the time dependence of P_{max} could be observed for these excitation techniques. This fact, the solvent dependence observed for the P_{max} decay, and the existence of complexes that do not exhibit the time-dependent decay make unlikely that the time dependence of *P* results from an artifact such as sample heating.

The origin of the Krausz measurement problem is difficult to ascertain as was the case of our earlier rebuttal⁸ to his "correction"⁹ of our *P_{max}* data. Most likely, the problem is that the Krausz experimental system does not have an adequately fast response time. Note also that for our data the highest *P* occurs in **0-5-ns** time delay of the Boxcar Integrator and that the steady-state P_{max} is obtained after \sim 20 ns, not 300 ns as suggested by Krausz. Indeed, Krausz has incorrectly reproduced our data in his Figure **2.**

Finally, his suggestion in the last paragraph of his note that the origin of the deviation of the P_{max} from the 0.14 expected for a planar emitter-planar absorber is due to a "small amount of in-plane anisotropy due to environmental effects", a "red edge"

Additions and Corrections

effect, has been shown inconsistent^{5,8} with the solvent dependence of P_{max} .

In summary, our time-resolved P_{max} for a number of different complexes, in a variety of different solvents and under different excitation intensity conditions, cannot be argued away. Further independent excited-state resonance Raman results⁶ at various temperatures argue that the localization is intrinsic, consistent with the results of our time-resolved P measurement.^{2,7}

Our most recent experimental results1° at **7** K do demonstrate that slow spin-lattice relaxation can alter the emission decay characteristics for $Ru(bpy)_{3}^{2+}$ at this temperature such that a rise time can be measured. Subsequent analysis of these data and temperature-dependent (7-77 K) photoselection data¹¹ make apparent that the emitting state of the $Ru(bpy)₃²⁺$ species (glassy solution, dilute crystal) at *all temperatures* is a spin triplet with levels closely spaced (~ 0.1 cm⁻¹) as found in most π -electron organic heterocycles.

- **(IO)** Myrick, M. L.; Blakley, R. L.; De Armond, M. K. Chem. Phys. Lett.,
- in press. (1 **1)** Myrick, M. L.; Blakley, R. L.; De Armond, M. K. Chem. Phys. Lett., in press.

Additions and Corrections

1985, Volume **24**

Stuart Bristow, John H. Enemark,* C. David Garner,* Martin Minelli, Gareth A. Morris, and Richard B. Ortega: Synthesis of (1,2- Benzenediolato(2-)- O,O)oxobis(1-piperidinolato(1-)- O,N)molybdenum(VI), $[MoO(C₅H₁₀NO)₂(C₆H₄O₂)]$, and Structure Determination by Correlated **IH-l3C** Two-Dimensional NMR Spectroscopy and X-ray Crystallography.

Page 4074. In Table III, the chemical shift of $[MoO(C₅H₁₀NO)₂$ - $(3,5-t-Bu₂-cat)$] should be +20 ppm. We thank W. E. Newton et al. (Inorg. Chem. **1988,** 27, 359) for bringing the error in the sign of the chemical shift to our attention.- John H. Enemark

⁽⁸⁾ Blakley, **R. L.;** Myrick, M. L.; De Armond, M. K. Inorg. Chem. **1988,** 27, *589.*

⁽⁹⁾ Ferguson, J.: Krausz, E. Inorg. Chem. **1987, 26,** 1383.