the time dependence of P_{\max} could be observed for these excitation techniques. This fact, the solvent dependence observed for the P_{\max} decay, and the existence of complexes that do not exhibit the time-dependent decay make unlikely that the time dependence of P results from an artifact such as sample heating.

The origin of the Krausz measurement problem is difficult to ascertain as was the case of our earlier rebuttal⁸ to his "correction"⁹ of our P_{max} data. Most likely, the problem is that the Krausz experimental system does not have an adequately fast response time. Note also that for our data the highest *P* occurs in 0–5-ns time delay of the Boxcar Integrator and that the steady-state P_{max} is obtained after ~20 ns, not 300 ns as suggested by Krausz. Indeed, Krausz has incorrectly reproduced our data in his Figure 2.

Finally, his suggestion in the last paragraph of his note that the origin of the deviation of the P_{max} from the 0.14 expected for a planar emitter-planar absorber is due to a "small amount of in-plane anisotropy due to environmental effects", a "red edge"

Additions and Corrections

effect, has been shown inconsistent^{5,8} with the solvent dependence of P_{max} .

In summary, our time-resolved P_{max} for a number of different complexes, in a variety of different solvents and under different excitation intensity conditions, cannot be argued away. Further independent excited-state resonance Raman results⁶ at various temperatures argue that the localization is intrinsic, consistent with the results of our time-resolved P measurement.^{2,7}

Our most recent experimental results¹⁰ at 7 K do demonstrate that slow spin-lattice relaxation can alter the emission decay characteristics for Ru(bpy)₃²⁺ at this temperature such that a rise time can be measured. Subsequent analysis of these data and temperature-dependent (7-77 K) photoselection data¹¹ make apparent that the emitting state of the Ru(bpy)₃²⁺ species (glassy solution, dilute crystal) at *all temperatures* is a spin triplet with levels closely spaced (~0.1 cm⁻¹) as found in most π -electron organic heterocycles.

- (10) Myrick, M. L.; Blakley, R. L.; De Armond, M. K. Chem. Phys. Lett.,
- in press.
 (11) Myrick, M. L.; Blakley, R. L.; De Armond, M. K. Chem. Phys. Lett., in press.

Additions and Corrections

1985, Volume 24

Stuart Bristow, John H. Enemark,* C. David Garner,* Martin Minelli, Gareth A. Morris, and Richard B. Ortega: Synthesis of (1,2-Benzenediolato(2-)-O,O')oxobis(1-piperidinolato(1-)-O,N)molybdenum(VI), [MoO(C₅H₁₀NO)₂(C₆H₄O₂)], and Structure Determination by Correlated ¹H-¹³C Two-Dimensional NMR Spectroscopy and X-ray Crystallography.

Page 4074. In Table III, the chemical shift of $[MoO(C_5H_{10}NO)_2-(3,5-t-Bu_2-cat)]$ should be +20 ppm. We thank W. E. Newton et al. (*Inorg. Chem.* 1988, 27, 359) for bringing the error in the sign of the chemical shift to our attention.—John H. Enemark

⁽⁸⁾ Blakley, R. L.; Myrick, M. L.; De Armond, M. K. Inorg. Chem. 1988, 27, 589.

⁽⁹⁾ Ferguson, J.; Krausz, E. Inorg. Chem. 1987, 26, 1383.