO_2$

 0.0465 CIF₅ + $0.093CsNO_3$ \rightarrow

 $0.093CsF + 0.093FNO₂ + 0.0465FClO₂$

$$
0.59\text{CIF}_{3} + 0.59\text{CsF} \rightarrow 0.59\text{CsCIF}_{4}
$$

 $0.0465CsF + 0.0465FCIO₂ \rightarrow 0.0465CsCIF₂O₂$

Reaction of FClO₂ with LiNO₃. Finely powdered LiNO₃ (2.41 mmol) was placed in the drybox into a prepassivated 30-mL stainless-steel reactor, and $FCIO₂ (1.62 mmol)$ was added at $-196 °C$ on the vacuum line. The cylinder was allowed to slowly warm to room temperature where it was kept for 15 h. It was recooled to -196 °C, and the noncondensible gas (1.58 mmol of *0,)* was pumped off. The material volatile at room temperature consisted of $C10NO₂¹⁴$ (1.59 mmol). The white, solid residue (96 mg) was a mixture of LiF and LiN0, (weight calculated for 1.62 mmol of LiF and 0.79 mmol of $LINO_3 = 96$ mg).

Reaction of $FCIO_2$ **with** N_2O_5 **.** N_2O_5 (0.83 mmol) was condensed at -31 °C in a dynamic vacuum into a 5-mm-o.d. glass NMR tube, which was attached to a flamed-out 96-mL Pyrex vessel equipped with two Teflon valves. $FCIO₂ (1.87 mmol)$ was added to the NMR tube at -196 °C. No appreciable reaction between N_2O_5 and $FCIO_2$ was observed at temperatures as high as -31 °C. When the mixture was kept at 0 °C for 18 h, about 64% of the N_2O_5 had reacted with $FCIO_2$ to yield CIO-NO₂¹⁴ and O₂ as the main products. In addition, there was an attack of $FCIO₂$ on the Pyrex vessel, resulting in substantial amounts of $ClO₂$ and SiF_4 and a trace amount of NO_2 ⁺ClO₄⁻²² The residue left behind at -78 °C in the NMR tube was identified by Raman spectroscopy as unreacted N_2O_5 .¹⁰

Results and Discussion

MN03-CIF System. ClF readily reacts with NaN0, at subambient temperature to give NaF and ClONO₂ (eq 1). However,
NaNO₃ + ClF \rightarrow NaF + ClONO₂ (1)

$$
NaNO3 + ClF \rightarrow NaF + ClONO2 \tag{1}
$$

the yield of ClONO₂ was found to be less than quantitative because of the competing reaction 2. Reaction 2 might be explained by
NaNO₃ + 2ClF \rightarrow NaF + Cl₂O + FNO₂ (2)

$$
NaNO3 + 2ClF \rightarrow NaF + Cl2O + FNO2 (2)
$$

a secondary reaction of ClONO₂, formed in (1), with a second mole of ClF (eq 3). In a previous study,⁹ ClONO₂ and ClF were
ClONO₂ + ClF \rightarrow Cl₂O + FNO₂ (3)

$$
CIONO2 + CIF \rightarrow Cl2O + FNO2
$$
 (3)

found not to interact appreciably below room temperature and with relatively short reaction times. However, it was shown in this study that at room temperature and with reaction times of several days reaction 3 slowly proceeds to give Cl_2O and FNO_2 as the main products with Cl_2 and $FCIO_2$ as the byproducts. The byproducts are readily explained by the previously reported, 9,23 relatively fast reactions 4 and 5, which are summarized in (6) .
 $2Cl_2O + 2ClF \rightarrow 2Cl_2 + 2FCIO$ (4)

$$
2Cl2O + 2ClF \rightarrow 2Cl2 + 2FCIO
$$
 (4)
2FCIO \rightarrow ClF + FCIO₂ (5)

$$
2FCIO \rightarrow CIF + FCIO_2 \tag{5}
$$

$$
2FCIO \rightarrow CIF + FCIO2 \t(5)
$$

net:
$$
2Cl2O + ClF \rightarrow 2Cl2 + FCIO2 \t(6)
$$

The fact that, for reaction 1, side reaction **2** could not be completely suppressed even at low temperatures indicates either acceleration of (3) under the conditions of (1) or a slightly different reaction path.

Obviously, reactions 2,3, and *6* are favored by an **excess** of CIF. In order to maximize the yield of $CIONO₂$ in (1) , it is, therefore, advantageous to employ an excess of NaN0,. Furthermore, a lowering of the reaction temperature should also favor the formation of ClONO₂. By the use of about 100% excess of NaNO₃ and subambient reaction temperatures, a CIONO₂ yield of about **76%,** based **on** ClF, was obtained. This yield is somewhat lower than the 92% previously reported⁷ for the $Pb(NO₃)₂ + ClF$ system,

⁽²²⁾ Nebgen, J. W.; McElroy, **A.** D.; Klodowski, H. F. Inorg. *Chem.* **1965, 6,** 1796.

⁽²³⁾ Christe, K. *0.;* Schack, C. J. *Ado. Inorg. Chem. Radiochem.* **1976,18,** 319.

but is higher than those given for $Ca(NO₃)₂ (63%), Sr(NO₃)₂$ (44%), and $Ba(NO₃)₂$ (<10%). The main advantage of NaNO₃ over these other nitrates is its lower cost.

MNO₃-ClF₃ System. An excess of ClF₃ readily reacts with $NaNO₃$ at room temperature or below to give $FNO₂$, ClF, FClO₂, and O₂ as the main products. These are best rationalized in terms of the fluorine-oxygen exchange reaction 7, which generates FClO.
 $CIF_3 + \text{NaNO}_3 \rightarrow \text{NaF} + \text{FNO}_2 + \text{FCIO}$ (7)

$$
CIF3 + NaNO3 \rightarrow NaF + FNO2 + FClO
$$
 (7)

The thermally unstable FClO then undergoes either disproportionation (eq 8, or decomposition eq 9), with (8) and (9) contributing about equally.

$$
2FCIO \rightarrow CIF + FCIO2 \tag{8}
$$

2FCIO \rightarrow 2CIF + O₂ \tag{9}

$$
2FCIO \rightarrow 2CIF + O_2 \tag{9}
$$

In the presence of a large excess of NaNO₃ the $FNO₂$,¹⁰ FClO₂, and CIF products can react further with $NaNO₃$ according to $(10)-(12)$. $FNO₂ + NaNO₃ \rightarrow NaF + N₂O₅$

$$
FNO2 + NaNO3 \rightarrow NaF + N2O5
$$
 (10)

$$
FNO2 + NaNO3 \rightarrow NaF + N2O5 \t(10)
$$

FCIO₂ + NaNO₃ \rightarrow NaF + ClONO₂ + O₂ \t(11)
CIF + NaNO₃ \rightarrow NaF + ClONO₂ \t(12)

$$
CIF + NaNO3 \rightarrow NaF + ClONO2
$$
 (12)

MN03-C1F5 System. From a preparative point of view, the reactions of ClF₅ were most interesting. For IF₅ and BrF₅ a stepwise fluorine-oxygen exchange was possible,^{1,2,5} thus allowing the isolation of either XF_4O^- salts or the free XF_3O molecule. Since ClF₃O is rather difficult to synthesize,²³ a simpler synthesis of either $CIF₃O$ or its $CIF₄O⁻$ salts is highly desirable. Consequently, the reactions of all alkali-metal nitrates with $CIF₅$ were studied by using a large excess of the latter to suppress, if possible, the second fluorine-oxygen exchange step leading to $FCIO₂$. However, in all cases exclusively the two-step exchange reaction shown in (13) was observed. This suggests that the reaction of
 $2MNO_3 + CIF_5 \rightarrow 2MF + 2FNO_2 + FClO_2$ (13)

$$
2\text{MNO}_3 + \text{CIF}_5 \rightarrow 2\text{MF} + 2\text{FNO}_2 + \text{FCIO}_2 \tag{13}
$$

$$
M = Li, Na, K, Rb, Cs
$$

the intermediately formed ClF₃O with $MNO₃$ is much faster than either that of CIF_s with MNO₃ or the complexation of CIF₃O (eq 14). In one experiment a 10-fold excess of CsF was added to
 $MF + CIF_3O \rightarrow M^+ClF_4O$ (14)

$$
MF + CIF3O \rightarrow M^{+}CIF4O^{-} \qquad (14)
$$

the CsNO₃-ClF₅ reaction in an attempt to trap any intermediately formed $CIF₃O$ as $Cs⁺ClF₄O⁻$. Although no evidence for the formation of $Cs⁺ClF₄O⁻$ was obtained, a detailed material balance of the reaction revealed two very interesting side reactions.

In the first side reaction, a significant amount of $CIF₅$ had decomposed at 25 °C to give equimolar amounts of F_2 and ClF₃ with the latter being complexed by CsF as $Cs⁺ClF₄$. This side reaction had also been observed for $RbNO₃$ and $KNO₃$, but to a lesser extent. This decomposition of ClF₅ to ClF₃ and F₂ at room temperature was surprising in view of CIF_s normally being completely stable at this temperature.¹¹ Although extrapolation of the degree of dissociation of CIF₅ at 25 \degree C from the known equlibrium constant temperature relationship²⁴ gives a value of **0.087%,** this dissociation should require a significant activation energy and, therefore, not proceed under normal conditions. Our observation that in the presence of excess CsF more than 4% of the ClF₅ decomposed in 18 days at 25 °C while building up a fluorine pressure of about 340 Torr in the reactor, suggests that the alkali-metal fluorides (i) lower the activation energy required for the CIF₅ decomposition and (ii) effectively remove CIF_3 from the equilibrium given in (15), thereby shifting it to the right. The

$$
\text{CIF}_5 \rightleftharpoons \text{CIF}_3 + \text{F}_2 \tag{15}
$$

catalytic effect of alkali-metal fluorides for the backward reaction,

i.e. the formation of ClF₅ from ClF₃ and F₂, has previously been recognized, and advantage of this has been taken for the CIF5 synthesis¹¹ but to our knowledge has not been noted for the forward reaction.

The second side reaction observed for the CsNO₃ + ClF₅ + CsF system was the formation of some fluorine nitrate, FONO₂. This can readily be explained by the known^{16,25,26} reaction given in (16). The F_2 required for (16) is generated by (15).
CsNO₃ + $F_2 \rightarrow CsF + FONO_2$

$$
CsNO3 + F2 \rightarrow CsF + FONO2
$$
 (16)

MNO₃-FCIO₂ System. When a large excess of MNO₃ is used in (13), the $FCIO₂$ product can undergo further reaction with MN03. This was confirmed in a separate experiment between LiNO₃ and FClO₂, which reacted according to (17). The LiNO₃ + FClO₂ \rightarrow LiF + ClONO₂ + O₂ (17)

$$
LiNO3 + FClO2 \rightarrow LiF + ClONO2 + O2 (17)
$$

quantitative formation of equimolar amounts of CIONO₂ and O₂ suggested the yet unknown O_2C10NO_2 molecule as an unstable intermediate. An attempt was made to isolate this intermediate at low temperature by reaction 18. By the use of an excess of $NO_2^+NO_3^- + FClO_2 \rightarrow O_2ClONO_2 + FNO_2$ (18)

$$
102+NO3- + FClO2 \rightarrow O2ClONO2 + FNO2 (18)
$$

 $FCIO₂$, it was hoped that the only product of low volatility would be O_2C10NO_2 , thus allowing a convenient product purification and isolation. Unfortunately, reaction 18 required a reaction temperature of $0 °C$, well above the apparent thermal stability of the desired O_2C10NO_2 . Consequently, the observed products were again ClONO₂ and O_2 , formed according to (19). Since $NO_2^+NO_3^- + FClO_2 \rightarrow FNO_2 + ClONO_2 + O_2$ (19)

$$
NO_2^+NO_1^- + FClO_2 \rightarrow FNO_2 + ClONO_2 + O_2
$$
 (19)

this reaction was carried out in a Pyrex reactor to allow a lowtemperature spectroscopic identification of the reaction product, side reactions of $FCIO_2$ and N_2O_5 with the glass in the upper part of the reactor and each other also occurred, producing some SiF_4 and $NO₂ClO₄$.

Conclusion. All of the chlorine fluorides and oxyfluorides studied, except for the highly unreactive²³ $FCIO₃$, undergo facile fluorine-oxygen exchange with ionic nitrates. The observed reaction chemistry is in general agreement with that previously found9 for the analogous reactions with nitric acid, except for some minor deviations for $FCIO₂$, which are attributed to thermally unstable intermediates. Depending **on** the exact reaction conditions, these unstable intermediates can decompose to different products.

Comparison of the nitrate–CIF_s reactions with those of IF_5^5 and Br $\overline{F}_5^{1,2}$ shows a noteworthy difference. Whereas for IF₅ and BrF, the fluorine-oxygen exchange could be halted at the XF_3O or XF_4O^- stage, this was not possible for CIF_5 . This difference cannot be attributed to the thermal stability of the products $(CIF₃O)$ is thermally more stable than BrF_3O , but is most likely due to the extreme reactivity of $CIF₃O₂₃$

The alkali-metal fluoride catalyst decomposition of CIF_5 to CIF_3 and F_2 at room temperature was surprising and suggests a very low activation energy path for this reaction. It might possibly involve the attack of the free fluoride ion **on** a fluorine ligand of CIFs, followed by fluorine elimination. If this assumption is indeed correct, this catalysis should be generally applicable to other high oxidation state fluorides of highly electronegative elements.

Acknowledgment. We thank Dr. C. J. Schack for helpful discussions and the Office of Naval Research and the US. Army Research Office for financial support.

Registry No. C1F5, **13637-63-3;** C1F3, **7790-9 1-2;** CIF, **7790-89-8; 14545-72-3;** $FCIO_3$ **, 7616-94-6;** $LinO_3$ **, 7790-69-4;** N_2O_5 **, 10102-03-1;** RbF, **13446-74-7;** KF, **7789-23-3;** F2, **7782-41-4;** NaN03, **7631-99-4;** NO,-, **14797-55-8; FC102, 13637-83-7;** FCIO, **22363-68-4; ClONO2,** FNO2, **10022-50-1;** Cl20, **7791-21-1;** (212, **7782-50-5;** CSF, **13400-13-0;** KNO₃, 7757-79-1; KCIF₄, 19195-69-8; RbNO₃, 13126-12-0; CsNO₃, **7789-18-6;** RbCIF4, **15321-10-5;** CsClF4, **15321-04-7.**

⁽²⁴⁾ Bauer, H. F; Sheehan, D. F. *Inorg. Chem.* **1967,** *6,* **1736.**

⁽²⁵⁾ Yost, D. M.; Beerbower, A. J. Am. Chem. Soc. 1935, 57, 782.
(26) Viscido, L.; Sicre, J. E.; Schumacher, H. J. Z. Phys. Chem. (Munich) Viscido, L.; Sicre, J. E.; Schumacher, H. J. Z. Phys. Chem. (Munich) **1962**, 32, 182.