Fluorine-Oxygen Exchange Reactions in IF₅, IF₇, and IF₅O

Karl O. Christe,* William W. Wilson, and Richard D. Wilson

Received June 7, 1988

When reacted with alkali-metal nitrates, IF5 readily exchanges two fluorine ligands for a doubly bonded oxygen atom. In all cases MIF_4O salts (M = Li, K, Cs) and FNO₂ are formed as the primary products. The FNO₂ byproduct undergoes a fast secondary reaction with MNO3 to yield equimolar amounts of N2O5 and MF. The N2O5 decomposes to N2O4 and 0.5 mol of O2, while the MF, depending on the nature of M, does or does not undergo complexation with the excess of IF_5 . Pure MIF₄O salts, free of MF or MF-nIF₅ byproducts, were prepared from MF, I₂O₅, and IF₅ in either CH₃CN or IF₅ as a solvent. The new compounds LiIF₄O, NaIF₄O, RbIF₄O, and NOIF₄O were characterized by vibrational spectroscopy. It was also shown that, contrary to a previous report, FNO₂ does not form a stable adduct with IF₃ at temperatures as low as -78 °C. An excess of IF₇ reacts with MNO_3 (M = Li, Na) to give MF, FNO₂, IF₅, and 0.5 mol of O₂, but surprisingly no IF₅O. With CsNO₃, the reaction products are analogous, except for the CsF reacting with both the IF5 product and the excess of IF7 to give CsIF6 2IF5 and CsIF8, respectively. When in the IF₇ reaction an excess of LiNO₃, is used, the IF₅ product undergoes further reaction with LiNO₃, as described above. The IF₅O molecule was found to be rather unreactive. It does not react with either LiF or CsF at 25 or 60 °C or with LiNO₃ or CsNO₃ at 25 °C. At 60 °C with LiNO₃, it slowly loses oxygen, with the IF₅ product reacting to yield LiIF₄O, as described above.

Introduction

Recent work from our laboratory has shown that the nitrate ion is an excellent reagent for replacing two fluorine ligands by one doubly bonded oxygen atom in compounds such as BrF₅,^{1,2} XeF_{6} ,³ and $XeOF_{4}$.⁴ A logical extension of this work was a study of analogous fluorine-oxygen exchange reactions in iodine fluorides.

Although the reaction of KNO_3 with a large excess of IF₅ at its boiling point has previously been reported⁵ to yield NO₂ and KIF₆, no mention of any fluorine-oxygen exchange was made. Some evidence for hydrolytic fluorine-oxygen exchange in CsIF₆ was observed during its recrystallization from CH₃CN solution. It resulted in the isolation of small amounts of single crystals of $CsIF_4O$, which were used for a crystal structure determination.⁶ Attempts to utilize this reaction or the reactions of either MIO₃ or MIO_2F_2 (M = K or Cs) with IF₅ for the preparation of MIF₄O salts, however, resulted only in mixtures of MIF₄O and MIO₂ F_2 .⁷ Finally, pure KIF₄O was prepared from a 5:1 mixture of KF:I₂O₅ in a large excess of IF₅, and its vibrational spectra have been recorded.8

In the case of IF₇, fluorine-oxygen exchange has been achieved by its reaction with either silica at 100 °C, °Cab-O-Sil at ambient temperature,¹⁰ or Pyrex,^{11,12} I₂O₅,¹² or small amounts of water¹¹⁻¹³ at room temperature with IF₅O being the principal product. Most likely, the reactions with silica or Pyrex also involve the hydrolysis of IF7, with traces of HF continuously regenerating the required H_2O according to (1) and (2). However, most of these reactions

> $SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$ (1)

$$IF_7 + H_2O \rightarrow IF_5O + 2HF$$
 (2)

are slow and are difficult to control and scale up. It was, therefore,

- Wilson, W. W.; Christe, K. O. Inorg. Chem. 1987, 26, 916.
- Wilson, W. W.; Christe, K. O. Inorg. Chem. 1987, 26, 1573.
 Christe, K. O.; Wilson, W. W. Inorg. Chem. 1988, 27, 1296.
 Christe, K. O.; Wilson, W. W. Inorg. Chem., in press.
- (5) Aynsley, E. E.; Nichols, R.; Robinson, P. L. J. Chem. Soc. 1953, 623.
- Ryan, R. R.; Asprey, L. B. Acta Crystallogr. 1972, B28, 979. Milne, J. B.; Moffett, D. M. Inorg. Chem. 1976, 15, 2165. (6)
- Christe, K. O.; Wilson, R. D.; Curtis, E. C.; Kuhlmann, W.; Sawodny, (8) W. Inorg. Chem. 1978, 17, 533.
 (9) Gillespie, R. J.; Quail, J. W. Proc. Chem. Soc. 1963, 278.
 10) Schack, C. J.; Pilipovich, D.; Cohz, S. N.; Sheehan, D. F. J. Phys. Chem. 1968, 72, 4697.
- (10)
- (11)Alexakos, L. G.; Cornwell, C. D.; Pierce, S. B. Proc. Chem. Soc. 1963, 341.
- Bartlett, N.; Levchuk, L. E. Proc. Chem. Soc. 1963, 342.
- (13) Selig, H.; Elgad, U. J. Inorg. Nucl. Chem. Suppl. 1976, 91.

KNO₃ (J. T. Baker, 99.1%) were dried in vacuo at 120 °C for 1 day prior to their use. The CsNO₃ were prepared from Cs₂CO₃ and HNO₃ and dried in the same manner. The heavier alkali-metal fluorides (K, Rb,

interesting to examine whether nitrates could be used advantageously to achieve fluorine-oxygen exchange in iodine fluorides

Apparatus and Materials. The vacuum lines, handling techniques, and

spectrometers used in this study have been described elsewhere.³ Com-

mercial LiNO₃ (J. T. Baker, 99.7%), NaNO₃ (J. T. Baker 99.5%) and

and to prepare new iodine oxyfluoride salts.

Experimental Section

Cs) were dried by fusion in a platinum crucible and powdered in a drybox prior to use, while the lighter ones (Li, Na) were dried in vacuo at 120 °C. The N_2O_5 ,¹⁴ FNO₂,¹ FNO,¹⁵ IF₇,¹⁰ and IF₅O,¹⁰ were prepared by literature methods. The IF₅ (Matheson Co.) was treated with ClF₃ (Matheson) at 25 °C until the originally dark brown liquid was colorless. Pure IF₅ was obtained by fractional condenation at -64 °C in a dynamic vacuum. A commercial sample of I_2O_5 (Mallinckrodt), which actually was HI₃O₈, was converted to I₂O₅ by heating to 210 °C in a dynamic vacuum for 12 h. Its purity was verified by Raman spectroscopy.¹⁶ The CH₃CN (Baker, UV grade, <0.001% H₂O) was stored over Linde 3A molecular sieves prior to use.

Caution! CIF₃ is a powerful oxidizer and contact with organic materials must be avoided.

Reaction of LiNO₃ with an Excess of IF₇. A 30-mL stainless-steel cylinder was loaded in the drybox with LiNO₃ (4.32 mmol). On the vacuum line, IF₇ (12.94 mmol) was added at -196 °C. The cylinder was allowed to warm to room temperature slowly and was kept at this temperature for 3 days. It was recooled to -196 °C, and the noncondensible gas (2.16 mmol of O₂ based on PVT measurements and the weight change of the cylinder) was pumped off. The material volatile at 30 °C was separated by fractional condensation through a series of traps at -95, -126, and -196 °C. These traps contained the following materials: -196 °C, 4.26 mmol of FNO₂; -126 °C, 8.6 mmol of IF₇; -95 °C, 4.3 mmol of IF₅. In its Raman spectrum, the white solid residue (120 mg; weight calculated for 4.32 mmol of LiF = 112 mg) showed no evidence for the presence of unreacted LiNO₃.

Reaction of NaNO3 with an Excess of IF7. The reaction was carried out in the same manner as described for LiNO3. After 15 h at 25 °C, no noticeable reaction had occurred, but after 60 h at 60 °C, IF5, NaF, FNO₂, and 0.5 mol of oxygen were formed in quantitative yield.

Reaction of CsNO₃ with an Excess of IF7. A 75-mL stainless steel cylinder was loaded in the drybox with CsNO₃ (2.47 mmol). On the vacuum line, IF₇ (12.48 mmol) was added at -196 °C. The cylinder was kept for 3 days at 25 °C and then recooled to -196 °C. It contained 0.44 mmol of a gas (O₂) noncondensible at -196 °C. The material volatile at 25 °C was separated by fractional condensation through a series of traps kept at -45, -95, -126, and -196 °C while the cylinder was allowed

- (14) Wilson, W. W.; Christe, K. O. Inorg. Chem. 1987, 26, 1631.
 (15) Christe, K. O.; Wilson, R. D.; Goldberg, I. A. Inorg. Chem. 1976, 15,
- Sherwood, P. M. A.; Turner, J. J. Spectrochim. Acta, Part A 1970, 26A, (16)

Fluorine-Oxygen Exchange Reactions

to warm from -196 to 25 °C. The -45 °C trap was empty, the -95 and -126 °C traps contained IF₇ (11.07 mmol), and the -196 °C trap had FNO₂ (0.86 mmol). The white solid residue (764 mg; weight calculated for 0.54 mmol of CsIF₈, 1.61 mmol of CsNO₃, 0.27 mmol of CsIF₆-2IF₅, and 0.04 mmol of CsIF₆ = 770 mg) was shown by vibrational spectros-copy to consist of CsNO₃, CsIF₈,¹⁷ CsIF₆-2IF₅,¹⁸ and a small amount of CsIF₆.¹⁸

Reaction of an Excess of LiNO₃ with IF₇. A 30-mL stainless-steel cylinder was loaded with LiNO₃ (8.62 mmol) and IF₇ (1.90 mmol) at -196 °C. The cylinder was allowed to slowly warm to ambient temperature and was kept at this temperature for 3 days. It was recooled to -196 °C and the noncondensible gas (2.71 mmol of O₂) was pumped off. The material volatile at 30 °C consisted of N₂O₄ (3.47 mmol) and IF₅ (0.30 mmol). The white solid residue (601 mg; weight calculated for a mixture of 1.62 mmol of LiNO₃, 1.60 mmol of LiIF₄O, and 5.40 mmol of LiF = 613 mg) was shown by its infrared and Raman spectra to contain LiF₄O and unreacted LiNO₃.

Reaction of LiNO₃ with an Excess of IF₅. A 30-mL stainless-steel cylinder containing LiNO₃ (5.55 mmol) was cooled to -196 °C, and IF₅ (62.94 mmol) was added. The cylinder was kept for 15 h on a shaker at ambient temperature. After the cylinder was recooled to -196 °C, noncondensible material (0.51 mmol of O₂) was pumped off. The material volatile at 35 °C consisted of FNO₂ (0.34 mmol), N₂O₄ (1.03 mmol), and IF₅ (61.5 mmol). The white solid residue (589 mg; weight calculated for a mixture of 3.15 mmol of LiNO₃, 1.37 mmol of LiIF₄O, and 1.03 mmol of LiF = 553 mg) was shown by vibrational spectroscopy to contain LiIF₄O and unreacted LiNO₃.

Reaction of KNO₃ with an Excess of IF₅. A 30-mL stainless-steel cylinder containing KNO₃ (3.17 mmol) and IF₅ (42.45 mmol) was shaken for 12 h at 25 °C and then kept in an oven at 50 °C for 5 days. The cylinder was cooled to -196 °C and noncondensible material (0.75 mmol of O₂) was pumped off. The material volatile at 35 °C consisted of N₂O₄ (1.6 mmol), IF₅ (39.2 mmol) and a small amount of IONO₂ (see Results and Discussion). The white solid residue (850 mg; weight calculated for a mixture of 1.58 mmol of KIF₄O and 1.58 mmol of KIF₆, ¹⁸ and a small amount of unreacted KNO₃.

Reaction of CsNO₃ with an Excess of IF₅. When CsNO₃ was reacted with a 5-fold excess of IF₅ at 25 °C for 40 h, the main reaction products were N₂O₄, O₂, CsIF₄O, and CsIF₆·2IF₅¹⁸ in addition to unreacted IF₅ and CsNO₃, and a smaller amount of FNO₂. Harsher reaction conditions (70 °C for 6 days, 20-fold excess of IF₅, and vacuum pyrolysis of the solid product at 100 °C) resulted in complete conversion of CsNO₃ to CsIF₄O and CsIF₆.

Synthesis of LiIF₄O. A prepassivated 30-mL stainless-steel cylinder was loaded in the glovebox with LiF (4.85 mmol) and I₂O₅ (0.97 mmol). On the vacuum line IF₅ (31.84 mmol) was added at -196 °C. The cylinder was shaken for 20 h at ambient temperature and then kept at 50 °C for 3 days with occasional agitation. The material volatile at 25 °C was pumped off and consisted of IF₅ (29 mmol). The white solid residue (1030 mg; weight calculated for 4.85 mmol of LiIF₄O = 1095 mg) consisted of a mixture of mainly LiIF₄O, LiF, and IF₅O and a small amount of IO₂F. The IF₃O and IO₂F were concentrated in the material found in the bottom of the reactor, whereas essentially pure LiIF₄O was obtained from the upper walls of the reactor.

Synthesis of NOIF4O. A 30-mL stainless-steel cylinder was loaded in the drybox with I_2O_5 (1.43 mmol). On the vacuum line, IF₅ (154.8 mmol) and FNO (12.66 mmol) were added at -196 °C. The cylinder was placed on a shaker at ambient temperature for 2 days and then reconnected to the vacuum line. The volatile material was removed in a dynamic vacuum at 20 °C. After several hours of pumping, the weight of the residue (1.80 g) approached that predicted for 7.15 mmol of NOIF₄O (1.78 g), but after an additional 14 h of pumping further decreased to 886 mg, indicating that the complex was not completely stable at ambient temperature. Inspection of the residue in the reactor revealed in its bottom a white, sticky solid and on its upper walls a white, dry solid. More of the white, dry solid had also sublimed to a -196 °C cold trap used to collect the volatile material during the final stages of the pumping. Its Raman and infrared spectra were in good agreement with a predominantly ionic NO⁺IF₄O⁻ salt, whereas the sticky white solid exhibited, in addition to the NOIF₄O absorptions, broad bands in the range characteristic for iodine oxyfluorides and/or their polyanions.

Syntheses of MIF₄O (M = Li, Na, Rb) in CH₃CN Solution. All reactions were carried out in a similar manner by loading within the drybox a mixture of MF (5 mmol) and I₂O₅ (1 mmol), followed by about 20 mL of dry CH₃CN into a 12 in. long, $^{3}/_{4}$ in. o.d. Teflon FEP ampule, equipped with a stainless-steel valve and a Teflon-coated magnetic stir-

ring bar. On the vacuum line, IF₅ (3 mmol) was added at -196 °C, and the mixture was stirred at 25 °C for 20 h. All volatile material was removed in a dynamic vacuum at room temperature, leaving behind the desired MIF₄O salts in almost quantitative yield. The color of the solid products was sometimes off-white causing a strong fluorescence background when their laser Raman spectra were recorded.

The FNO₂-IF₅ System. A mixture of IF₅ (4.42 mmol) and FNO₂ (6.9 mmol) was kept in a 30-mL stainless-steel cylinder at 25 °C for 24 h. Then, the cylinder was cooled to -78 °C, and the volatile material (FNO₂, 6.7 mmol) was collected in a -196 °C trap. Therefore, FNO₂ does not form a stable adduct with IF₅ at temperatures as low as -78 °C. The slight discrepancy in the observed FNO₂ material balance is attributed to FNO₂ trapped in the solid IF₅.

Results and Discussion

Fluorine–Oxygen Exchange in IF₇. An excess of IF₇ reacted quantitatively with either $LiNO_3$ at ambient temperature or NaNO₃ at 60 °C according to (3). In the case of CsNO₃ for

$$MNO_3 + IF_7 \rightarrow MF + FNO_2 + IF_5 + 0.5O_2$$

$$M = Li, Na$$
(3)

3 days at 25 °C, reaction 3 proceeded with a yield of about 35%. However, the CsF formed in (3) underwent the secondary reactions (4)–(6), thus resulting in a mixture of $CsIF_{8,}^{17}$ CsIF₆·2IF₅,¹⁸

$$CsF + IF_7 \rightarrow CsIF_8$$
 (4)

$$CsF + 3IF_5 \rightarrow CsIF_6 \cdot 2IF_5$$
 (5)

$$C_{s}F + IF_{5} \rightarrow C_{s}IF_{6}$$
 (6)

CsIF₆,¹⁸ and unreacted CsNO₃ as the solid products. The fact that reaction 3 produced exclusively IF₅ and O₂ and no IF₅O was surprising in view of the previously observed ease of fluorine-oxygen exchange in BrF₅,^{1,2} XeF₆,³ and XeOF₄⁴ and the ready formation of IF₅O from IF₇ by controlled hydrolysis.⁹⁻¹³

One possible explanation for the lack of IF₅O observation in (3) could be that IF₅O is formed initially, but one of the starting materials or byproducts catalyzes its decomposition to IF₅ and O₂. To test this hypothesis, we have examined the stability of IF₅O in the presence of LiNO₃, CsNO₃, LiF, CsF, FNO₂, or LiNO₃ + FNO₂. There was no reaction of IF₅O with either LiF or CsF at 25 °C and LiF at 60 °C. Furthermore, neither LiNO₃ nor CsNO₃ reacted with a large excess of IF₅O at 25 °C. A temperature of 60 °C was required to achieve the very slow reaction (7). The formation of MIF₄O in (7) and the absence of any

$$2MNO_3 + IF_5O \rightarrow MIF_4O + MF + N_2O_4 + O_2$$

M = Li or Cs (7)

 $MIF_4O_2^{19}$ in the products suggest that IF_5O does not undergo a fluorine-oxygen exchange with MNO₃, but decomposes first to O_2 and IF_5 , which then reacts with MNO₃ (see below). For M in (7) being Cs, the secondary reaction 5, i.e. the formation of CsIF₆·2IF₅, was also observed. Since in the LiNO₃-IF₇ system IF₅ and O_2 are being rapidly generated at 25 °C, the slow decomposition of IF₅O at 60 °C in the presence of MNO₃ does not provide a satisfactory explanation for (3).

This conclusion was further supported by a ¹⁹F NMR study of the LiNO₃-IF₇ system between -20 and +25 °C. Besides a very broad signal at ϕ of about 170 due to IF₇, the only other signals observed were those of IF₅ (quintet at $\phi = 65$ and doublet at $\phi = 11$),²⁰ which grew with increasing temperature and time.

The effect of FNO₂ on the decomposition of IF₅O was also studied, but again no O₂ evolution was observed at 25 °C. Finally, the effect of FNO₂ in the presence of LiNO₃ at 25 °C was investigated. Since LiNO₃ is known¹⁴ to react with FNO₂ (eq 8), and the formed N₂O₅ slowly decomposes at 25 °C to N₂O₄ and O₂ (eq 9), a sequence such as (8)–(10) might explain the formation of IF₅ and O₂, as shown by the overall equation (11). Although

⁽¹⁷⁾ Adams, C. J. Inorg. Nucl. Chem. Lett. 1974, 10, 831.

⁽¹⁸⁾ Christe, K. O. Inorg. Chem. 1972, 11, 1215.

⁽¹⁹⁾ Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1981, 20, 2104.

⁽²⁰⁾ Dungan, C. H.; Van Wazer, J. R. Compilation of Reported F¹⁹ NMR Chemical Shifts; Wiley-Interscience: New York, 1970.

$$LiNO_3 + FNO_2 \rightarrow LiF + N_2O_5$$
(8)

$$2N_2O_5 \rightarrow 2N_2O_4 + O_2 \tag{9}$$

$$N_2O_4 + IF_5O \rightarrow N_2O_5 + IF_5 \tag{10}$$

net:
$$\text{LiNO}_3 + \text{FNO}_2 + \text{IF}_5\text{O} \rightarrow \text{LiF} + \text{N}_2\text{O}_4 + \text{IF}_5 + \text{O}_2$$
(11)

an experiment at 25 °C using a mole ratio of FNO₂:LiNO₃:IF₅O = 1:1.2:3.4 resulted in IF₅, N_2O_4 , and O_2 formation, the rate was very slow and even after 5 days only about half of the excess of IF₅O used had decomposed to IF₅ and O₂. This finding together with the above described NMR experiment, which showed no detectable IF₅O signal, mitigates against (11) being the cause for the rapid IF₅ formation in the LiNO₃-IF₇ system.

Finally, one might argue that in the $LiNO_3 + IF_7$ reaction the IF_7 acts simply as a fluorinating agent (eq 12), similar to the

$$MNO_3 + IF_7 \rightarrow MF + FONO_2 + IF_5$$
 (12)

known reaction of F_2 with alkali-metal nitrates.^{21,22} The FONO₂ could then undergo decomposition to FNO_2 and O_2 (eq 13). The

$$FONO_2 \rightarrow FNO_2 + 0.5O_2$$
 (13)

summation of (12) and (13) is identical with the observed reaction 3. Arguments against this reaction path are that (13) is extremely slow at 25 °C,²³ that the above NMR experiment showed no signal due to FONO₂,²⁴ and that the stronger fluorinating agents ClF₅²⁵ and BrF₅^{1,2} undergo fluorine-oxygen exchange with MNO₃ and not O_2 elimination.

Since IF₅O by itself is a stable molecule¹⁰ and there is no evidence for its catalytic decomposition at 25 °C (see above), the lack of IF₅O formation cannot be attributed to instability of the final product. This conclusion is further supported by the case of BrF₃O, which in spite of its well-known instability^{26,27} is formed in high yield from BrF₅ and LiNO₃.¹

Possible explanations for the different behavior of IF₇ and BrF₅ include (i) the difference in stability of their oxo anions, $IF_6O^$ and BrF_4O^- . Whereas BrF_4O^- can form stable salts,^{1,26,27} there is no evidence for the formation of IF_6O^- salts (see above). If these anions are crucial intermediates, required for the formation of IF₅O and BrF₃O, respectively, then the nonexistence of IF₆O⁻ could explain the lack of IF5O formation. Another explanation is that (ii) the mechanism, previously proposed¹ for the formation of BrF_3O from BrF_5 , involves an ionic intermediate formed by the attack of BrF_5 on the nitrate anion (eq 14 and 15).

A crucial part of this mechanism is the existence of a free valence electron pair on the bromine atom that can easily be shifted to open up a required coordination site for the approach of an oxygen atom. If, however, the halogen central atom of the halogen fluoride does not possess a free valence electron pair, as is the case in IF₇ or IF₅O, then the mechanism in (14) and (15) becomes more difficult and O_2 elimination (eq 3) might take place.

When IF_7 was reacted with a large excess of LiNO₃, reaction 3, i.e. formation of LiF, FNO₂, IF₅, and 0.5 mol of O₂, occurred

461. (27) Gillespie, R. J.; Spekkens, P. J. Chem. Soc., Dalton Trans. 1976, 2391. in quantitative yield. However, the products FNO₂ and IF₅ underwent further high-yield reactions (eq 16-18) with LiNO₃,

$$LiNO_3 + IF_5 \rightarrow LiIF_4O + FNO_2$$
 (16)

$$LiNO_3 + FNO_2 \rightarrow LiF + N_2O_5$$
 (17)

$$N_2O_5 \rightarrow N_2O_4 + 0.5O_2$$
 (18)

resulting in (19) as the overall reaction. Reaction 17 has previously

 $4\text{LiNO}_3 + \text{IF}_7 \rightarrow \text{LiIF}_4\text{O} + 3\text{LiF} + 2\text{N}_2\text{O}_4 + 1.5\text{O}_2$ (19)

been demonstrated,¹⁴ and the decomposition of N₂O₅ to N₂O₄ and O₂ (eq 18) is well-known.

Fluorine-Oxygen Exchange in IF5. In the case of IF5, which contains a free valence electron pair on iodine, fluorine-oxygen exchange was observed in high yield with LiNO₃, KNO₃ and $CsNO_3$ (eq 20). Reaction 20 was always accompanied by the

$$MNO_3 + IF_5 \rightarrow MIF_4O + FNO_2$$
 $M = Li, K, Cs$ (20)

secondary reactions (21) and (18). The fact that the secondary

$$MNO_3 + FNO_2 \rightarrow MF + N_2O_5$$
 (21)

reaction (21) always consumed as much MNO₃ as (20) did, strongly indicates that (21) must be considerably faster than (20). Furthermore, if the MF byproduct, formed in (21), can complex with the excess of IF_5 , reaction 22 or 23 ensues. These sequences

$$MF + IF_5 \rightarrow MIF_6 \qquad M = K$$
 (22)

$$MF + 3IF_5 \rightarrow MIF_6 \cdot 2IF_5$$
 $M = Cs$ (23)

explain the observed overall reactions (24)-(26). These results

$$2\text{LiNO}_3 + \text{IF}_5 \rightarrow \text{LiIF}_4\text{O} + \text{LiF} + \text{N}_2\text{O}_4 + 0.5\text{O}_2$$
 (24)

$$2KNO_3 + 2IF_5 \rightarrow KIF_4O + KIF_6 + N_2O_4 + 0.5O_2$$
 (25)

$$2C_{s}NO_{3} + 4IF_{5} \rightarrow C_{s}IF_{4}O + C_{s}IF_{6} \cdot 2IF_{5} + N_{2}O_{4} + 0.5O_{2}$$
(26)

are in excellent agreement with our expectations based on the known reaction chemistry of BrF51 and deviate from the previous report⁵ that KNO₃ reacts with a large excess of IF₅ to give KIF₆ and NO₂. Furthermore, the previous claim²⁸ that FNO₂ and IF₅ produce a white, solid $NO_2^+IF_6^-$ adduct of marginal stability at room temperature could not be verified. In our study it was shown that at temperatures as low as -78 °C, IF, does not form a stable adduct with FNO₂.

It should be noted that in one of the fractions of the volatile products from the KNO₃-IF₅ reactions a small amount of material was observed that, on the basis of its gas-phase infrared spectrum, is attributed to iodine mononitrate, IONO₂. It exhibited very strong absorption bands at 1686, 1271, and 795 cm⁻¹, that are assigned to the antisymmetric NO_2 stretch, the symmetric NO_2 stretch, and the NO₂ scissoring modes, respectively. The observed frequency trends are in excellent agreement with those predicted from the known series FONO₂, ClONO₂, and BrONO₂.

Alternate Syntheses of IF_4O^- Salts. The only previously known IF_4O^- salts had been $CsIF_4O^{6,7}$ and $KIF_4O^{.7,8}$ The successful synthesis of a stable $LiIF_4O$ salt in this study and the fact that the stability of this type of salt generally decreases with decreasing cation size suggested that all alkali metals and probably also NO⁺ should be capable of forming stable IF_4O^- salts. Since the above reactions of alkali-metal nitrates with IF5 always yielded other solid byproducts in addition to MIF_4O , the synthesis (eq 27)

$$5MF + I_2O_5 + 3IF_5 \xrightarrow{\text{solvent}} 5MIF_4O$$
 (27)

previously demonstrated⁸ for KIF₄O was used for the preparation of essentially pure IF_4O^- salts of Li, Na, Rb, and NO. With CH_3CN used as a solvent, the new compounds LiIF₄O, NaIF₄O, and RbIF₄O were prepared. Alternatively, an excess of IF₅ can be used as a solvent in (27). In this manner KIF_4O had previously

Yost, D. M.; Beerbower, A. J. Am. Chem. Soc. 1935, 57, 782. Viscido, L.; Sicre, J. E.; Schumacher, H. J. Z. Phys. Chem. (Munich) (22) 1962, 32, 182.

⁽²⁴⁾

Bruna, P. J.; Sicre, J. E. An. Asoc. Quim. Argent. 1971, 59, 205. Ghibaudi, E.; Colussi, A. J.; Christe, K. O. Inorg. Chem. 1985, 24, 2869. Christe, K. O.; Wilson, W. W. Unpublished results. Bougon, R.; Bui Huy, T. C. R. Seances Acad. Sci., Ser. C 1976, 283, (26)

⁽²⁸⁾ Aynsley, E. E.; Hetherington, G.; Robinson, P. L. J. Chem. Soc. 1954, 1119

Figure 1. Vibrational spectra of solid LiIF₄O.

been prepared,⁸ and LiIF₄O and NOIF₄O were synthesized in this study. On the basis of the vibrational spectra, the products prepared in CH₃CN solution appeared to be of better purity than those from IF₅ solution, which, in the case of LiIF₄O, showed some IF₃O and IO₂F as impurities. In the case of CH₃CN, however, the products sometimes were off-white, and trace residues of organic materials caused a strong fluorescence background when the laser Raman spectra were recorded. All of the alkali-metal IF₄O⁻ salts are white solids, stable at room temperature, while the NO⁺IF₄O⁻ salt slowly dissociates at room temperature.

¹⁹**F NMR Spectra.** The IF₄O⁻ salts were of low solubility in IF₅, but were quite soluble in CH₃CN. The IF₄O⁻ anion in CH₃CN showed in the ¹⁹F NMR spectrum a singlet at $\phi = 3-9$ ppm depending on the nature of the cation. The observation of a singlet confirms the presence of a pseudooctahedral IF₄O⁻ anion with four equivalent equatorial fluorine atoms.

For comparison, the ¹⁹F NMR spectrum of IF₃O in CH₃CN was also recorded and showed a broad singlet at $\phi = 14$.

Vibrational Spectra. The infrared and Raman spectra of solid LiIF₄O, NaIF₄O, KIF₄O, RbIF₄O, CsIF₄O, and NOIF₄O are shown in Figures 1–6, and the observed frequencies and their assignments are summarized in Table I. As in the case of the closely related BrF₄O⁻ anion,^{1,8} the number of observed Raman bands strongly depends on the cation and indicates strong interaction between anions and cations in the crystal lattice. As expected, this interaction is stronger for the smaller cations.

The assignments given in Table I are in very good agreement with those previously made for KIF₄O.⁸ The only correction proposed with respect to the previous work is the location of the band center for the antisymmetric IF₄ stretching vibration $\nu_7(E)$. The frequency of this band is difficult to determine from the infrared spectra because of the broadness of the bands in the 450-600-cm⁻¹ region. Since in LiIF₄O and NaIF₄O one of the degenerate components of this mode is also observable in the Raman spectra, which exhibit much narrower line widths, its frequency can be located more precisely. An averaged value of about 560 cm⁻¹ appears much more plausible for $\nu_7(E)$ than the previously proposed⁸ value of 482 cm⁻¹. This revised frequency for $\nu_7(E)$ of IF₄O⁻ is in much better agreement with the value of 608 cm⁻¹ found for isoelectronic XeOF₄^{29,30} and should alleviate 1 1

1

Т

[able]	vib	rational Spectr	a of M ⁺ I	F4O ⁻ Salts	N = M	O, Li, Na, K	, Rb, Cs)	Compared	to Those of	ſ XeOF4						
								op	sd freq, cm	1 ⁻¹ (rel inten	s)					
ä.	signs	for IF ₄ O ⁻	ž	0+1F40 ⁻		LiIF4O	Z	aIF4O	X	IF40	Rb	IF40	Ű	IF,O	XeO	4 ^b gas
5	point	group C40	R	RA	IR	RA	R	RA	R	RA	R	RA	R	RA	R	RA
1 , 1 ,	01,		868 vs	864 (10	00) 896 v	s 896 (100	895 vs	896 (100)	885 vs	883 (100)	895 vs	898 (100)	888 vs	889 (90)	926 s	926 m
<i>v</i> 2	^N tym	IF ₄ in phase	540-46	0 }530 (2()508 (2)))) 524 v	y 567 (90) y 519 (55)		541 (85)		540 (98)		531 (80)		528 (100)	576 m	577 vs
e."	δaym	IF4 out of		286 (1)		270 sh		284 (2)	279 ms ^a	278 sh				270 sh	294 s	286 mv
31 24	Paym	plane IF ₄ out of phase	540-460	0 {484 (17 460 sh	7) 465 v	\$ 496 (50) \$ 477 (43)	455 vs	(513 (30) (457 (30)	500 vs 460 s	(492 (30) (465 sh	570-440 vs. br	478 (60)	475 vs	475 (64)		543 m
۶ ″	δ _{asym}	IF4 out of				230 sh										
32 v6	δ _{sym}	IF4 in plane		225 (10	6	223 (10)		230 (6)		224 (5) ^a				220 sh		225 mv
5	Varym	IF,	540-46(vs. hr	0 540 sh	(600 s	h 604 (35)	{580 sh 540 ve	584 (20)	{580 sh		570-440 we br		530 vs		608 vs	
84	ş	OIF,	391 m 350 m	{393 (17 351 (5)	7) (271 T	a 357 (19)	350 ms	354 (20)	(380 m 366 sh ^a	366 (20)	365 m	370 (20)	360 ms	360 (25)	361 s	360 mv
64	δ _{urym}	IF4 in plane		159 (3)	_	151 (4)		150 [°] sh		140 (2) ^a						161 vw
۵Val	ues fro	m ref 8. ⁶ Val	lites from	ref 29 an	4 30											

⁽²⁹⁾ Tsao, P.; Cobb, C. C.; Claassen, H. H. J. Chem. Phys. 1971, 54, 5247.
(30) Begun, G. M.; Fletcher, W. H.; Smith, D. F. J. Chem. Phys. 1965, 42, 2236.

Figure 2. Vibrational spectra of solid $NaIF_4O$.

Figure 3. Vibrational spectra of solid KIF₄O.

Figure 4. Vibrational spectra of solid RbIF₄O.

the anomaly found for $f_{rr'}$ in the normal-coordinate analysis of IF₄O^{-,8}

The vibrational spectra of the solid product obtained from the reaction of FNO with I_2O_5 and IF_5 demonstrate that the compound has the predominantly ionic composition NO⁺IF₄O⁻. The infrared and Raman spectra show an intense band at about 2302 cm⁻¹, which is characteristic for NO⁺,³¹ in addition to bands that

Figure 5. Vibrational spectra of solid CsIF₄O.

are quite similar to those of the alkali-metal IF_4O^- salts. The slight frequency shifts are attributed to weak covalent contributions to the bonding.

Conclusions. The nitrate ion is a useful reagent for fluorineoxygen exchange in IF₅. The resulting IF₄O⁻ anion is capable of forming stable salts, even with cations as small as Li⁺. It also forms a marginally stable, highly ionic NO⁺ salt. With IF₇, the NO₃⁻ anion does not undergo a fluorine-oxygen exchange but causes a surprising reductive deoxygenation, which is attributed to the absence of a free valence electron pair on the iodine central atom of IF₇. With IF₅O, again no fluorine-oxygen exchange was observed. At elevated temperatures, oxygen loss occurred first, followed by the reaction of the resulting IF₅ with NO₃⁻ to give IF₄O⁻ salts.

Acknowledgment. We thank Dr. C. J. Schack for helpful discussions and the Office of Naval Research and the U.S. Army Research Office for financial support.

Registry No. LiNO₃, 7790-69-4; NaNO₃, 7631-99-4; KNO₃, 7757-79-1; CsNO₃, 7789-18-6; FNO₂, 10022-50-1; FNO, 7789-25-5; IF₇, 16921-96-3; IF₃O, 16056-61-4; I₂O₅, 12029-98-0; O₂, 7782-44-7; IF₅, 7783-66-6; NaF, 7681-49-4; CsIF₈, 54988-13-5; CsIF₆, 21F₅, 36949-61-8; CsIF₆, 20115-52-0; N₂O₄, 10544-72-6; LiIF₄O, 118867-55-3; IONO₂, 14696-81-2; KIF₄O, 59654-71-6; KIF₆, 20916-97-6; CsIF₄O, 36374-06-8; LiF, 7789-24-4; IF₃O, 19058-78-7; IO₂F, 28633-62-7; NOIF₄O, 118881-05-3; RbF, 13446-74-7.

⁽³¹⁾ Griffiths, J. E.; Sunder, W. A.; Falconer, W. E. Spectrochim. Acta, Part A 1975, 31A, 1207.