a smaller chemical shift anisotropy than terminal carbonyls¹⁶ and thus can aid in the assignment of peaks. The overlap of spinning sidebands at 4.2-kHz spinning rate is such that sidebands due to the bridging carbonyls occur at higher field than those due to terminal carbonyls within a cluster of bands. In the sideband progressions at low field (to the left) in the spectrum at 4.2 kHz, the peaks assigned to bridging carbonyls diminish faster than those for the terminal carbonyls as expected. A more detailed analysis of the sideband unfortunately is not possible due to the broadness of the peaks.

An estimate of the average value for the carbon T_1 's in solid $Co_4(CO)_{12}$ by the inversion recovery method gives a value of approximately 500 ms. This is much shorter than typically observed for metal carbonyls^{17,18} and is consistent with scalar relaxation of the second kind, through coupling with rapidly relaxing ⁵⁹Co nuclei, as the dominant relaxation mechanism in the solid state.4

The prediction of the expected MAS ¹³C NMR spectrum for solid $Co_4(CO)_{12}$ for both dynamic and static structures is straightforward:

Case I. The observation of a single line in the MAS ¹³C NMR spectrum may only be observed when the 12 carbonyls in solid $Co_4(CO)_{12}$ are equivalent on the NMR time scale due to a dynamic process. Such a process can be envisioned by an interconversion of the C_{3v} structure in the solid state and a higher energy T structure. A structure of T symmetry has recently been predicted by Lauher for $M_4(CO)_{12}$ molecules.¹⁹ Since both of these structures are based on an icosahedral arrangement of carbonyl ligands, they may be interconverted by a rotation of the Co₄ core within the icosahedral array of carbonyl ligands. The magnitude of the rotation necessary to interconvert the structures is reported to be 12°.19

Case II. A more limited dynamic process may involve the rapid interconversion of the two orientations of the Co₄ core that are present in the crystalline solid. If rotation about the crystallographic 2-fold axis is rapid on the NMR time scale, then a six-line NMR spectrum is expected: four terminal carbonyl signals, one bridging carbonyl signal, and one signal that represents the time average of a bridging and terminal carbonyl. This type of reorientation has been proposed to occur in crystalline $Fe_3(CO)_{12}$.^{20,21}

Case III. A static structure would be expected to yield an NMR spectrum containing 12 carbonyl resonances: 9 in the terminal carbonyl region and 3 in the bridging region. Fewer than 12 signals could be obtained through accidental degeneracies. Although 12 distinct terminal carbonyl resonances have been recently observed in solid Os₃(CO)₁₂,²² such resolution cannot be anticipated for cobalt carbonyls due to the influence of the quadrupolar ⁵⁹Co nuclei.

The experimental spectra for solid Co₄(CO)₁₂ at room temperature and 68 MHz cannot conclusively distinguish between cases II and III. For case II to hold, the peak at 244.9 ppm must be due to a true bridging carbonyl and the peak at 236.1 ppm must represent the time average of a bridging and a terminal carbonyl. Although the latter is shifted upfield from the isotropic chemical shift of the bridging carbonyls for $Co_4(CO)_{12}$ (243.1 ppm⁴), this may be due to solid-state effects. For example, the range of chemical shifts for the axial carbonyls in solid osmium carbonyls is 8 ppm.22

For case III to hold, there must be degeneracies for both terminal and bridging carbonyl resonances. Without the observation

- Hanson, B. E. In Advances in Dynamic Stereochemistry; Gielen, M., (17)
- Ed.; Freund Publishing House: London, 1985; p 89. Duncan, T. M.; Yates, J. T., Jr.; Vaughan, R. W. J. Chem. Phys. 1980, (18)73, 975.
- (19) Lauher, J. J. Am. Chem. Soc. 1986, 108, 1521.
 (20) Dorn, H. C.; Hanson, B. E.; Motell, E. Inorg. Chim. Acta 1981, 54, L71.
 (21) Hanson, B. E.; Lisic, E. C.; Petty, J.; Iannaccone, G. Inorg. Chem. 1986,
- 25.4062 (22) (a) Aime, S.; Botta, M.; Gobetto, R.; Osella, D. Inorg. Chim. Acta 1988, 146, 151. (b) Hasselbring, L.; Lamb, H.; Dybowski, C.; Gates, B.;
- Rheingold, A. Inorg. Chim. Acta 1987, 127, L49. (c) Walter, T. H.; Reven, L.; Oldfield, E. J. Phys. Chem., in press

of more than four signals assignable to terminal carbonyls, a definitive argument for a static structure at room temperature cannot be made. (It should be noted that the presence of additional lines due to residual coupling with cobalt, although minimized at high field, is still a possibility; vide supra.)

In conclusion, the use of high-field MAS ¹³C NMR has allowed the observation of signal(s) due to bridging carbonyls as required by either a dynamic (case II) or static (case III) $Co_4(CO)_{12}$ structure. The failure to observe bridging carbonyl resonances at low field is most likely due to residual coupling to the quadrupolar cobalt nucleus and/or rapid and selective scalar relaxation of the carbonyl ligands by the cobalt.

Experimental Section

The MAS ¹³C NMR spectra were recorded at 68 MHz on a Varian 270-MHz spectrometer. The rotors were made of Delrin; no decoupling was used since the samples contain no protons. Tetracobalt dodecacarbonyl was prepared from $Co_2(CO)_8$ by refluxing in *n*-octane for 2 h. The sample was enriched in ¹³CO by stirring under ¹³CO in hexane at room temperature and recrystallized prior to use.

Acknowledgment. Support of this work at Virginia Tech was provided by the NSF (Grant DMR 8518364). We also thank the Italian MPI for financial assistance. We thank Professor Oldfield for a preprint of his work.

> Contribution from the Chemistry Division, Research Department, Naval Weapons Center, China Lake, California 93555

Failure To Observe Peroxide in YBa2Cu3O7, La1.8Sr02CuO4, La₂CuO₄, and La₂NiO₄ by Reaction with Permanganate

Daniel C. Harris* and Terrell A. Vanderah

Received June 16, 1988

The high-temperature superconductors YBa₂Cu₃O₇¹ and La_{1.8}Sr_{0.2}CuO₄ behave as oxidizing agents toward I⁻, Br⁻, Fe²⁺ when dissolved in acidic solution.²⁻⁴ In the absence of a good reducing agent, O2 (whose atoms are derived from the solid, not the solvent⁵) is evolved.^{1,6} Iodometric titrations used to measure the oxygen content of $YBa_2Cu_3O_{7-x}$, can be interpreted in terms of the formula $YBa_2Cu^{II}_{2+2x}Cu^{III}_{1-2x}O_{7-x}$ ($0 \le x \le 0.5$) (assuming that no O_2 is evolved in the procedure).^{1,2} The average copper oxidation state inferred from such titrations is in good agreement¹ with that deduced from the mass lost in the reaction of yttrium barium copper oxide with H_2 at elevated temperature, in which the products are Y_2O_3 , BaO, Cu, and H_2O .

It is possible that all copper in $YBa_2Cu_3O_{7-x}$ is Cu^{2+} and that some oxygen is present as peroxide. This gives the formula $YBa_2Cu^{II_3}(O^{2-})_{6+x}(O_2^{2-})_{0.5-x}$ ($0 \le x \le 0.5$), which is indistinguishable from $YBa_2Cu^{II_{2+2x}}Cu^{III_{1-2x}}O_{7-x}$ by iodometric titration or by reaction with H₂. On the basis of copper 2p X-ray photoelectron and X-ray absorption spectra, some studies concluded

- Harris, D. C.; Hewston, T. A. J. Solid State Chem. 1987, 69, 182-185. Appelman, E. H.; Morss, L. R.; Kini, A. M.; Geiser, U.; Umezawa, A.;
- Crabtree, G. W.; Carlson, K. D. Inorg. Chem. 1987, 26, 3237-3239. Shafer, M. W.; Penney, T.; Olson, B. L. Phys. Rev. B 1987, 36, (4)
- 4047-4049 (5)
- Shafer, M. W.; de Groot, R. A.; Plechaty, M. M.; Scilla, G. J. *Physica* C 1988, 153-155, 836-837.
- (a) Barns, R. L.; Laudise, R. A. Appl. Phys. Lett. **1987**, 51, 1373-1375. (b) Dou, S. X.; Liu, H. K.; Bourdillon, A. J.; Tan, N.; Zhiou, J. P.; (6)Sorrell, C. C.; Easterling, K. E. Mod. Phys. Lett. B 1988, 1, 363-367.

⁽¹⁶⁾ Gleeson, J. W.; Vaughan, R. W. J. Chem. Phys. 1983, 78, 5384.

⁽¹⁾ The formulas YBa₂Cu₃O₇, La_{1.8}Sr_{0.2}CuO₄, La₂CuO₄, and La₂NiO₄ are used for convenience in this paper. The oxygen content is actually variable, but close to that of the ideal formula.

that Cu^{3+} is present in $YBa_2Cu_3O_7$, $La_{1.85}Ba_{0.15}CuO_4$, and $Y_{0.4}Ba_{0.6}CuO_{4-x}$,⁷ while other studies failed to find Cu³⁺ in YBa₂Cu₃O₇⁸ and La_{1.85}Sr_{0.15}CuO₄.⁹ The oxygen 1s photoelectron spectrum of YBa₂Cu₃O₇ has been interpreted as indicating the presence of peroxide,^{10,11} but the spectrum of La_{1.85}Sr_{0.15}CuO₄ freshly cleaved under a vacuum of 5×10^{-11} Torr was interpreted in terms of oxide only.⁹ Another photoelectron study of YBa₂- Cu_3O_7 was inconclusive about the states of both copper and oxygen but did note that reactivity of the surface with the atmosphere made it difficult to deduce which features were inherent in the bulk material.¹² Studies of Co and Fe substitution for Cu¹³ and of La substitution for Ba¹⁴ in YBa₂Cu₃O₇ have been claimed to provide evidence for peroxide ion formation in the unsubstituted phase.¹⁵ Failure to observe Ni³⁺ in the photoelectron spectrum of La_2NiO_{4+x} is the basis for a claim that there is peroxide in this compound,¹⁶ while superoxide (O₂⁻) is purported to be present in La₂CuO_{4+x} on the basis of iodometric and gravimetric analysis.¹⁷ One study of the electron paramagnetic resonance spectrum of $YBa_2Cu_3O_7$ was interpreted as indicating that there is a hole localized on copper (Cu³⁺) at 4 K but that the hole is transferred to oxygen at and above 90 K.¹⁸ Other electron paramagnetic resonance experiments draw conclusions about the oxidation state of copper but make no inferences about oxygen.^{19,20} An elegant theoretical study proposes that the holes in YBa₂Cu₃O₇ and $La_{2-x}Sr_{x}CuO_{4}$ are localized on oxygen atoms but does not suggest O-O (superoxide or peroxide) bond formation.²¹

In the present work, we sought simple chemical evidence for the presence of peroxide in YBa2Cu3O7, La1.8Sr02CuO4, La2CuO4, La_2NiO_4 , and $BaCuO_2$. Peroxide is a well-known oxidizing agent that can oxidize Br^- , I^- , or Fe^{2+} . However, in the presence of a strong oxidant, peroxide can behave as a reducing agent:²²

$$5H_2O_2 + 2MnO_4^- + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O$$
 (1)

Our strategy was simply to dissolve the suspected compounds in acidic solutions containing permanganate and look for production of Mn^{2+} .

Experimental Section

General Information. Electron paramagnetic resonance (EPR) spectra were recorded on a Varian E-109 instrument at 9.5 GHz using a quartz

- (7) (a) Lengeler, B.; Wilhelm, M.; Jobst, B.; Schwaen, W.; Seebacher, B.; Hillebrecht, U. Solid State Commun. 1988, 65, 1545-1548. (b) Liang, N. T.; Lii, K. H.; Chou, Y. C.; Tai, M. F.; Chen, T. T. Solid State Commun. 1987, 64, 761-763.
- (8) Sarma, D. D.; Rao, C. N. R. Solid State Commun. 1988, 65, 47-49. Hill, D. M.; Meyer, H. M., III; Weaver, J. H.; Flandermeyer, B.; Capone, D. W., II Phys. Rev. B 1987, 36, 3979-3982.
- (10) Rao, C. N. R.; Ganguly, P.; Hegde, M. S.; Sarma, D. D. J. Am. Chem.
- Soc. 1987, 109, 6893-6895.
- (11) Rao, C. N. R.; Ganguly, P.; Gopalakrishnan, J.; Sarma, D. D. Mater. Res. Bull. 1987, 22, 1159-1163.
- (12) (a) Iqbal, Z.; Leone, E.; Chin, R.; Signorelli, A. J.; Bose, A.; Eckhardt, H. J. Mater. Res. 1987, 2, 768-774. (b) *Ibid.* 1988, 3, 196.
- (13) Tao, Y. K.; Swinnea, J. S.; Manthiram, A.; Kim, J. S.; Goodenough, J. B.; Steinfink, H. J. Mater. Res. 1988, 3, 248-256.
- (14) Manthiram, A.; Tang, X. X.; Goodenough, J. B. Phys. Rev. B 1988, 37, 3734-3737.
- (15) Goodenough, J. B. Mater. Res. Bull. 1988, 23, 401-412.
 (16) Buttrey, D. J.; Ganguly, P.; Honig, J. M.; Rao, C. N. R.; Schartman, R. R.; Subbanna, G. N. J. Solid State Chem., in press.
- (17) Schirber, J. E., Morosin, B.; Merrill, R. M.; Hlava, P. F.; Venturini, E. L.; Kwak, J. F.; Nigrey, P. J.; Baughman, R. J.; Ginley, D. S. Physica C 1988, 152, 121-123
- (18) Benakki, S.; Christoffel, E.; Goltzene, A.; Meyer, B.; Schwab, C.; Besnus, M. J.; Meyer, A.; Vilminot, S.; Drillon, M. J. Mater. Res. 1987, ?, 765-767
- (19) Shaltiel, D.; Genossar, J.; Grayevsky, A.; Kalman, Z. H.; Fisher, B.; Kaplan, N. Solid State Commun. 1987, 63, 987-990.
- (20) Durný, R.; Hautala, J.; Ducharme, S.; Lee, B.; Symko, O. G.; Taylor, P. C.; Zheng, D. J.; Xu, J. A. Phys. Rev. B 1987, 36, 2361–2363.
- (21) (a) Guo, Y.; Langlois, J.-M.; Goddard, W. A., III. Science 1988, 239, 896-899. (b) Chen, G.; Goddard, W. A., III. Science 1988, 239, 899-902.
- (22) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, England, 1984; p 746.

Table I. Reaction of Oxides with Permanganate^a

sample	µmol of sample	µmol of KMnO₄	mol of Mn ²⁺ found/mol of sample	appearance
YBa ₂ Cu ₃ O _{6.85}	9.3	0.107 ^b	4 × 10 ⁻⁴	very pale pink soln
$La_{1.8}Sr_{0.2}CuO_{4.0055}$	20.0	1.07	3 × 10 ⁻⁴	KMnO₄ purple color
$La_{1.8}Sr_{0.2}CuO_{4.0055}$	18.7	1.07	1 × 10 ⁻⁴	KMnO ₄ purple color
$La_{2}CuO_{4.0040}$	19.7	1.07	$<3 \times 10^{-5 d}$	wine red liq; dark solid
La ₂ NiO _{4.135}	20.7	1.07	2×10^{-3}	colorless liq; brown solid ^e
La ₂ NiO _{4.135}	21.0	5.35	<3 × 10 ^{-5 d}	colorless liq; brown solid
La ₂ NiO _{4.135} ^c	19.7	1.07	1 × 10 ⁻⁴	colorless liq; dark solid
BaCuO _{2.048}	32.5	0.107	0.11	colorless liq

^aSolid Sample was added to a solution containing 400 μ L of 0.5 M HClO₄ plus 50 μ L of KMnO₄. After mixing, the Mn²⁺ produced was measured by EPR. The control used to establish the expected Mn²⁺ EPR signal amplitude for complete reaction was a stoichiometric mixture containing 0.107 μ mol of KMnO₄, 0.267 μ mol of BaO₂, and the same concentration of HClO₄ used in all reactions in this table. ^bSimilar results were observed when 0.043 or 0.021 μ mol of KMnO₄ was used. ^cThe 400- μ L HClO₄ solution contained 21 mg of dissolved B(OH)₃. ^dEstimated limit of detection of Mn²⁺. ^e Identified as NiO by X-ray diffraction.

Table II. Interference with Peroxide/Permanganate Reaction^a

sample	µmol of sample	µmol of KMnO₄	% Mn ²⁺ found ^b	appearance
YBa ₂ Cu ₃ O _{6.85}	9.0	0.107	56, 58	pale yellow soln
YBa ₂ Cu ₃ O _{6.90}	9.5	0.107	74	pale yellow soln
$La_{1.8}Sr_{0.2}CuO_{4.0055}$	17.0	0.107	36	light pink soln
La2CuO4.0040	16.0	0.107	84	pale yellow soln
La2NiO4135	16.5	0.107	8	dark pink soln
CuSO₄	31	0.107	95	pale blue soln + BaSO₄
NiSO4	29	0.107	101	pale green soln + BaSO

^aSample was added to 0.267 μ mol of BaO₂ in 400 μ L of 0.5 M HClO₄. After dissolution of the sample, 50 µL of 2.14 mM KMnO₄ was added and the Mn²⁺ produced was measured by EPR. ^bReproducibility of signal amplitude due to cell positioning is approximately $\pm 5\%$.

flat cell at room temperature with 0.5-mT modulation amplitude and 71-mW microwave power. Raman spectra of powders in glass capillary tubes were obtained with a Spex 1-m double monochromator instrument using backscattered radiation. The Ar⁺ laser beam (300 mW) was passed through a filter to isolate the 514.5-nm line (reducing the power to 100 mW) and focused to a 0.1-mm spot at the sample. Spectra were the average of eight scans in the range 400-1200 cm⁻¹ with 3-cm⁻¹ resolution (1.5 cm⁻¹ per point, 1-s integration time per point). KMnO₄ solution (0.0214 M, standardized by titrating sodium oxalate²³) was prepared by dissolving 0.42 g of reagent grade material in 125 mL of distilled water, heating just below boiling for 1 h, cooling, and filtering through a medium-porosity glass frit into a brown screwcap bottle stored in the dark. The first 10 mL of filtrate was used to rinse the bottle and was discarded. From the amplitude of the EPR signal of Mn²⁺, it is estimated that 0.4% of the manganese in the KMnO₄ solution is Mn²⁺. Barium peroxide (Baker Analyzed Reagent from Allied Chemical Co.) was found to contain 83.3% (by mass) BaO_2 by dissolving in 1 M HClO₄ and titrating with KMnO₄.²⁴ KO₂ was obtained from Alfa. Hydrated CuSO₄ and NiSO₄ were commercial reagents.

Sample Preparation and Iodometric Analysis. All syntheses were carried out in alumina combustion boats using tube furnaces open to the air. Quantities of reagent grade reactants were calculated according to the desired metal stoichiometry in the product. Reactants and intermediate products were mixed by grinding at least 15 min with an agate mortar and pestle. All samples were placed into hot furnaces and airquenched, except as noted. Products were pure phases according to X-ray

⁽a) Harris, D. C. Quantitative Chemical Analysis, 2nd ed.; W. H. Freeman & Co.: New York, 1987; p 692. (b) Fowler, R. M.; Bright, H. A. J. Res. Natl. Bur. Stand. 1936, 15, 493. (23)

⁽²⁴⁾ Bassett, J.; Denney, R. C.; Jeffrey, G. H.; Mendham, J. Vogel's Textbook of Quantitative Inorganic Analysis, 4th ed.; Longman: Essex, England, 1978; p 355.

powder diffraction, except BaCuO₂, which contained a trace of BaCO₃. YBa₂Cu₃O₇ was prepared from Y₂O₃, BaCO₃, and CuO. Heating cycle sequence for sample 1 (6 g): 910 °C, 14 h; 930 °C, 3 h; 945 °C,

12 h; cooled in 7 h to 125 °C. Sequence for sample 2 (20 g): 875 °C, 24 h; cooled in 9 h to 25 °C; 945 °C, 12 h; cooled in 9 h to 25 °C;

La₂O₃, SrCO₃, CuO, and NiO were used to synthesize La_{1.8}Sr_{0.2}CuO₄, La₂CuO₄, and La₂NiO₄. (The last was prepared in a nickel combustion boat.) For all three compounds, the first two heating cycles were the same. Cycle 1: heated in 2 h to 900 °C, held 6 h; heated in 1 h to 1100 °C, held 12 h; cooled in 5 h to 455 °C. Cycle 2: heated in 2 h to 1100 °C, held 8 h; cooled in 6 h to 25 °C. The cuprates were phase-pure according to X-ray powder diffraction. The La₂NiO₄ required a third heating cycle: heated in 0.5 h from 814 to 1100 °C, held 24 h; cooled in 9 h to 25 °C.

 $BaCuO_2$ was prepared from $BaCO_3$ and CuO in two heating cycles. Cycle 1: heated in 2 h to 850 °C, held 48 h; cooled in 9 h to 25 °C. Cycle 2: heated over 2 h to 875 °C, held 12 h; cooled in 9 h to 25 °C.

The oxidizing capacity of each material was measured by the iodometric procedure of Appelman et al.³ The formulas $YBa_2Cu_3O_{6.90}$ (sample 1), $YBa_2Cu_3O_{6.85}$ (sample 2), $La_{1.8}Sr_{0.2}CuO_{4.0055}$, $La_2CuO_{4.0040}$, $La_2NiO_{4.135}$, and $BaCuO_{2.048}$ were calculated by assuming that the ratio of metal atoms in the product was the same as in the reaction mixtures.

Reaction of BaO₂ with KMnO₄. When BaO₂ in acid solution is titrated with KMnO₄, the permanganate is decolorized after each addition until the equivalence point is reached (eq 1). The amplitude of the Mn^{2+} EPR signal of the reaction solution increases in proportion to the volume of KMnO₄ added prior to the equivalence point. Beyond the equivalence point the solution is metastable. After a few minutes in the presence of excess KMnO₄, a brown precipitate forms. The Mn²⁺ EPR signal decreases until it is essentially gone when an additional 4 equiv of KMnO₄ has been added (total mol of KMnO₄/mol of BaO₂ = 2). This is consistent with the precipitation of brown barium manganate.²⁵

$$Mn^{2+} + 4MnO_4^{-} + 4H_2O = 5MnO_4^{2-} + 8H^+$$
(2)

$$Ba^{2+} + MnO_4^{2-} = BaMnO_4(s)$$
 $K_{sp} = 10^{-9.6}$ (3)

Because of this reaction, excess permanganate added to a suspected peroxide in the presence of barium will destroy the Mn^{2+} produced in the reaction between the peroxide and the KMnO₄. This required us to use small quantities of KMnO₄ for experiments with Ba-containing samples in Table I and a stoichiometric ratio of KMnO₄ and BaO₂ for experiments in Table II.

Procedure for the Reaction of Suspected Peroxides with KMnO₄. Standard 2.14 mM KMnO₄ was prepared by a fresh dilution of 21.4 mM KMnO₄ with distilled water. Fresh standard peroxide solution was prepared by dissolving a known mass of BaO₂ in 0.5 M HClO₄. In a typical experiment in Table I, 50 μ L of 2.14 mM KMnO₄ was added to 400 μ L of 0.5 M HClO₄ in an acid-rinsed test tube. Then 6 mg of YBa₂Cu₃O₇ was added and dissolved with swirling and effervescence. The amplitude of the Mn²⁺ EPR signal was then measured. A control was prepared by replacing the YBa₂Cu₃O₇ with CuSO₄ and adding a 25% excess of BaO₂ solution to react with all of the KMnO₄. A blank containing CuSO₄ but no BaO₂ gave a Mn²⁺ signal 1.5% as tall as the

Interference with the KMnO₄/Peroxide Reaction. In a typical experiment in Table II, 6 mg of YBa₂Cu₃O₇ was added to 400 μ L of 0.5 M HClO₄ solution containing 0.267 μ mol of freshly dissolved BaO₂. After dissolution, 50 μ L of 2.14 mM KMnO₄ solution was added and the Mn²⁺ produced was measured by EPR.

Attempted Reaction of Superoxide with KMnO₄. It is possible that the oxidized species in the compounds under study is superoxide (O_2^-) . To see if this could be detected with permanganate by a reaction analogous to eq 1, 1.0 mg of solid KO₂ was added to 10 mL of 0.0107 M KMnO₄ in 0.5 M H₂SO₄. Only a background level of Mn²⁺ was observed in the EPR spectrum, indicating no reduction of permanganate by superoxide. KO₂ decomposes very rapidly when added to water, so superoxide may not exist long enough in solution to react with permanganate.

Results

Reaction of Suspected Peroxides with KMnO₄. Figure 1 shows the EPR spectrum of a solution containing Cu^{2+} and Mn^{2+} at concentrations representative of those encountered in our experiments. The amplitude of the high-field Mn^{2+} peak near 360 mT was used to measure the Mn^{2+} produced in each reaction. When $YBa_2Cu_3O_7$, $La_{1.8}Sr_{0.2}CuO_4$, La_2CuO_4 , or La_2NiO_4 was dissolved in acid solution containing KMnO₄, very little Mn^{2+} was

Figure 1. EPR spectrum of 0.5 M HClO₄ solution containing 33.6 mM $CuSO_4$ and 0.235 mM Mn^{2+} from the reaction of BaO_2 with KMnO₄.

produced (Table I), indicating that very little peroxide was available. The quantity of KMnO₄ in the experiments with YBa₂Cu₃O₇ was kept low because excess permanganate reacts with Mn²⁺ in the presence of Ba²⁺ to precipitate BaMnO₄ (eq 2 and 3). A low concentration of KMnO₄ allows us to place a small upper limit on the amount of peroxide that could be in the sample. For example, in the first line of Table I, 9.3 μ mol of YBa₂Cu₃O₇ does not completely convert 0.107 μ mol of KMnO₄ to Mn²⁺. Therefore, there must be less than 2.5 × 0.107 = 0.268 μ mol of peroxide present in the YBa₂Cu₃O₇ (on the basis of the stoichiometry of eq 1). This corresponds to <0.029 mol of peroxide/mol of YBa₂Cu₃O₇.

When Na_2O_2 is dissolved in acid, some oxygen is lost unless boric acid is present to trap all of the peroxides as a "perborate".²⁴ Titration of the perborate with KMnO₄ then gives the total peroxide in the original sample. To see if peroxide in our compounds could be trapped with boric acid, two experiments in Table I (with $La_{1.8}Sr_{0.2}CuO_4$ and La_2NiO_4) included boric acid. No significant amount of peroxide was observed.

BaCuO₂ is the only compound in Table I that did consume all of the KMnO₄. In an iodometric titration, 1 mol of BaCuO₂ consumed 0.095 mol of electrons. In a titration of BaCuO₂ by KMnO₄, 1 mol of BaCuO₂ donated 0.029 mol of electrons. This suggests that both Cu³⁺ and peroxide are present in the sample. The peroxide could simply be a trace of BaO₂ (too little to be observed by X-ray diffraction) formed as a byproduct of the preparation.

Interference with the Peroxide/Permanganate Reaction. YBa₂Cu₃O₇, La_{1.8}Sr_{0.2}CuO₄, La₂CuO₄, or La₂NiO₄ was dissolved in acid solution containing standard peroxide. When KMnO₄ was added to each solution, less Mn^{2+} than expected was observed (Table II). Neither CuSO₄ nor NiSO₄ had this effect. Control experiments showed that every permutation of order of addition of YBa₂Cu₃O₇, BaO₂, and KMnO₄ gave the full expected amount of Mn²⁺ unless YBa₂Cu₃O₇ was added after BaO₂ and before KMnO₄. It appears that YBa₂Cu₃O₇, La_{1.8}Sr_{0.2}CuO₄, La₂CuO₄, and La₂NiO₄ partially react with H₂O₂ and destroy it as they dissolve.

Discussion

The failure to detect peroxide in YBa₂Cu₃O₇, La_{1.8}Sr_{0.2}CuO₄, La₂CuO₄, and La₂NiO₄ implies either that (1) there is no discrete peroxide liberated into solution as the compounds dissolve or (2) peroxide present in the solids is destroyed at the surface of the dissolving solid before reaction with permanganate can occur. The compounds YBa₂Cu₃O₇, La_{1.8}Sr_{0.2}CuO₄, La₂CuO₄, and La₂NiO₄ all appeared to react with peroxide in solution, whereas CuSO₄ and NiSO₄ did not (Table II). Iodometric titrations described in the Experimental Section show that each of the reactive compounds contains some oxidized species, whereas CuSO₄ and NiSO₄ do not. If the oxidized species in the solids is peroxide already present in the solution. If the oxidized species is Cu³⁺ or Ni³⁺, it may directly oxidize peroxide to O₂, as does MnO₄⁻.

If there were discrete peroxide species in YBa₂Cu₃O₇, one would expect to observe the O-O stretching mode in the Raman spec-

⁽²⁵⁾ Schlesinger, H. I.; Siems, H. B. J. Am. Chem. Soc. 1924, 46, 1965-1978.

trum. This occurs in the range 760-950 cm⁻¹ in simple ionic peroxides²⁶ and in the range 800-940 cm⁻¹ in a variety of transition metal-peroxo complexes.²⁷ The superoxide O-O stretch is observed at 1140–1150 cm⁻¹ in KO₂ and RbO₂.²⁸ There is now a multitude of contradictory Raman spectra of YBa₂Cu₃O₇ in the literature,²⁹ but none exhibit bands in the peroxide stretching region. One single paper³⁰ reports a weak, broad band in the superoxide region near 1100 cm⁻¹, but the spectrum in this report is not representative of the spectra in other reports.²⁹ It is difficult to obtain reliable Raman spectra of highly absorbing black solids with visible light, and the variable literature results may reflect different surface impurities on individual samples. We attempted to record the Raman spectrum of La₂NiO_{4.135}, whose oxidized species has been assigned as peroxide.¹⁶ Only a very weak peak at 996 cm⁻¹ was observed at the same position as a weak background signal present in the glass capillary cell. There are no conclusive Raman data supporting the assignment of peroxide species in the solid state.

In conclusion, our experiments offer no support for the idea that peroxide is present in YBa₂Cu₃O₇, La_{1.8}Sr_{0.2}CuO₄, La₂CuO₄, or La_2NiO_4 . The destruction of peroxide in solution when these compounds dissolve might be indicative of Cu³⁺ or Ni³⁺.

Acknowledgment. We are grateful to Kathy Kanes and Sunney Chan of the California Institute of Technology for the Raman experiments and to Peter Morgan of the Rockwell Science Center for helpful discussions.

Registry No. YBa2Cu3O6.85, 110584-09-3; La1.8Sr0.2CuO4, 107499-44-5; La2CuO4, 12053-92-8; La2NiO4.14, 119325-54-1; BaCuO2.05, 119325-55-2; Y₂O₃, 1314-36-9; BaCO₃, 513-77-9; CuO, 1317-38-0; La₂O₃, 1312-81-8; SrCO₃, 1633-05-2; NiO, 1313-99-1; BaO₂, 1304-29-6; KMnO₄, 7722-64-7; KO₂, 12030-88-5; YBa₂Cu₃O_{6.90}, 108470-72-0; CuSO₄, 7758-98-7; NiSO₄, 7786-81-4.

- (26) (a) Evans, J. C. Chem. Commun. 1969, 682-683. (b) Eysel, H. H.; Thym, S. Z. Anorg. Allg. Chem. 1975, 411, 97-102.
- (27) Adams, D. M. Metal-Ligand and Related Vibrations; St. Martin's (21) Honris, D. M. Hendra 2018 and Marken Friender Friender Strender St
- 278-279.
- (29) (a) Burns, G.; Dacol, F. H.; Freitas, P.; Plaskett, T. S.; König, W. Solid State Commun. 1987, 64, 471–476. (b) Kirillov, D.; Collman, J. P.; McDevitt, J. T.; Yee, G. T.; Holcomb, M. J.; Bozovic, I. Phys. Rev. B **1988**, 37, 3660–3663. (c) Macfarlane, R. M.; Rosen, H.; Seki, H. Solid State Commun. **1987**, 63, 831–834. (d) Dai, Y.; Swinnea, J. S.; Steinfink, H.; Goodenough, J. B.; Campion, A. J. Am. Chem. Soc. 1987, 109, 5291-5292. (e) Liu, R.; Merlin, R.; Cardona, M.; Mattausch, Hj.; Bauhofer, W.; Simon, A.; Garcia-Alvarado, F.; Moran, E.; Vallet, M.; F. Solid State Commun. 1987, 64, 477-481. (h) Sanjurjo, J. A.; Lopez-Cruz, E.; Katiyar, R. S.; Torriani, I.; Rettori, C.; Davidov, D.; Feiner, 1. Solid State Commun. 1987, 64, 505-508.
- (30) Czerwosz, E.; Bukowski, J.; Przyslupski, P.; Igalson, J.; Pajaczkowska, A.; Rauluszkiewicz, J. Solid State Commun. 1987, 64, 535-536.

Contribution from the Department of Chemistry, Texas A&M University, College Station, Texas 77843

Hydroxide-Induced Reduction of Elemental Sulfur (S8) to the Trisulfur Anion Radical (S₃.-)

Masashi Hojo and Donald T. Sawyer*

Received August 8, 1988

In aprotic solvents hydroxide ion reacts with elemental sulfur (S_8) to give the trisulfur anion radical $S_3^{\bullet-}$ as the major product. The reaction stoichiometry (eight ⁻OH per three S₈ to give eight

Scheme I

(a)
$$S_{B} + {}^{-}OH \xrightarrow{h} [HOS_{7}S^{-}] \rightarrow HOS_{4}S^{6} + S_{3}^{6-} (\lambda_{max} = 618 \text{ nm})$$

 $(k_{1})_{Me_{2}SO} = 700 \text{ M}^{-1} \text{ s}^{-1}$
 $(HOSSOH] + S_{3}^{6-}$
 $(HOSSOH] + S_{3}^{6-}$
 $1/4S_{B} + HOOH \frac{Me_{2}SO}{-OH}$
 $Me_{2}SO_{2} + HOH$
 $3S_{B} + 8^{-}OH \rightarrow 8S_{3}^{6-} + 4HOOH$

$$4S_6^{2^-}$$

 $2S_3^{\bullet^-} \implies S_6^{2^-} \quad \kappa_D = 1.1 \times 10^2 \text{ M}^{-1}$

(b)
$$2S_6^{2^-}$$
 + 2⁻OH - [2HOSS⁻ + $2S_4^{2^-}$] - HOOH +
 $3S_4^{2^-}$ (λ_{max} = 420 nm)

(c)
$$S_3^{\bullet^-} + 2HOOH - {}^{3}_{8}S_8 + O_2^{\bullet^-} + 2HOH$$

 $2O_2^{\bullet^-} + HOH - O_2 + HOO^- + {}^{-}OH$
 $2S_3^{\bullet^-} + HOH - {}^{1}_{8}S_8 \bullet HS_3^- + {}^{-}OH$
(d) $2S_3^{\bullet^-} + O_2 + HOH - {}^{6}_{/_{8}}S_8 + HOO^- + {}^{-}OH$
 $M_{\bullet_2}SO M_{\bullet_2}SO$

(e)
$$2S_3^{\bullet-} + 2H^{+} - [HS_6H] - \frac{1}{2}S_8 + HSSH$$

 S_3) is consistent with the results for the electrochemical reduction of S_8 in dimethyl sulfoxide^{1,2} and in acetonitrile.³

$$3S_8 + 8e^{-\frac{-0.6 \text{ V vs SCE}}{2}} 8S_3^{--}$$
 (1)

$$2S_3^{\bullet-} \rightleftharpoons S_6^{2-}$$
 $K_D = 1.1 \times 10^2 (25 \text{ °C})$ (2)

Dissolution of alkali polysulfides in hexamethylphosphoramide also yields substantial amounts of S₃.-.4

Although the hydroxide ion induced formation of $S_3^{\bullet-}$ from S_8 is unique in our experience, several previous observations were brought to our attention by a helpful reviewer. A blue color was noted when elemental sulfur was heated with alkaline water^{5,6} and when S_8 was dissolved in KOH-acetone solutions.⁷ This blue species, which has been identified as $S_3^{-,1,8}$ also resulted when partially hydroxylated MgO was combined with S8.9 Polysulfides (S_n^{2-}) in aprotic solvents undergo dissociation and disproportionation reactions to yield $S_3^{\bullet,10}$ and it is formed from the reaction of HS⁻ with S₈.¹¹

A recent study¹² has demonstrated that hydroxide ion (⁻OH) in acetonitrile reduces anthraquinone to its anion radical (AQ + $e^- \rightleftharpoons AQ^{\bullet-}; E^{\circ'}_{MeCN} = -0.82$ V vs SCE).

$$AQ + OH \rightarrow AQ + \frac{1}{2}HOOH$$
(3)

- (1) Martin, R. P.; Doub, W. H., Jr.; Roberts, J. L., Jr.; Sawyer, D. T. Inorg. Chem. 1973, 12, 1921-1925
- Bonnaterre, R.; Cauquis, G. J. Chem. Soc., Chem. Commun. 1972, 293. (3) Fujinaga, T.; Kuwamoto, T.; Okazaki, S.; Hojo, M. Bull. Chem. Soc.
- Jpn: 1980, 53, 2851-2855
- Chivers, T.; Drummond, I. Inorg. Chem. 1972, 11, 2525-2527.
- Geitner, C. F. Pharm. Ann. 1864, 129, 350. Lewis, G. N.; Randall, M.; Bichowsky, F. R. V. J. Am. Chem. Soc. 1918, 40, 356-362. (6)
- Urbanski, T. Talanta 1962, 9, 799-800. Chivers, T. Nature 1974, 252, 32-33. (7)
- (8)
- Lunsford, J. H.; Johnson, D. P. J. Chem. Phys. 1973, 58, 2079. Seel, F.; Güttler, H.-J.; Simon, G.; Wieckowski, A. Pure Appl. Chem. (10)
- 1977, 49, 45-54. (11)Chivers, T.; Edelmann, F.; Richardson, J. F.; Schmidt, K. J. Can. J.
- Chem. 1986, 64, 1509-1513. Roberts, J. L., Jr.; Sugimoto, H.; Barrette, W. C., Jr.; Sawyer, D. T.
- (12)J. Am. Chem. Soc. 1985, 107, 4556-4557.