FXeOIOF₄ and Xe(OIOF₄)₂: Preparation and Study by ¹²⁹Xe and ¹⁹F NMR Spectroscopy and Raman Spectroscopy and NMR Characterization of $LXeOIOF_4$ (L = $-OTeF_5$, $-OSO_2F$)

Robert G. Syvret¹ and Gary J. Schrobilgen*

Received September 29, 1988

The novel xenon(II) derivatives FXeOIOF₄ and Xe(OIOF₄)₂ have been shown by their solution ¹⁹F and ¹²⁹Xe NMR spectra to result from the reaction between IO₂F₁ and XeF₂ in SO₂ClF, CFCl₃, and BrF₅ solvents. The covalently bonded -OIF₄O groups are shown to be equilibrium mixtures of their cis and trans isomers and are oxygen-bonded to xenon. The solid derivative cis,cis-Xe(OIOF₄)₂ has been isolated from the acid displacement reaction between Xe(OTeF₅)₂ and the strong protonic acid cis/trans-HOIOF₄. In addition, a mixture of cis- and trans-FXeOIOF₄ was prepared by the reaction of stoichiometric amounts of IO_2F_3 and XeF₂ in HF solvent. Both *cis*- and *trans*-FXeOIOF₄ and *cis*, *cis*-Xe(OIOF₄)₂ were characterized by ¹⁹F and ¹²⁹Xe NMR spectroscopy and low-temperature Raman spectroscopy. A comparison of 129 Xe NMR chemical shifts among Xe(II) compounds, including the mixed derivatives F40IOXeOSO₂F and F40IOXeOTeF₅, indicates the effective group electronegativity order is $-F > -OSO_2F > trans-OIF_4O > cis-OIF_4O > -OTeF_5$.

Introduction

In addition to the simple binary fluoride XeF_{2} ,²⁻⁶ a number of ligands are known to form covalent derivatives with Xe(II). Included in this list of ligands are $-OSO_2F$, $^7 -OTeF_3$, $^{8.9} -OPOF_2$, $^{10} -OSeF_5$, $^{11} -OClO_3$, $^{7.12} -OCOCF_3$, $^{13} -ONO_2$, $^{14} -N(SO_2F)_2$, 15,16 and $-N(SO_2CF_3)_2$ and most recently, the novel nitrogen-bonded initial sections of $OCCF_3$. nitrile cations ($RC \equiv N - XeF^+$ ($R = H, CH_3, CH_2F, C_2H_5, CF_3$, The cations ($R = N - XeF^{+}$ (R = H, CH_3 , CH_2F , C_2H_5 , CF_3 , C_2F_5 , C_3F_7 , C_6F_5),^{18,20} the perfluoropyridine cations C_5F_5N —XeF⁺ and $4 - CF_3C_5F_5N$ —XeF⁺,¹⁹ and the *s*-trifluorotriazine cation $s - C_3F_3N_2N$ —XeF⁺.²⁰ With the exception of the latter cations, nearly all of these ligand groups satisfy the same set of criteria;²¹ namely, they form moderate to strong monoprotic acids, positive chlorine derivatives, and stable alkali-metal salts. All have high group electronegativities and are resistant to oxidation by Xe(II).

Although the $-OIF_4O$ group has been little studied with respect to derivative formation, the aforementioned criteria for stable xenon(II) derivatives have been met from among the limited list of previously known –OIF₄O group derivatives, namely, HOIO- F_4 ,²²⁻²⁴ K⁺[IO₂F₄]^{-,25} Cs⁺[IO₂F₄]^{-,24,26} FOIOF₄,^{24,27} and ClOI-

- (1) Present address: Corporate Science and Technology Center, Air

- 1927.
- (5) Smith, D. F. Science 1963, 140, 899.
- Weeks, J. L.; Chernick, C. L.; Matheson, M. S. J. Am. Chem. Soc. 1962, 84, 4612. (6)
- (7) Bartlett, N.; Wechsberg, M.; Sladky, F. O.; Bulliner, P. A. J. Chem. Soc., Chem. Commun. 1969, 703.

- Soc., Cnem. Commun. 1969, 703.
 (8) Sladky, F. Angew. Chem., Int. Ed. Engl. 1969, 8, 373.
 (9) Sladky, F. Angew. Chem., Int. Ed. Engl. 1969, 8, 523.
 (10) Eisenberg, M.; DesMarteau, D. D. Inorg. Chem. 1972, 11, 1901.
 (11) Seppelt, K. Angew. Chem., Int. Ed. Engl. 1972, 11, 723.
 (12) Wechsberg, M.; Bulliner, P. A.; Sladky, F. O.; News, R.; Bartlett, N. Inorg. Chem. 1972, 11, 3063.
 (13) Sladky, F. Moarteh, Chem. 1970, 101, 1571.
- Sladky, F. Monatsh. Chem. 1970, 101, 1571. (13)
- (14) Eisenberg, M.; DesMarteau, D. D. Inorg. Nucl. Chem. Lett. 1970, 6,
- (15) Sawyer, J. F.; Schrobilgen, G. J.; Sutherland, S. J. J. Chem. Soc., Chem. Commun. 1982, 210.
- Sawyer, J. F.; Schrobilgen, G. J.; Sutherland, S. J. Inorg. Chem. 1982, (16)21. 4064.
- Foropoulos, J.; DesMarteau, D. D. J. Am. Chem. Soc. 1982, 104, 4260.
- (18) Schrobilgen, G. J.; Emara, A. A. A. J. Chem. Soc., Chem. Commun. 1987, 1644.
- (19) Schrobilgen, G. J.; Emara, A. A. A. J. Chem. Soc., Chem. Commun. 1988, 257
- (20) Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1988, 1506.
- (21) DesMarteau, D. D.; LeBlond, R. D.; Hossain, S. F.; Nothe, D. J. Am. Chem. Soc. 1981, 103, 7734.
- Engelbrecht, A.; Peterfy, P. Angew. Chem., Int. Ed. Engl. 1969, 8, 768. Engelbrecht, A.; Peterfy, P.; Schandara, E. Z. Anorg. Allg. Chem. 1971, 384, 202. (23)
- (24) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1981, 20, 2104.
- (25) Gillespie, R. J.; Krasznai, J. P. Inorg. Chem. 1977, 16, 1384.

OF₄.²⁴ Preliminary solution NMR and solid-state Raman studies relating to the formation of the xenon(II) and xenon(IV) derivatives $FXeOIOF_4$, $Xe(OIOF_4)_2$, and $F_3XeOIOF_4$ and the isolation of $cis, cis-Xe(OIOF_4)_2$ have been reported in our earlier communication.²⁸ The details of preliminary investigations relating to the Xe(II) derivatives as well as the previously unreported isolation of $FXeOIOF_4$ are discussed in the present paper.

Results and Discussion

Identification of Xenon(II) Derivatives of -OIF₄O in Solution by ¹²⁹Xe NMR Spectroscopy: The XeF_2/IO_2F_3 System. Varying proportions of XeF_2 and IO_2F_3 were initially investigated in SO₂ClF, CFCl₃, and BrF₅ solvents by ¹²⁹Xe and ¹⁹F NMR spectroscopy. Iodine dioxide trifluoride inserts into the Xe-F bond of XeF₂ to give pseudooctahedral cis- and trans-OIF₄O oxygenbonded derivatives of xenon(II) (structures I-V) according to eq

Established trends in ¹²⁹Xe chemical shifts²⁹ and 1 and 2.

$$IO_2F_3 + XeF_2 \xrightarrow{SO_2CIF}_{BrF_5 \text{ or } CFCl_3} FXeOIOF_4$$
(1)

$$IO_2F_3 + FXeOIOF_4 \xrightarrow{SO_2CIF \text{ or }} CFCl_3 Xe(OIOF_4)_2$$
 (2)

¹²⁹Xe-¹⁹F spin-spin coupling constants form the basis for our structural assignments.

- (26) Carter, H. A.; Ruddick, J. M.; Sams, J. R.; Aubke, F. Inorg. Nucl. Chem. Lett. 1975, 11, 29
- Christe, K. O.; Wilson, R. D. Inorg. Nucl. Chem. Lett. 1979, 15, 375. (27)(28)Syvret, R. G.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1985, 1529
- Schrobilgen, G. J. In NMR and the Periodic Table; Harris, R. K., (29)Mann, B. E., Eds.; Academic Press: London, 1978; Chapter 14.

	ch	chem shift, ppm ^a		coupling const, Hz				
species	$\delta(^{129}\mathrm{Xe})$	$\delta(^{19}\mathrm{F})^b$	δ(¹⁹ F) ^c	$^{1}J(^{129}\text{Xe}-^{19}\text{F})$	$^{3}J(^{129}\text{Xe}-^{19}\text{F})$	solvent ^d	temp, °C	
trans-FXeOIOF ₄	-1741.2	-168.4	71.8	5913	42	SO ₂ ClF	-5	
	-1853.6	-164.8	79.9	5880	43	CFC1 ₃	24	
	-1720.5	h	h	5910	f	BrF ₅	0	
cis-FXeOIOF₄	-1865.0	-158.7	е	5870	f	SO ₂ CIF	-5	
	-1962.0	-156.3	е	5849	f	CFCl ₃	24	
	-1823.5	h	h	5803	Ĵ	BrFs	0	
FXeOSO₂F	-1725	-170.9		5837	ſ	SO ₂ ClF	-5	
trans, trans-Xe(OIOF ₄) ₂	-1860.7		76.9		38	SO ₂ ClF	-5	
, , , , , , , ,	-1994.6		е		38	CFĈI,	24	
cis,trans-Xe(OlOF ₄) ₂	-1987.0		76.3 ^g		19	SO ₂ C1F	-5	
· · · · · ·	-2120.0		79.2 ^g		f	CFC13	24	
cis,cis-Xe(OIOF ₄) ₂	-2105.8		е		ſ	SO ₂ ClF	-5	
	-2235.7		е		, f	CFCl ₃	24	
LXeOSO ₂ F								
trans-OIF₄O	-1834.2	h	h		ſ	SO ₂ ClF	-5	
cis-OIF ₄ O	-1956.4	h	h		ŕ	-		

^{*a*} IUPAC conventions have been used in reporting chemical shift data (*Pure Appl. Chem.* **1972**, *29*, 627; **1976**, *45*, 217); i.e., a positive chemical shift denotes a positive frequency and vice versa. ¹²⁹Xe and ¹⁹F spectra have been referenced relative to liquid XeOF₄ and CFCl₃ at 24 °C, respectively. ^{*b*} F-on-Xe resonance. ^c F-on-I(VII) resonance. ^{*d*} NMR parameters are reported as average values determined for XeF₂:IO₂F₃ ratios between 1:0.88 and 1:3.53 for SO₂CIF solvent, between 1:1.65 and 1:3.70 for CFCl₃ solvent, and at 1:1.97 for BrF₅ solvent. ^{*c*} Overlapping or the nonresolved resonances preclude a definitive assignment for this species. ^{*f*}Spin-spin coupling was not resolved. ^{*g*} Refers to the singlet fluorine resonance arising from the *trans*-OIF₄O group. ^{*h*} Not determined.

For a given $XeF_2:IO_2F_3$ ratio, the ratios $FXeOIOF_4:Xe(OIO-F_4)_2$ and *cis*-OIF₄O:*trans*-OIF₄O were found to be dependent on both temperature and solvent polarity. At low $XeF_2:IO_2F_3$ ratios (1:0.877), the ¹²⁹Xe NMR spectrum recorded in SO₂ClF solvent at -5 °C showed evidence for three doublet resonances at high frequency as well as four multiplet resonances at low frequency (Table I). The three high-frequency doublets arise from ¹J-(¹²⁹Xe-¹⁹F) and are assigned to the terminal fluorines on Xe(II) of the trans and cis isomers of FXeOIOF₄ (structures I and II) and of FXeOSO₂F (structure VI) and are discussed in detail

below. The fluorosulfate and the mixed bis isomers cis-F₄OIOXeOSO₂F (structure VII) and trans-F₄OIOXeOSO₂F (structure VIII) result from the reaction of FXeOIOF₄ with SO₂ClF solvent and are presumed to arise according to eq 3 and 4. The resonances assigned to cis- and trans-FXeOIOF₄ and

$$SO_2ClF + FXeOIOF_4 \rightarrow FXeOSO_2F + IOF_3 + [ClF]^{30}$$
 (3)

$$FXeOSO_2F + IO_2F_3 \Longrightarrow F_4OIOXeOSO_2F$$
 (4)

FXeOSO₂F were found to predominate at this low XeF₂:IO₂F₃ ratio. The four multiplet resonances occurring to low frequency of the doublets were much less intense and could not be assigned with any certainty at this ratio. In the absence of any apparent spin-spin coupling, they were tentatively assigned to *trans*, *trans*-Xe(OIOF₄)₂ (structure III), *cis*,*trans*-Xe(OIOF₄)₂ (structure IV), *cis*,*cis*-Xe(OIOF₄)₂ (structure V), and *cis*-F₄OIOXeOSO₂F (structure VII) pending verification at lower XeF₂:IO₂F₃ ratios where the bis structures would be expected to dominate.

At high IO₂F₃:XeF₂ ratios in SO₂ClF solvent, ¹²⁹Xe and ¹⁹F NMR spectra for all Xe(II) derivatives of the $-OIF_4O$ group could be observed in a single sample. At a XeF₂:IO₂F₃ ratio of 1:3.53 the Xe(OIOF₄)₂:FXeOIOF₄ ratio was increased, giving the cis,cis, cis,trans, and trans,trans isomers of Xe(OIOF₄)₂ in the relative ratios 1.00:7.62:9.46, respectively, and the *trans*- and *cis*-FXeOIOF₄ isomers in the ratio 1.66:1. In addition, resonances arising from cis and trans isomers of F₄OIOXeOSO₂F were also evident. The ¹²⁹Xe NMR spectrum of a 1:3.53 XeF₂/IO₂F₃ mixture recorded in SO₂ClF solvent at -5 °C is depicted in Figure 1a. The ¹²⁹Xe NMR chemical shifts as well as the ¹J(¹²⁹Xe⁻¹⁹F) and ³J(¹²⁹Xe⁻¹⁹F) coupling constants are summarized in Table I.

The assignments for the doublet resonances are straightforward, being based on spin-multiplicity considerations and established ¹²⁹Xe chemical shift trends.^{29,31} The assignment of the highfrequency doublet A to FXeOSO₂F is based upon ¹²⁹Xe chemical shifts and ${}^{1}J({}^{129}Xe{}^{-19}F)$ coupling constants previously reported³¹ for this species. Resonance B on expansion (Figure 1b) consists of a doublet splitting (5923 Hz) arising from the one-bond Xe-F coupling ${}^{1}J({}^{129}Xe^{-19}F)$. The doublet is further split into a quintet (42 Hz) resulting from the three-bond spin-spin coupling ^{3}J - $(^{129}Xe^{-19}F)$ arising from the four equivalent equatorial fluorines of the trans-OIF₄O group. The one-bond Xe-F coupling (5923 Hz) is similar in magnitude to other one-bond Xe-F couplings reported previously, i.e., FXeOTeF₅ (SO₂ClF, 26 °C, 5743 Hz),³² FXeOSO₂F (HSO₃F, -84 °C, 5975 Hz),^{29,31} FXeOSeF₅ (CFCl₃, -40 °C, 5790 Hz),¹¹ and FXeN(SO₂F)₂ (BrF₅, -58 °C, 5586 Hz).¹⁵ The three-bond Xe-F coupling (42 Hz) is consistent with the analogous couplings reported for other pseudooctahedral species, i.e., FXeOTeF₅ (34 Hz)³² and FXeOSeF₅ (37 Hz).²⁹ The remaining doublet with unresolved fine structure, C (expanded in Figure 1c), is assigned to cis-FXeOIOF₄ by virtue of its onebond Xe-F coupling (5879 Hz) and unresolved multiplet fine structure arising from the three-bond spin-spin coupling of four fluorines in three magnetically nonequivalent environments to the central ¹²⁹Xe nucleus (X) to give a first-order A_2GMX pattern.

The multiplet resonances in Figure 1a arise from the bis isomers and are assigned as follows: Resonance E on expansion (Figure 1d) shows an odd-line multiplet with seven lines resolved $({}^{3}J$ -

(32) Birchall, T.; Myers, R. D.; DeWaard, H.; Schrobilgen, G. J. Inorg. Chem. 1982, 21, 1068 and references therein.

⁽³⁰⁾ Chlorine monofluoride is presumed to be formed during this reaction, though no supporting evidence has been obtained.

⁽³¹⁾ Seppelt, K.; Rupp, H. H. Z. Anorg. Allg. Chem. 1974, 409, 331.

Figure 1. Xenon-129 NMR spectrum obtained at 69.56 MHz of a 1:3.530 molar mixture of XeF₂ and IO₂F₃ recorded in SO₂CIF solvent at -5 °C: (a) (A) FXeOSO₂F, (B) trans-FXeOIOF₄, (C) cis-FXeOIOF₄, (D) trans-F₄OIOXeOSO₂F, (E) trans.trans-Xe(OIOF₄)₂, (F) cis-F₄OIOXeOSO₂F, (G) cis.trans-Xe(OIOF₄)₂, and (H) cis.cis-Xe(OIOF₄)₂; (b) expansion of the doublet of quintets representing trans-FXeOIOF₄; (c) expansion of the doublet of unresolved multiplets representing cis-FXeOIOF₄; (d) expansion of the nonet representing trans.Xe(OIOF₄)₂.

 $(^{129}Xe^{-19}F) = 38$ Hz). The bis isomer trans, trans-Xe(OIOF₄)₂ (structure III) is expected to display a binomial 1:8:28:56:70:56:28:8:1 nonet in its ¹²⁹Xe NMR spectrum resulting from the spin-spin coupling of eight equivalent fluorines on two -OIF₄O groups bonded to the central xenon atom. The fact that only seven lines are resolved is a consequence of the low relative intensities of the two outermost lines of the nonet. The resonances G and H show partially resolved fine structure and are assigned to the bis isomers $cis, trans-Xe(OIOF_4)_2$ and $cis, cis-Xe(OIOF_4)_2$, respectively. These assignments stem from the fact that a cis-OIF₄O group, having three nonequivalent fluorine environments, does not show a well-resolved long-range spin-spin coupling by analogy with cis-FXeOIOF₄. In addition, by comparison of the position of cis-FXeOIOF₄ to low frequency of trans-FXeOIOF₄, the bis isomers containing one (G) or two (H) cis-OIF₄O groups are expected to resonate to low frequency of trans, trans-Xe- $(OIOF_4)_2$. Similar criteria were applied for the assignments of the multiplet resonances to trans- $F_4OIOXeOSO_2F$ (D) and cis- $F_4OIOXeOSO_2F$ (F). Further evidence in support of the as-

Figure 2. ¹²⁹Xe NMR spectrum of a 1:1.653 XeF₂/IO₂F₃ mixture recorded in CFCl₃ solvent at 24 °C: (a) (B) *trans*-FXeOIOF₄, (C) *cis*-FXeOIOF₄, (E) *trans*-trans-Xe(OIOF₄)₂, (G) *cis*,*trans*-Xe(OIOF₄)₂, and (H) *cis*,*cis*-Xe(OIOF₄)₂; (b) expansion of the odd-line multiplet representing *cis*,*trans*-Xe(OIOF₄)₂.

signment of resonance D to *trans*-F₄OIOXeOSO₂F comes from the resolved fine structure resulting from the three-bond spin-spin coupling of four equivalent fluorines on the *trans*-OIF₄O group to the central ¹²⁹Xe nucleus (${}^{3}J({}^{129}Xe{}^{-19}F) = 37$ Hz). These assignments have been corroborated through ¹²⁹Xe NMR studies on the pure derivatives and are discussed later in this paper.

In order to determine the effect of solvent polarity on the XeF_2/IO_2F_3 system and, at the same time, circumvent the problem of solvent reactivity, a series of XeF_2/IO_2F_3 mixtures were prepared in CFCl₃ solvent. The ¹²⁹Xe chemical shifts and ¹²⁹Xe⁻¹⁹F coupling constants are summarized in Table I. The ¹²⁹Xe NMR spectrum recorded in CFCl₃ solvent at 24 °C is depicted in Figure 2a. In this spectrum there was no evidence for the fluorosulfate derivatives (structures VI-VIII), precluding the possibility that the IO₂F₃ used for the reactions carried out in SO₂ClF solvent was contaminated with HSO₃F in the course of its preparation (see Experimental Section), which then would have reacted with XeF₂^{7,12} according to eq 5. The previous assignments for the cis

$$XeF_2 + HSO_3F \rightarrow FXeOSO_2F + HF$$
 (5)

and trans isomers of FXeOIOF₄ and Xe(OIOF₄)₂, made in the SO₂ClF solvent system, are confirmed in this solvent and have been assigned. In addition, resonance G shows resolved fine structure under expansion (Figure 2b) in CFCl₃ solvent that was not resolved in SO₂ClF solvent. The relative ratio Xe(OIO-F₄)₂:FXeOIOF₄ in CFCl₃ was significantly enhanced (1:1.6 at 24 °C) compared to the same ratio measured in SO₂ClF solvent (1:76 at -5 °C). In addition, the cis isomer of the $-OIF_4O$ group is favored over that of the trans isomer. This is reflected through the integrated ratios of the Xe(II) derivatives giving a trans, trans:cis, trans:cis, cis ratio of 1:3.2:2.7 for Xe(OIOF₄)₂ and a trans:cis ratio of 1:1.3 for FXeOIOF₄. At lower XeF₂:IO₂F₃ ratios, the intensities of cis isomers over trans isomers as well as the ratio Xe(OIOF₄)₂:FXeOIOF₄ were further enhanced in CFCl₃.

To further test the effect of increasing the solvent polarity, a ¹²⁹Xe NMR spectrum of a 1:1.996 XeF₂/IO₂F₃ mixture was recorded in BrF₅ solvent. This spectrum showed only cis and trans isomers of FXeOIOF₄ (Table I) in the ratio 1:3.7, respectively, as well as XeF₂. Furthermore, the ratio of XeF₂ to FXeOIOF₄ was 2.5:1, suggesting that equilibrium 1 lies even further to the left in BrF₅ solvent than in SO₂ClF solvent.

The ¹²⁹Xe NMR results for the XeF₂/IO₂F₃ system have demonstrated that the ratio of mono species to bis species and the ratio of cis to trans isomers of these species exhibit a marked dependence on the polarity of the solvent medium as well as the ratio $XeF_2:IO_2F_3$. In general, as the $XeF_2:IO_2F_3$ ratio decreases, the formation of bis isomers is favored over the formation of mono isomers as expected. As the polarity of the solvent increases, i.e., from CFCl₃ to BrF₅, the formation of mono species is favored over the formation of bis species. In fact, in BrF₅ solvent the more polar cis and trans isomers of FXeOIOF₄ exist exclusively in equilibrium with XeF_2 with no evidence for the formation of bis isomers. This result has been extrapolated to the more polar HF solvent system, in which the successful preparation of pure FXeOIOF₄ was accomplished from the reaction of stoichiometric amounts of XeF₂ and IO₂F₃ (HOIOF₄) in HF solvent (vide infra).

The ¹²⁹Xe chemical shifts for the bis isomers of the $-OIF_4O$ group are additive, progressing to lower frequency with increasing cis substitution. For instance, a XeF_2/IO_2F_3 mixture corresponding to a 1:3.53 molar ratio, recorded in SO_2CIF at -5 °C, yields ¹²⁹Xe chemical shifts of -1866.8 ppm (*trans,trans-Xe-*(OIOF₄)₂), -1993.2 ppm (cis,trans-Xe(OIOF₄)₂), and -2109.6 ppm (cis, cis-Xe(OIOF₄)₂). Substitution of one trans ligand of trans, trans- $Xe(OIOF_4)_2$ with one cis ligand results in a shift of the ¹²⁹Xe NMR resonance 126 ppm to lower frequency, and with substitution of the second trans ligand, the ¹²⁹Xe NMR resonance is shifted a further 116 ppm to lower frequency. This near-additivity was found to be independent of solvent medium and of temperature. This sequence is consistent with a greater degree of deshielding of the xenon nucleus by the trans ligand and implies the trans-OIF₄O group is more electronegative than the cis-OIF₄O group. This is further supported by the ¹²⁹Xe resonance of trans-FXeOIOF₄, which occurs an average of 117 ppm to high frequency with respect to cis-FXeOIOF₄ in all solvents and at all temperatures investigated (see Chemical Shift Trends and Group Electronegativities).

Although ¹⁹F NMR spectra were recorded on all of the XeF_2/IO_2F_3 mixtures investigated, the mixtures of $-OIF_4O$ derivatives resulted in complex ¹⁹F spectra in the F-on-I(VII) region resulting from the partially overlapping multiplet resonances of the cis and trans isomers of FXeOIOF₄ and Xe(OIOF₄)₂ as well as those of IO_2F_3 . However, complete assignments of the ¹⁹F NMR spectra for the $-OIF_4O$ derivatives have been made on samples prepared from the pure compounds and are discussed in detail later.

Preparation of cis, cis-Xe(OIOF₄)₂. Several initial attempts to isolate the pure derivative $Xe(OIOF_4)_2$ were unsuccessful and involved the stoichiometric reaction of either IO₂F₃ or HOIOF₄ with XeF_2 in CFCl₃ or SO₂ClF solvent. In each case, the reactants were combined at low temperature (-196 °C) and then allowed to react for approximately 10 min at 0 °C. During removal of the solvent at 0 °C, a wet-looking, pale yellow solid separated that detonated violently near dryness. Presumably, the iodine(VII) of the -OIOF₄ group is capable of oxidizing chlorine in both CFCl₃ and SO₂ClF, generating one or more of the known thermally unstable chlorine oxides, i.e., ClO₂.³³ During removal of the solvent, these unstable species are apparently concentrated and detonate near dryness. Attempts to prepare $Xe(OIOF_4)_2$ by displacement of HF from XeF₂ in HF solvent were also unsuccessful. Stoichiometric amounts (2:1) of HOIOF₄ and XeF₂ were allowed to react in HF solvent at 0 °C. Removal of HF under vacuum at 0 °C resulted in a viscous, colorless liquid that was subsequently identified as a mixture of HOIOF₄, IO₂F, and IF₅ by recording the ¹⁹F NMR spectrum in SO₂ClF solvent at -40 °Ċ

The successful preparation and isolation of solid cis,cis-Xe-(OIOF₄)₂ was accomplished by the low-temperature displacement of more volatile HOTeF₅ (vapor pressure 40 Torr at 0 °C) from Xe(OTeF₅)₂ with the stronger protonic acid HOIOF₄ according to equilibrium 6. This acid displacement reaction proceeds

$$Xe(OTeF_5)_2 + 2HOIOF_4 \xrightarrow[CFCl_3 \text{ or neat}]{CFCl_3 \text{ or neat}} Xe(OIOF_4)_2 + 2HOTeF_5 (6)$$

Table II. ¹²⁹Xe NMR Parameters for *cis*- and *trans*-FXeOIOF₄ and *cis*,*cis*-Xe(OIOF₄)₂ Dissolved in BrF₅ and SO₂ClF

		coupling const, Hz			
species	$\delta(^{129}$ Xe), ppm ^a	$^{1}J_{-}^{1}$ ($^{129}Xe^{-19}F$)	$^{3}J_{-}$ (129Xe-19F)	solvent	
trans-FXeOIOF ₄	-1701.5 -1702.8	5893 5868	b 37	SO ₂ ClF BrF ₅	
cis-FXeOIOF₄	-1824.4 -1798.2	5851 5814	ь 41	SO₂ClF BrF₅	
trans,trans- Xe(OIOF ₄) ₂	-1802.7 -1871.4		b b	SO₂ClF BrF₅	
$cis, trans-Xe(OIOF_4)_2$	-1929.8 -1929.2		b b	SO ₂ ClF BrF ₅	
cis, cis-Xe(OIOF ₄) ₂	-2076.0 -2059.5		b b	SO ₂ ClF BrF5	

^aSpectra were recorded (-40 °C) at 69.56 MHz and were referenced with respect to external neat $XeOF_4$ at 24 °C. ^bSpin-spin coupling was not resolved.

Figure 3. Xenon-129 NMR spectrum obtained at 69.56 MHz of cis,cis-Xe(OIOF₂)₂ dissolved in SO₂ClF solvent at -40 °C: (F) cis-F₄OIOXeOSO₂F; (G) cis,trans-Xe(OIOF₄)₂; (H) cis,cis-Xe(OIOF₄)₂.

smoothly at 0 °C as a neat mixture of the two reactants or, alternatively, in CFCl₃ solvent. Preparations performed with neat reactants had yields typically over 90%, whereas in CFCl₃ solvent, the yields were substantially lower (ca. 50%) owing to redox side reactions that presumably occur between HOIOF₄, $F_4OIOXeO$ -TeF₅, Xe(OIOF₄)₂, and CFCl₃ solvent.

The identity of cis,cis-Xe(OIOF₄)₂ was established by recording the low-temperature Raman spectrum of the solid and by ¹²⁹Xe and ¹⁹F NMR spectroscopy (vide infra) in BrF₅, CFCl₃, and SO₂ClF solvents.

The cis,cis isomer of $Xe(OIOF_4)_2$ is a pale yellow solid at room temperature (white at -196 °C). The compound has a negligible vapor pressure below its decomposition temperature of 0 °C and decomposes rapidly at room temperature under a static vacuum, yielding Xe, O₂, IF₅, and IOF₃ according to eq 7. This decom-

$$Xe(OIOF_4)_2 \rightarrow Xe^{\dagger} + \frac{3}{2}O_2^{\dagger} + IF_5 + IOF_3$$
(7)

position, which is accompanied by the emission of white light, is thought to proceed by a free-radical mechanism and formation of electronically excited oxygen. This process is presumably accelerated by the buildup of a volatile radical initiator under a static vacuum. Consequently, the compound can be handled under dynamic vacuum near room temperature or under a pressure of dry nitrogen for extended periods of time below 0 °C and can be stored indefinitely, without decomposition, in FEP vessels under dry nitrogen at dry ice temperature.

Characterization of cis, cis-Xe(OIOF₄)₂ in Solution by ¹²⁹Xe and ¹⁹F NMR Spectroscopy. The structural characterization of cis, cis-Xe(OIOF₄)₂ by low-temperature ¹²⁹Xe and ¹⁹F NMR spectroscopy was accomplished in BrF₅, CFCl₃, and SO₂ClF solvents. The solubility of the pure compound was found to be high in BrF₅ and SO₂ClF solvents at temperatures as low as -40 °C. The ¹²⁹Xe NMR parameters for the Xe(OIOF₄)₂ isomers are summarized in Table II.

The ¹²⁹Xe NMR spectrum of cis, cis-Xe(OIOF₄)₂ redissolved in SO₂ClF solvent at -40 °C is depicted in Figure 3. In this

Table III. ¹⁹F NMR Parameters for cis- and trans-FXeOIOF₄ and cis,cis-Xe(OIOF₄)₂ Dissolved in BrF₅ and SO₂ClF

			coupling const, Hz		
	chem s	hift, ppm ^a	² J.	¹ J-	
species	$\delta({}^{19}\mathrm{F})^b$	δ(¹⁹ F) ^c	$({}^{19}F-{}^{19}F)^d$	$({}^{19}F-{}^{129}Xe)$	solvent
trans-FXeOIOF ₄	-168.5 -170.1	71.3 75.1		5893 5877	SO ₂ ClF BrF ₅
cis-FXeOIOF ₄	-158.5 ^e	103.3 (F ₁) 86.6 (F ₂) 70.3 (F ₃)	284 (1,2) 240 (1,3) 191 (2,3)	5852	SO₂CIF
	-161.7	101.5 (F ₁) 85.8 (F ₂) 70.4 (F ₃)	280 (1,2) 234 (1,3) 193 (2,3)	5816	BrF5
cis,cis-Xe- (OIOF ₄) ₂		$\begin{array}{c} 104.1 \ (F_1) \\ 82.4 \ (F_2) \\ 74.0 \ (F_3) \end{array}$	274 (1,2) 238 (1,3) 190 (2,3)		SO ₂ CIF
		102.8 (F ₁) 81.9 (F ₂) 73.6 (F ₃)	287 (1,2) 241 (1,3) 191 (2,3)		BrFs

"Spectra were recorded (-40 °C) at 235.36 MHz and were referenced with respect to external neat CFCl₃ at 24 °C. ^bF-on-Xe resonance. ^cFon-I(VII) resonance. The labels F_1 , F_2 , and F_3 denote fluorine environments corresponding to structure IX. ^d The numbers in parentheses correspond to different fluorine environments; i.e., (1,2) corresponds to ${}^{2}J(F-F)$ between environments F_1 and F_2 as denoted in structure IX. ${}^{e4}J(F-F) = 26$ Hz.

spectrum there is evidence for four xenon(II) derivatives, the most abundant species being $cis, cis-Xe(OIOF_4)_2, cis, trans-Xe(OIOF_4)_2$, and cis-F₄OIOXeOSO₂F in the ratios 6.3:1.9:1, respectively. A peak corresponding to trans, trans-Xe(OIOF₄)₂ (δ (¹²⁹Xe) = -1802.7 ppm) is also visible (relative intensity 5% of the signal intensity for $cis, cis-Xe(OIOF_4)_2$; not shown in Figure 3). Since pure cis, cis-Xe(OIOF₄)₂ was used to prepare all NMR samples investigated (see below for Raman spectrum), the cis, trans and trans, trans isomers of Xe(OIOF₄)₂ must arise from isomerization of the cis ligands in solution. A similar isomer distribution was also observed in CFCl₃ and BrF₅ solvents. The ratio of cis to trans isomers was found to vary with the solvent medium and with the temperature at which the spectra were recorded and was consistent with the isomer ratio trends established in the IO_2F_3/XeF_2 systems discussed previously. The mixed derivative F4OIOXeOSO2F was also identified in SO₂ClF solvent (equilibrium 4).

Fluorine-19 NMR spectra of samples of pure cis, cis-Xe- $(OIOF_4)_2$ were recorded in the same solvent media and under the same temperature conditions as the ¹²⁹Xe NMR spectra. In all cases, the ¹⁹F NMR results were consistent with the conclusions derived from the ¹²⁹Xe NMR study. The ¹⁹F NMR results are summarized in Table III and in Figure 4, which depicts the ¹⁹F NMR spectra of cis,cis-Xe(OIOF₄)₂ recorded at -40 °C in SO₂ClF and BrF₅ solvents. Both spectra display series of partially resolved multiplet resonances, which have been assigned by taking into account known ¹⁹F shielding trends and the spin-spin couplings among the fluorines in three magnetically nonequivalent fluorine environments associated with a cis-OIF₄O group³⁴ (structure IX). In general, a fluorine trans to another fluorine

resonates at lower frequency than a fluorine trans to a doubly bonded oxygen and to even lower frequency than a fluorine trans to a singly bonded oxygen. The $^{19}\mathrm{F}$ NMR resonances of $\mathrm{F}_{1},\,\mathrm{F}_{2},$ and F_3 in structure IX are therefore expected to occur to lower frequency in the order $F_1 > F_2 > F_3$. Furthermore, under first-order conditions the multiplicity patterns for the three fluorine environments are expected to consist of a doublet of doublets, a doublet of triplets, and a doublet of triplets in the ratio 2:1:1, for

(34) Syvret, R. G. Ph.D. Thesis, McMaster University, 1987.

Figure 4. Fluorine-19 NMR spectrum obtained at 235.36 MHz of cis, cis-Xe(OIOF₄)₂: (a) SO₂ClF solvent at -40 °C, (C) cis, cis-Xe-(OIOF₄)₂; (D) cis,trans-Xe(OIOF₄)₂; (F) trans,trans-Xe(OIOF₄)₂; (G) cis, cis-F₄OIOOIOF₄; (S) solvent. (b) BrF₅ solvent at -40 °C, (A) cis-FXeOIOF₄; (C) cis,cis-Xe(OIOF₄)₂; (D) cis,trans-Xe(OIOF₄)₂; (G) cis,cis-F4OIOOIOF4.

F₃, F₂, and F₁, respectively. A trans-OIF₄O group will exhibit only one fluorine environment and is expected to yield a singlet resonance near that of F_3 .

The ¹⁹F NMR spectrum recorded in SO₂ClF solvent and depicted in Figure 4a shows three partially resolved multiplets (C) in the ratio 1:1:2, which are assigned to the three fluorine environments associated with $cis, cis-Xe(OIOF_4)_2$, namely, F_1 and F_2 , with each environment giving rise to a partially resolved doublet of triplets, and F_3 , a partially resolved doublet of doublets. In addition, two singlets of much lower intensity are evident that are assigned to the four equivalent fluorines of $cis, trans-Xe(OIOF_4)_2$ and the eight equivalent fluorines of trans, trans- $Xe(OIOF_4)_2$. Furthermore, a singlet representing SO₂ClF solvent (S) and an A₂X₂ pattern corresponding to the decomposition product cis,cis-F₄OIOOIF₄O (G) are also observed.³⁵ The ¹⁹F NMR chemical shifts reported here for $cis, cis-Xe(OIOF_4)_2$ fall within the range of all presently known F-on-I(VII) chemical shifts (170-65 ppm).^{34,36-38} In addition, the ²J(F-F) coupling constants are similar to those reported for other iodine(VII) oxide fluorides: IOF_5 , 280 Hz;³⁸ IO_2F_3 , 176 Hz;²³ cis- $[IO_2F_4]^-$, 204 Hz;²⁴ cis-HOIOF₄, 214 Hz.³⁴

The ¹⁹F NMR spectrum recorded in BrF₅ solvent is essentially the same (Figure 4b), differing only in the ¹⁹F chemical shifts and $^{2}J(F-F)$ coupling constants (Table III) and the appearance of a small amount of cis-FXeOIOF₄, which presumably results from the dissociation of $Xe(OIOF_4)_2$ according to equilibrium 2. A low-intensity AX₂ pattern arising from IO₂F₃, which is also formed in this dissociation, is partially obscured by the resonances assigned to the cis-OIF₄O groups.

Raman Spectrum of cis, cis-Xe(OIOF₄)₂. Pure cis, cis-Xe- $(OIOF_4)_2$ has been characterized in the solid state by low-temperature Raman spectroscopy. The Raman spectrum recorded for the solid at -196 °C is depicted in Figure 5a. Table IV provides a summary of the vibrational frequencies with intensities and assignments.

The cis-Xe–OIOF₄ fragment of symmetry C_s should possess 18 fundamental modes classified as 12 A' + 6 A'', all of which

- (36)
- Bartlett, N.; Beaton, S.; Reeves, L. W.; Wells, E. J. Can. J. Chem. 1964, (38)42, 2531.

Syvret, R. G.; Schrobilgen, G. J. To be submitted for publication. Elgad, U.; Selig, H. J. Inorg. Nucl. Chem., Suppl. 1976, 91. Krasznai, J. P. Ph.D. Thesis, McMaster University, 1975. (35)

Figure 5. Raman spectra (514.5-nm excitation) of (a) cis, cis-Xe- $(OIOF_4)_2$ and (b) a mixture of cis- and trans-FXeOIOF₄ recorded in FEP tubes at -196 °C. Asterisks (*) denote bands arising from FEP.

are Raman active. In addition, three modes associated with the O-Xe-O moiety, of which one mode is redundant with a mode in the Xe-OIOF₄ fragment, should yield a total of 20 Ramanactive bands. With complete intramolecular coupling, a total of 39 Raman-active bands are expected. The spectrum depicted in Figure 5a shows 19 bands (100-900 cm⁻¹), which leads to the conclusion that there is no strong intramolecular coupling between the -OIF₄O groups in the molecule nor among molecules in the unit cell. The high-frequency region of the spectrum $(>400 \text{ cm}^{-1})$ can, for the most part, be assigned by comparison with the vibrational spectra for other iodine oxide fluorides, namely, FOI-OF₄,²⁴ $[IO_2F_4]^{-,24}$ IO_2F_3 ,³⁹ and IOF₅.^{40,41} Although assignments are given for the low-frequency region (<400 cm⁻¹), these assignments have been made without the benefit of previously assigned -OIF₄O derivative spectra, polarization measurements, and ¹⁶O/¹⁸O isotopic data and therefore must be deemed tentative.

The band at 889 cm⁻¹ is assigned to the I=O stretch of the cis-OIF₄O group by comparison with the frequencies of the corresponding modes in IOF₅ (927 cm⁻¹)^{40,41} and cis-FOIOF₄ (914 cm⁻¹).²⁴ The presence of only one band in the I=O stretching region supports a single -OIF₄O isomer, and the fact that this band shows no splitting or broadening confirms the weakness of factor-group splitting or intramolecular coupling. The bands in the region of the spectrum between 614 and 688 cm⁻¹ are assigned to I-F stretching modes by comparison with the same regions in the spectra of the iodine oxide fluorides cited earlier. Mainly on the basis of intensity arguments, the 614- and 646-cm⁻¹ bands are assigned to the symmetric F_{ax} -I- F_{ax} stretch and antisymmetric F_{ax} -I- F_{ax} stretch, respectively, and the 668- and 688-cm⁻¹ bands to the stretching modes of the two nonequivalent equatorial fluorines, F' and F". The bands at 464 and 443 cm⁻¹ are assigned to the strongly coupled symmetric Xe-O-I/XeO₂ and asymmetric Xe-O-I/XeO₂ stretching modes, respectively, by comparison with the positions and relative intensities of the corresponding modes in $Xe(OTeF_5)_2$, which occur at 440 and 428 cm⁻¹.⁴² The band at 148 cm⁻¹ is assigned to the O-Xe-O bending mode by analogy with the corresponding band in $Xe(OTeF_5)_2$ (133 cm⁻¹).⁴³ The band at 272 cm^{-1} is assigned to the IO₂ bending mode by comparison with the frequency of the F_{ax} —I=O bending mode in IOF₅ at 341 cm^{-1.40} The effective mass bonded to the -O-I=O moiety in cis-OIF₄O is greater than that of the F-I=O moiety in IOF₅ (i.e., the O-I=O moiety is bonded to XeOIOF₄), and as a result, the frequency of the IO₂ bend is expected to occur to low frequency of the F-I=O bend. Further support for this assignment comes

Table IV.	Raman	Frequencies	and A	Assignment	is for
cis,cis-Xe(OIOF ₄) ₂	and <i>cis</i> - and	d tran	us-FXeOIC)F4ª

freq, c	freq, cm ⁻¹	
cis,cis- Xe(OIOF ₄) ₂	cis- and trans- FXeOIOF ₄	approx descripn
889 (32)	894 (15) 889 (11)	$\nu(I=O)$, trans $\nu(I=O)$, cis
745 (8)	749 (3) 720 (4) 712 (2)	
688 (56) 668 (38) 646 (18) 625 (1) 614 (54) 579 (1)	664 (15) 654 (22) 625 (14) 616 (17) 605 (13) 595 (sh) 578 (1)	$\nu(IF')_{eq}$ $\nu(IF'')_{eq}$ $\nu(IF_2)_{ax}$, asym I-F str $\nu(IF_2)_{ax}$, sym I-F str
464 (100)	527 (49) 488 (100) 467 (37)	ν(Xe-F) ν(Xe-O-I) sym ν(XeO ₂) sym
443 (3)	438 (3)	ν (Xe-O-I) asym, ν (XeO ₂) asym
377 (3) ~ 368 (14) 352 (15) 339 (10) 317 (4)	379 (3) 356 (sh) 352 (11) 341 (4) 328 (2)	IF ₂ , FIO, IO ₂ , and IF ₄ bends
272 (48)	270 (13) 257 (3) 233 (5)	$\delta(IO_2)$ IF ₂ , FIO, IO ₂ , and IF, hends
216 (2)	205 (1) 185 (1) 170 (12)	$\delta(F-Xe-O F-I-O)$
148 (78)	156 (15)	δ(Y=Ω_)
82 (35), 73 (3), 58 (6), 39 (28), 26 (46)	122 (4), 101 (11), 80 (6)	external modes

⁴Raman spectra were recorded with FEP sample tubes at -196 °C with use of the 514.5-nm exciting line. Values in parentheses denote intensities; sh denotes a shoulder.

from the relative intensity of this band. The IO_2 bending motion in cis-OIF₄O is expected to induce a large change in polarizability, resulting in an intense Raman vibration (272 (48) cm⁻¹). In addition, a similar band in the solid-state Raman spectrum of FOIOF₄, although not assigned (333 (40) cm⁻¹),²⁴ also supports our assignment. The bands in the spectrum between 216 and 377 cm⁻¹ are collectively assigned to IF₂, FIO, IO₂, and IF₄ bending modes. It is expected that considerable coupling would occur among these modes, thus resulting in a number of bands in the same region of the spectrum. In comparison, the analogous modes in IOF_5^{40} also occur in this region of the spectrum. Finally, the low-frequency vibrations (<100 cm⁻¹) are assigned to external modes (lattice vibrations).

Preparation of FXeOIOF₄. The preparation of pure FXeOIOF₄ as a mixture of its cis and trans isomers was accomplished in a single-step synthesis involving the reaction of stoichiometric amounts of XeF₂ and IO₂F₃ in HF solvent according to equilibrium 8. As the HF solvent was removed, a light yellow liquid consisting

$$XeF_{2} + IO_{2}F_{3} \xrightarrow[]{0 \circ C}{HF} FXeOIOF_{4}$$
(8)

of a mixture of cis- and trans-FXeOIOF₄ separated. This preparation differs from that of $cis, cis-Xe(OIOF_4)_2$ in a number of respects. The preparation of $cis, cis-Xe(OIOF_4)_2$ could only be accomplished by an acid displacement reaction (eq 6) and only in solvents of low polarity in which the formation of cis, cis-Xe- $(OIOF_4)_2$ is favored, i.e., CFCl₃. In HF solvent, the formation

⁽³⁹⁾ Gillespie, R. J.; Krasznai, J. P. Inorg. Chem. 1976, 15, 1251.
(40) Smith, D. F.; Begun, G. M. J. Chem. Phys. 1965, 43, 2001.
(41) Holloway, J. H.; Selig, H.; Claassen, H. H. J. Chem. Phys. 1971, 54, 154. 4305.

⁽⁴²⁾ Keller, N.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 2118.

⁽⁴³⁾ Sladky, F. Monatsh. Chem. 1970, 101, 1559.

Figure 6. Xenon-129 NMR spectrum obtained at 69.56 MHz at -40 °C of a cis- and trans-FXeOIOF₄ mixture dissolved in SO₂ClF solvent: (A) FXeOSO₂F; (B) trans-FXeOIOF₄; (C) cis-FXeOIOF₄; (E) trans, trans-Xe(OIOF₄)₂; (F) cis-F₄OIOXeOSO₂F; (G) cis, trans-Xe(OIOF₄)₂; (H) cis, cis-Xe(OIOF₄)₂; (I) XeF₂.

of $Xe(OIOF_4)_2$ was presumably prevented by the competitive acid displacement represented by equilibrium 9, which lies to the right.

$$Xe(OIOF_4)_2 + HF \rightleftharpoons FXeOIOF_4 + HOIOF_4 \qquad (9)$$

In contrast, *cis*- and *trans*-FXeOIOF₄ can be formed readily and quantitatively in HF solvent (equilibrium 8).

The mixture of *cis*- and *trans*-FXeOIOF₄ is a light yellow liquid at room temperature (mp -5 to 0 °C) that dissociates into XeF₂ and IO₂F₃ under dynamic vacuum at 0 °C and is partially dissociated in BrF₅ and SO₂ClF solvents at -40 °C (vide infra). The compound is thermally stable at room temperature for periods exceeding 1 h and reacts vigorously with organic materials. The compound has been characterized by recording the ¹²⁹Xe and ¹⁹F NMR spectra in SO₂ClF and BrF₅ solvents at -40 °C, and as a solid at -196 °C by Raman spectroscopy.

Characterization of FXeOIOF₄ by ¹²⁹Xe and ¹⁹F NMR Spectroscopy. The ¹²⁹Xe NMR parameters for cis- and trans-FXeOIOF₄ recorded in SO₂ClF and BrF₅ solvents at -40 °C are summarized in Table II. Figure 6 illustrates the ¹²⁹Xe NMR spectrum of *cis*- and *trans*-FXeOIOF₄ in SO₂ClF at -40 °C. The most prominent features of this spectrum are the mono derivatives $FXeOSO_2F(A)$, trans- $FXeOIOF_4(B)$, and cis- $FXeOIOF_4(C)$. The assignments of these species are based on the ¹²⁹Xe chemical shifts and ¹²⁹Xe-¹⁹F coupling constants previously recorded for IO_2F_3/XeF_2 systems in SO_2CIF . The integrated ¹²⁹Xe intensity ratios for the mono derivatives were 1:2.3:5 for FXeOSO₂F, trans-FXeOIOF₄, and cis-FXeOIOF₄, respectively. As noted previously for the IO_2F_3/XeF_2 system in SO_2ClF , the formation of FXeOSO₂F arises from the reaction of FXeOIOF₄ with SO₂ClF solvent (eq $\overline{3}$). In addition to mono derivatives, there is evidence for XeF_2 (I) and the bis derivatives *trans*, *trans*-Xe(OIOF₄)₂ (E), cis-F₄OIOXeOSO₂F (F), cis,trans-Xe(OIOF₄)₂ (G), and cis,cis-Xe(OIOF₄)₂ (H). The 1:2:1 triplet (I) was assigned to XeF₂ by comparison with the previously reported chemical shift and one-bond xenon-fluorine coupling constant of this species in SO_2ClF solvent ($\delta(^{129}Xe) = -1905$ ppm, $^1J(^{129}Xe^{-19}F) = 5630$ Hz).^{29,31} The appearance of a small amount of XeF_2 in this spectrum is consistent with the dissociation of FXeOIOF₄ to give XeF_2 and IO_2F_3 . The latter point is supported by the presence of both IO_2F_3 and XeF_2 in the ¹⁹F NMR spectrum (Figure 7a). The bis derivatives in Figure 6 are assigned by comparison of their $^{129} Xe$ chemical shifts with those for the IO_2F_3/XeF_2 system in SO2CIF solvent. The compounds trans, trans-, cis, trans-, and $cis, cis-Xe(OIOF_4)_2$ are presumed to result from the reaction of FXeOIOF₄ with IO_2F_3 according to equilibrium 2. The mixed derivative cis-F₄OIOXeOSO₂F arises by means of ligand redistribution equilibria involving FXeOSO₂F and/or the reaction of $FXeOSO_2F$ with IO_2F_3 according to equilibrium 4. The ¹²⁹Xe NMR spectrum for cis- and trans-FXeOIOF₄ recorded in BrF₅ solvent is similar to that shown in Figure 6 except that, in BrF_5 , there is no evidence for the fluorosulfate species in the spectrum and the ¹²⁹Xe chemical shifts occur to low frequency of their counterparts recorded in SO₂ClF. This is consistent with the previously established solvent-dependent shielding trends for Xe(II) chemical shifts.29,31

The ¹⁹F NMR spectra of *cis*- and *trans*-FXeOIOF₄ were also

Figure 7. Fluorine-19 NMR spectra obtained at 235.36 MHz at -40 °C of a cis- and trans-FXeOIOF₄ mixture dissolved in SO₂ClF solvent: (a) the F-on-I(VII) region of the spectrum, (A) cis-FXeOIOF₄, (B) trans-FXeOIOF₄, (C) cis,cis-Xe(OIOF₄)₂, (D) cis,trans-Xe(OIOF₄)₂, (E) IO₂F₃, (F) trans,trans-Xe(OIOF₄)₂, and (S) solvent; (b) the F-on-Xe(II) region of the spectrum, (A (a,a)) cis-FXeOIOF₄, (B (b,b)) trans-FXeOIOF₄, (D (d,d)) FXeOSO₂F, and (E (e,e)) XeF₂.

obtained in SO₂ClF and BrF₅ solvents at -40 °C. The ¹⁹F NMR parameters for the pure isomers are summarized in Table III. The F-on-I(VII) region of the ¹⁹F NMR spectrum recorded in SO₂ClF solvent is depicted in Figure 7a. The most prominent features of this spectrum are the resonances A and B, which represent cis-FXeOIOF₄ and trans-FXeOIOF₄, respectively. The assignment of resonance B to trans-FXeOIOF4 stems from the fact that a trans-OIF₄O group is expected to display a singlet in the Fon-I(VII) region. The three multiplets of cis-FXeOIOF₄ (A) were assigned by using arguments similar to those already given for $cis, cis-Xe(OIOF_4)_2$. While the fluorine environments F_1 and F_3 (structure IX) for cis-FXeOIOF₄ are shifted to slightly lower frequency of their counterparts in $cis, cis-Xe(OIOF_4)_2$, the F₂ resonance is shifted to high frequency of the F_2 resonance of cis, cis-Xe(OIOF₄)₂ (Table III). The two-bond fluorine-fluorine coupling constants for cis-FXeOIOF₄ (Table III) are approximately the same magnitude as the two-bond couplings in cis,cis-Xe(OIOF₄)₂. Figure 7a also shows ¹⁹F NMR resonances that can be assigned to the bis derivatives trans, trans- $Xe(OIOF_4)_2$ (F), cis,trans-Xe(OIOF₄)₂ (D), and cis,cis-Xe(OIOF₄)₂ (C). In addition to Xe(II) species, the weak resonances in Figure 7a labeled E are assigned to IO_2F_3 (AX₂, δ (¹⁹F) = 107.3 ppm (X₂), 68.5 ppm (A)), which is formed in the dissociation of FXeOIOF₄. The 19 F NMR spectrum recorded in BrF, solvent was essentially identical. In SO₂ClF and BrF₅ solvents, the differences in chemical shift between environments F_1 and F_2 (15.7 ppm in BrF₅ and 16.7 ppm in SO₂ClF) and environments F_2 and F_3 (15.4 ppm in BrF₅ and 16.3 ppm in SO_2CIF) are approximately equal, implying that the shielding effect on the fluorine environments in cis-FXeOIOF₄ increases in a near-linear fashion in the order $F_1 < F_2 < F_3$. A similar effect is not observed for the ¹⁹F NMR resonances of *cis,cis*-Xe(OIOF₄)₂; i.e., in SO₂ClF solvent, $\Delta\delta(F_1-F_2)$ is 21.7 ppm whereas $\Delta\delta(F_2-F_3)$ is only 8.4 ppm. In addition to the resonances assigned to Xe(II) species, there was again evidence for IO_2F_3 dimer in BrF₅ solvent, suggesting that the dissociation of FXeO-IOF₄ is largely solvent independent.

The ¹⁹F NMR spectrum of the F-on-Xe(II) region for *cis*- and *trans*-FXeOIOF₄ recorded in SO₂ClF solvent at -40 °C (Figure 7b) shows four F-on-Xe(II) resonances with accompanying ¹²⁹Xe satellites. The assignment of these resonances is based on the

relative intensities, with cis- and trans-FXeOIOF₄ expected to be the most intense (also supported by the relative intensities in the ¹²⁹Xe spectrum), the comparison between the ¹²⁹Xe satellite spacings and ${}^{1}J({}^{129}Xe-{}^{19}F)$ values established in the ${}^{129}Xe$ NMR spectrum, and the comparison of the ¹⁹F NMR chemical shifts for XeF₂ and FXeOSO₂F reported previously.⁴⁴ Resonance A, the most intense resonance in the F-on-Xe(II) region of the spectrum, is assigned to the terminal fluorine on xenon of cis-FXeOIOF₄. Its accompanying satellites show an additional partially resolved doublet splitting (26 Hz) arising from the four-bond spin-spin coupling of either F_1 or F_2 of the *cis*-OIF₄O group (structure IX) and the terminal fluorine on xenon. It is unclear why none of the other resonances in Figure 7b show such resolved four-bond spin-spin couplings. Such a long-range coupling is not unprecedented and has been noted previously²⁹ between the terminal fluorine on xenon and the fluorine on sulfur of $FXeOSO_2F$ (⁴J(F-F) = 14 Hz). In view of the fact that fluorines cis to the I–O bond (F_3) do not give rise to a resolvable coupling, it is assumed that the remaining cis coupling with F_2 is also not resolved. Consequently, the doublet splitting is attributed to F_1 , which is trans to the I-O single bond. Additional corroboration for this observation is found in the ¹²⁹Xe spectra of cis-FXeOIOF₄, where the ¹²⁹Xe resonance appears as a doublet attributed to ${}^{1}J({}^{129}Xe{}^{-19}F)$, which, under high resolution, shows additional fine structure on each doublet branch resembling a broadened, partially resolved doublet (41 Hz) with additional unresolved fine structure. Again, the doublet structure on each branch is assumed to arise from ${}^{3}J({}^{129}Xe-{}^{19}F)$ involving F_{1} whereas the ${}^{3}J({}^{129}Xe-{}^{19}F)$ couplings arising from the fluorines cis to the I-O single bond (F₂ and F_3) are presumably not large enough to be resolved but only contribute to the line broadening.

Raman Spectrum of FXeOIOF₄. The Raman spectrum of *cis*and *trans*-FXeOIOF₄ was recorded at -196 °C and is illustrated in Figure 5b. The vibrational frequencies and intensities as well as tentative assignments are given in Table IV. The Raman spectrum consists of broad and poorly resolved vibrational bands in comparison to the spectrum of *cis*,*cis*-Xe(OIOF₄)₂. This is likely the combined effect of the fact that we have a mixture of *cis* and trans isomers with near-coincident vibrational frequencies and the fact that the mixture does not crystallize at -196 °C but forms a glass that would, in turn, give rise to increased librational motions and line broadening.

The cis- and trans-FXeOIOF₄ molecules of symmetry C_s should each possess a maximum of 21 fundamental modes, all Raman active, classified as 14 A' + 7 A". The complexity of the spectrum depicted in Figure 5b does not permit a full assignment of all modes associated with the mixture of isomers. When possible, assignments have been made by comparisons with the vibrational spectra of other monofluoro-xenon(II) derivatives and -OIOF₄ derivatives.

The high-frequency bands at 889 and 894 cm⁻¹ are assigned to I=O stretches by analogy with the I=O stretching frequency determined for cis,cis-Xe(OIOF₄)₂ (889 cm⁻¹). These bands are assigned to the cis and trans isomers, respectively, by comparison with the frequencies for the I=O stretches in cis-FOIOF₄ (914 cm⁻¹),²⁴ trans-FOIOF₄ (924 cm⁻¹),²⁴ and cis,cis-Xe(OIOF₄)₂ (889 cm⁻¹). Moreover, the observation of two bands in the I=O stretching region supports a cis, trans mixture. The vibrational bands in the region 578-664 cm⁻¹ are most certainly I—F stretches; however, a detailed assignment of this region cannot be made for these bands since the I—F stretches of both cis- and trans-FXeOIOF₄ are expected to occur in this region and may, in some cases, be coincident. The broad, intense band at 527 cm⁻¹ is assigned to the overlapping Xe—F stretches of the cis and trans isomers by analogy with the corresponding frequencies in FXe-OSO₂F (521, 527, 532, and 539 cm⁻¹),⁴⁵ FXeOSO₂CF₃ (534 cm⁻¹),¹⁶ and FXeOTeF₅ (520 cm⁻¹).¹³ The bands at 467, 488, and 438 cm⁻¹ are assigned to the strongly coupled I—O and

Xe-O stretches by analogy with the corresponding modes in FXeOTeF₅ (457 cm⁻¹),¹³ FXeOSO₂F (434 cm⁻¹),⁴⁵ Xe(OTeF₅)₂ (440 cm^{-1}) ,⁴² and *cis*,*cis*-Xe(OIOF₄)₂ (464 cm⁻¹). The vibrational bands below 400 cm⁻¹ correspond to bending and/or torsional modes. The intense bands at 156 and 170 cm^{-1} are assigned to F-Xe-O and F-I-O bending modes by analogy with the corresponding O—Xe—O mode in cis, cis-Xe(OIOF₄)₂ (148 cm⁻¹). The vibrations in the spectral region 185-380 cm⁻¹ are assigned to the IF₂, IF₄, IO₂, and/or IOF bends by analogy with the corresponding modes in *cis*- and *trans*-[OIOF₄]^{-,24} IOF₅,^{40,41} and $cis, cis, Cis-Xe(OIOF_4)_2$. It is important to note that, in Figure 5b, there is no evidence for XeF_2 , which is expected to have a strong stretching vibration at 496 cm⁻¹, and no evidence for IO₂F₃, which is expected to show a moderately strong vibration at 920 cm^{-1.39} These results indicate that IO_2F_3 and XeF_2 observed in the ${}^{19}F$ NMR spectra, discussed above, result from the dissociation of FXeOIOF₄ in SO₂CIF and BrF₅ solvents at -40 °C and FXeO-IOF₄ is not appreciably dissociated in the solid state.

Chemical Shift Trends and Group Electronegativities. It has been shown in previous studies^{16,29,31,44,46,47} that ¹²⁹Xe and ¹⁹F NMR chemical shifts and xenon-fluorine coupling constants can be correlated with the ionic characters of xenon-ligand bonds. That is, a decrease in ¹⁹F chemical shift and increase in ¹²⁹Xe-¹⁹F coupling constant are consistent with a greater degree of ionic character in the terminal Xe-F bond and a decrease in ¹²⁹Xe chemical shift is indicative of an increasingly more covalent xenon-ligand atom bond. These parameters can be correlated with the electron-withdrawing ability or group electronegativity of a substituent group. The ¹²⁹Xe and ¹⁹F NMR studies of the xenon(II) derivatives FXeL and XeL₂, where L = -OIF₄O, -OSO₂F, -OTeF₅, can therefore be used to assess the group electronegativity trends for the series -OSO₂F, -OTeF₅, and -OIF₄O.

The mixed xenon(II) derivatives containing one -OSO₂F and one -OIF₄O group provide a means by which the relative shieldings of the xenon nucleus can be compared for these two groups under the same solvent and temperature conditions. From the ¹²⁹Xe NMR studies on the IO_2F_3/XeF_2 system performed in SO_2CIF , it was evident that the ¹²⁹Xe chemical shifts of the fluorosulfate derivatives occur consistently to high frequency of those for the $-OIF_4O$ group derivatives (Table I). The average chemical shift differences are 16 ppm between FXeOSO₂F and trans-FXeOIOF₄ and 33 ppm between trans-F₄OIOXeOSO₂F and trans, trans- $Xe(OIOF_4)_2$, implying the electronegativity of the $-OSO_2F$ group is greater than that of the *trans*-OIF₄O group. Furthermore, the ¹²⁹Xe chemical shifts for the bis isomers of $-OIF_4O$ were found to be approximately additive, progressing to lower frequency with increasing cis substitution. This near-additivity trend was found to be independent of temperature and concentration, allowing the effective group electronegativity order cis-OIF₄O < trans-OIF₄O < $-OSO_2F$ to be deduced. Further support is obtained by recording the ¹⁹F NMR spectra of the monofluoro derivatives in SO₂ClF solvent at -5 °C (Table I). The ¹⁹F chemical shift for FXeOSO₂F (δ (¹⁹F) = -170.9 ppm) occurs to low frequency of the chemical shifts of both trans-FXeOIOF₄ $(\delta(^{19}\text{F}) = -168.4 \text{ ppm})$ and *cis*-FXeOIOF₄ ($\delta(^{19}\text{F}) = -158.7 \text{ ppm}$). These findings can likewise be interpreted in terms of the ionic characters of the terminal Xe-F bonds, which, in turn, are related to the group electronegativity. Thus, the high electron-withdrawing ability of the fluorosulfate group, as compared to that of cis- or trans-OIF₄O, results in the FXeOSO₂F molecule having substantially more XeF⁺ character than in either cis- or trans- $FXeOIOF_4$. The increased XeF⁺ character is reflected in a low-frequency (more shielded) ¹⁹F chemical shift for the fluorosulfate derivative. Moreover, it follows that the covalency of the Xe-O bond is greater in cis- or trans-FXeOIOF₄ than in FXeO-SO₂F.

In order to compare the electronegativities of the $-OIF_4O$ and $-OTeF_5$ groups, the series of mixed derivatives $(F_4OIO)_xXe^{-OIE}$

⁽⁴⁴⁾ Gillespie, R. J.; Netzer, A.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1455.

⁽⁴⁵⁾ Gillespie, R. J.; Landa, B. Inorg. Chem. 1973, 12, 1383.

⁽⁴⁶⁾ Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1980, 19, 2632.

⁽⁴⁷⁾ Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 765 and references therein.

 Table V. Xenon-129 Chemical Shifts for the

Xe(OTeF ₅) ₂ /cis,cis-Xe(OIOF ₄) ₂ System Recorded in CFCl ₃ Solvent				
species	$\delta(^{129}\text{Xe}), \text{ ppm}^a$	temp, °C		
$Xe(OTeF_5)_2$	-2423.2 -2428.2	5 24		
cis-F₄OIOXeOTeF₅	-2298.7 -2315.7	5 24		
cis, cis-Xe(OIOF ₄) ₂	-2219.5 -2236.4	5 24		
trans-F ₄ OIOXeOTeF ₅	-2205.3	5 24		

-2119.8

-2131.3

5

24

^aReferenced with respect to neat XeOF₄ at 24 °C.

cis, trans-Xe(OIOF₄)₂

 $(OTeF_5)_{2-x}$ were prepared in CFCl₃ and studied by ¹²⁹Xe NMR spectroscopy at 5 and 24 °C. The ¹²⁹Xe NMR parameters for this system are summarized in Table V. From inspection of Table V, the ¹²⁹Xe chemical shifts for the mixed derivatives $(F_4OIO)_x Xe(OTeF_5)_{2-x}$ progress to higher frequency with increasing -OIF₄O substitution. These frequency shifts are not additive, however, as was found for the cis and trans isomers of $Xe(OIOF_4)_2$. For instance, a frequency shift of 125 ppm was found on substitution of one $-OTeF_5$ group of $Xe(OTeF_5)_2$ for one cis-OIF₄O ligand, and with the substitution of the second -OTeF₅ group, the frequency was shifted a further 79 ppm to higher frequency. In comparison, the frequency shift associated with substituting one $-OTeF_5$ group of $Xe(OTeF_5)_2$ for one trans-OIF₄O group was 218 ppm. The ¹²⁹Xe chemical shift is observed to decrease in the order trans-OIF₄O > cis-OIF₄O > -OTeF₅, and it may be inferred that the relative group electronegativities increase in the opposite sense. Thus, the NMR parameters for the xenon(II) mixed derivatives containing cis-OIF₄O, trans-OIF₄O, -OTeF₅, and -OSO₂F suggest the group electronegativities increase in the order $-OTeF_5 < cis-OIF_4O <$ trans-OIF₄O < $-OSO_2F$.

Previous ¹²⁹Xe NMR and ¹²⁹Xe Mössbauer studies have clearly shown the group electronegativity of $-OTeF_5$ is less than that of fluorine.³² However, the ordering of group electronegativities for -F, $-OIF_4O$, and $-OSO_2F$ is not as straightforward. In the present work, ¹²⁹Xe NMR spectra of *cis*- and *trans*-FXeOIOF₄ recorded in BrF_5 solvent at -40 °C yielded chemical shifts of -1798 and -1703 ppm, respectively. In a prior ¹²⁹Xe NMR study,⁴⁸ ¹²⁹Xe chemical shifts of XeF₂ and FXeOSO₂F were similarly determined in BrF₅ solvent at -40 °C, yielding values of -1708 and -1666 ppm, respectively. On the basis of shielding of the central xenon nucleus in these examples, the apparent group electronegativity order has been deduced: $-OTeF_5 < cis-OIF_4O < -F < trans OIF_4O < -OSO_2F$, where -F is clearly anomalous. On the other hand, $^{19}\mathrm{F}\,\mathrm{NMR}$ results in this work have shown that the fluorine nuclei of FXe-L species become increasingly more shielded in the order cis-OIF₄O < trans-OIF₄O < $-OSO_2F < -F$. Furthermore, if one considers the Xe-F stretching frequency of the mono derivatives to be a reflection of the ionic character of the Xe-F bond, then the frequency is expected to increase as the xenon-ligand atom bond becomes more ionic, i.e., more XeF+ character. The stretching frequencies of the terminal Xe-F bonds, which are not strongly coupled to the Xe-O stretch, increase in the order of increasing group electronegativity, i.e., $-OTeF_5$ (520 cm⁻¹)¹³ < *cis*- and *trans*-OIF₄O (527 cm⁻¹) < $-OSO_2F$ (530 cm⁻¹).¹² With the exception of the ¹²⁹Xe chemical shift of XeF₂, the following group electronegativity order appears to be consistent with the majority of the spectroscopic data:

 $-OTeF_5 < cis-OIF_4O < trans-OIF_4O < -OSO_2F < -F$

Experimental Section

Apparatus and Materials. The air- and moisture-sensitive natures of the precursors and products required that all manipulations be carried out under anhydrous conditions on a vacuum line or in a nitrogen-filled drybox (Vacuum Atmospheres Model DLX). Air-sensitive samples of low volatility, i.e., XeF₂, HOIOF₄, *cis*- and *trans*-FXeOIOF₄, and *cis*, *cis*-Xe(OIOF₄)₂, were transferred in a drybox. The vacuum line used to transfer more volatile substances was constructed from 316 stainless steel, nickel, Teflon, Kel-F, and FEP.

NMR samples were prepared and vacuum-sealed either in glass tubes (5 or 10 mm o.d.) or in FEP tubes (4 or 9 mm o.d.) heat-sealed at one end and flared (SAE 45°) at the other.

The preparation and/or purification of HF,⁴⁴ SO₂ClF,⁴⁸ BrF₅,⁴⁴ CFCl₃,³⁴ XeF₂,³⁴ and Xe(OTeF₅)₂³⁴ has been described in detail elsewhere.

HOIOF₄ and IO₂F₃.⁴⁹ Fluorosulfuric acid solvolysis of H_3IO_6 was used to prepare HOIOF₄ in this work. The crude acid was titrated with 65% oleum, yielding HSO₃F-wetted IO₂F₃, which was purified with dry K₂SO₄. Addition of a stoichiometric amount of anhydrous HF to purified IO₂F₃ yielded good-quality HOIOF₄.

 IO_2F_3/XeF_2 Mixtures. In a typical experiment, IO_2F_3 (1.338 g, 6.20 mmol) was vacuum-transferred into a 10 mm o.d. glass NMR tube. Solvent (ca. 2.5 mL) was then distilled onto IO_2F_3 . An appropriate amount of XeF₂, depending on the desired IO_2F_3 :XeF₂ ratio, was weighed and then transferred to the NMR tube, while cold (-196 °C), in the inert atmosphere of a drybox.

 $cis, cis - Xe(OIOF_4)_2$. Pure $cis, cis - Xe(OIOF_4)_2$ was prepared according to eq 6. In a typical preparation, HOIOF₄ (0.8810 g, 3.74 mmol) was transferred in a drybox into a 9 mm o.d. FEP NMR tube equipped with a Kel-F valve. The tube was cooled to -196 °C, and a preweighed amount of Xe(OTeF₅)₂ (1.0740 g, 1.77 mmol) was added. After the transfer was complete, the valve was reassembled and the tube was quickly removed from the drybox and immersed in a Dewar filled with liquid nitrogen. In preparations where solvent was used, the solvent (ca. 4 mL) was vacuum-transferred to the tube at this point. The tube and contents were then warmed to 0 °C in an ice-water bath for ca. 15 min. For reactions performed with neat HOIOF₄, the temperature was raised to ca. 10 °C in order to liquefy the HOIOF₄ and initiate reaction. After the reaction was deemed complete (ca. 10 min), the volatiles were removed under vacuum at 0 °C for 1 h and then between 0 °C and room temperature for 24 h. After the pumping cycle, a pale yellow free-flowing solid remained, the identity and purity of which were confirmed by Raman spectroscopy.

cis- and trans-FXeOIOF₄. A homogeneous mixture of cis- and trans-FXeOIOF₄ was prepared according to eq 1 in HF solvent. In a typical preparation, IO₂F₃ (2.6848 g, 12.44 mmol) and XeF₂ (2.1361 g, 12.62 mmol) were combined in a 9 mm o.d. FEP NMR tube at -196 °C in a drybox. After the reaction tube was removed from the drybox while being kept cold, HF (ca. 10 mL) was added and the tube evacuated at -196 °C. The contents of the tube were allowed to react between -10 and 0 °C for $^{1}/_{2}$ h. The tube was frequently agitated during the course of the reaction to solubilize the reactants and periodically cooled in liquid nitrogen to control the rate of reaction. The solvent and volatiles were removed under vacuum at -50 °C, resulting in a white solid that, upon warming, yielded a light yellow liquid (mp 0 to -5 °C).

Nuclear Magnetic Resonance Spectroscopy. All NMR spectra were recorded unlocked (field drift <0.1 Hz h⁻¹) with the use of a Bruker WM-250 spectrometer equipped with a 5.8719-T cryomagnet and an Aspect 2000 computer. For variable-temperature measurements, samples were kept cold (-196 or -78 °C) until immediately prior to their placement in the probe. Samples were generally warmed only enough to liquefy and solubilize or partially solubilize the contents and were then quickly placed in the precooled NMR probe. Prior to data accumulation, the tubes were allowed to equilibrate in the probe for several minutes while spinning. Temperatures were periodically checked by placing a copper-constantan thermocouple into the sampling region of the probe and were considered to be accurate to within ± 1 °C.

The 5.8719-T ¹⁹F and ¹²⁹Xe spectra were obtained on the same 10-mm probe (broad-banded over the frequency range 23-103 MHz) tuned to 69.56 MHz for ¹²⁹Xe. Fluorine-19 spectra with 10 mm o.d. tubes were obtained with the use of the proton decoupler coils retuned to 235.36 MHz as the observe coils. Fluorine-19 spectra with 5 mm o.d. tubes were obtained with the use of a combination ¹H/¹⁹F probe and a fixed-frequency transmitter.

All spectra were obtained on natural-abundance compounds. Xenon-129 spectra were obtained in 400-10 000 scans at a spectral width

⁽⁴⁸⁾ Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980.

⁽⁴⁹⁾ The detailed synthesis of HOIOF₄ and IO₂F₃ can be found in ref 34. In addition, the details of these syntheses form the basis of a separate publication: Syvret, R. G.; Schrobilgen, G. J. HOIOF₄ and IO₂F₃: Improved Syntheses and Definitive Solution Structure of IO₂F₃ by High-Field ¹⁹F NMR Spectroscopy. To be submitted for publication in *Inorg. Chem.*

of 50 kHz (16K, 6.1 Hz/data point, 0.164-s acquisition time; 32K, 3.1 Hz/data point, 0.328-s acquisition time) or 100 kHz (32K, 6.1 Hz/data point, 0.164-s acquisition time). Fluorine-19 spectra were obtained in 64-1600 scans at a spectral width of 100 kHz (16K, 12.2 Hz/data point, 0.082-s acquisition time; 32K, 6.1 Hz/data point, 0.164-s acquisition time) or 150 kHz (32K, 9.2 Hz/data point, 0.109-s acquisition time). In some instances ¹⁹F free induction decays, accumulated at a spectral width of 100 kHz and in a 32K memory, were zero-filled to 64K for processing. Pulse widths corresponding to bulk magnetization tip angles, $\theta = 90^{\circ}$, were 2 (¹⁹F) and 22 μ s (¹²⁹Xe). Line-broadening parameters used in exponential multiplication of the free induction decays were set equal to or less than their respective data point resolutions. In some cases, resolution was further enhanced by transforming the free induction decays from a time to a frequency domain with use of a Gaussian fit rather than the conventional Lorentzian fit. In these instances, a Gaussian broadening between 0.1 and 0.5 and a line broadening equal to the negative of the respective data point resolution were applied to the free induction decays prior to Gaussian multiplication and Fourier transformation.

The respective nuclei were referenced with respect to neat samples of $XeOF_4$ (¹²⁹Xe) and $CFCl_3$ (¹⁹F) at 24 °C. A positive chemical shift was assigned to any resonance occurring to high frequency of the reference substance.

Raman Spectroscopy. A Coherent Model Innova 90 argon ion laser giving up to 3.5 W at 514.5 nm was used to excite the Raman spectra. The spectrometer was a Spex Industries Model 14018 double mono-

chromator equipped with holographic gratings (1800 grooves mm⁻¹). Slit widths depended on the scattering efficiency of the sample but were typically set between 50 and 100 μ m. The scanning rate used was 0.5 cm⁻¹ s⁻¹. The typical laser power range used was between 0.4 and 1 W. All Raman shifts quoted are believed to be accurate to ± 2 cm⁻¹. Cylindrical sample tubes were mounted vertically. The angle between the laser beam and sample tube was 45°, and Raman-scattered radiation was observed at 45° to the laser beam or 90° to the sample tube. Low-temperature spectra were recorded by mounting the sample vertically in an unsilvered Pyrex glass Dewar filled with liquid nitrogen. All spectra were obtained directly in either FEP or glass reaction vessels.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for support of this work and the Ontario Ministry of Education for the award of a scholarship (R.G.S.).

Registry No. I, 101410-65-5; II, 101470-51-3; III, 101410-66-6; IV, 101470-52-4; V, 101470-53-5; VI, 25519-01-1; VII, 119365-61-6; VIII, 119327-31-0; XeF₂, 13709-36-9; HOIOF₄, 34618-93-4; HF, 7664-39-3; SO₂CIF, 13637-84-8; Xe(OTeF₅)₂, 25005-56-5; IO₂F₃, 25402-50-0; H₅IO₆, 10450-60-9; ¹²⁹Xe, 13965-99-6; *cis*-F₄OIOXeOTeF₅, 119327-30-9; *trans*-F₄OIOXeOTeF₅, 119365-60-5; fluorosulfuric acid, 7789-21-1; oleum, 8014-95-7.

Contribution from the Department of Chemistry, University of Oregon, Eugene, Oregon 97403

Polyoxoanions Derived from $A-\beta$ -SiW₉O₃₄¹⁰⁻: Synthesis and Crystallographic and ¹⁸³W NMR Characterization of Si₂W₁₈Zr₃O₇₁H₃¹¹⁻, Including Its Organic Solvent Soluble Bu₄N⁺ Salt

Richard G. Finke,* Brian Rapko, and T. J. R. Weakley*,[†]

Received August 3, 1988

The reaction of A- β -SiW₉O₃₄¹⁰⁻ and "ZrO²⁺" ions in aqueous solution, under conditions initially designed to give "SiW₉Zr₃O₄₀¹⁰⁻", instead yields the new heteropolytungstate anion Si₂W₁₈Zr₃O₇₁H₃¹¹⁻, isolated as its Bu₄N⁺, Me₄N⁺, and Me₃NH⁺ acid salts. These have been characterized by means of elemental analysis, TGA, IR spectroscopy, ²⁹Si and ¹⁸³W NMR spectroscopy, and, for the Bu₄N⁺ salt, FAB mass spectroscopy. Structural questions left unanswered by the solution NMR studies were answered by a single-crystal X-ray structural analysis of the Me₃NH⁺ salt, (Me₃NH)₁₀H(Si₂W₁₈Zr₃O₇₁H₃)·10H₂O (monoclinic, P2₁/n, a = 13.452 (3) Å, b = 43.416 (7) Å, c = 18.331 (4) Å, β = 102.17 (2)°, Z = 4, Mo radiation, R = 0.055 for 8755 independent data with $I \ge 3\sigma(I)$. The crystallographic analysis shows the anion to have the composition [Zr₃(OH₃)(A- β -SiW₉O₃₄)₂]¹¹⁻, with approximate D_{3h} symmetry. The equatorially placed Zr atoms are linked by OH atoms. Each Zr is also bonded to two oxygens of an edge-sharing pair of WO₆ octahedra in each SiW₉O₃₄ unit and each trigonal-prismatic ZrO₆ group [average Zr-O = 2.11 (4) Å] is enlarged by two long Zr-O-(Si,W) bonds [average Zr-O = 2.83 (7) Å] normal to the prism faces. Possible reasons for the formation of Si₂W₁₈Zr₃, rather than SiW₉Zr₃, are discussed.

Designed, high-yield synthetic pathways to heteropolyanions containing more than one metal in oxidation states ≤ 4 are not generally available.¹ However, the factors leading to the several possible classes of such substituted polyoxoanions and thus to their rational synthesis should become increasingly clear now that new methods for the rapid characterization of such polyoxoanions,² including their less widely investigated, organic solvent soluble R_4N^+ salts,^{1c,2b-f,3c-e,4} are available.

As part of a program³ aimed initially at preparing two series of triply metal-substituted polyoxoanions $SiW_9M_3O_{40}^{n^-}$ and $P_2W_{15}M_3O_{62}^{m^-}$ (M = V⁵⁺, Nb⁵⁺ and Ti⁴⁺, Zr⁴⁺), we have investigated the synthesis and characterization of the M⁴⁺ = Ti and Zr members of this series. In addition to the fundamental interest in such heteropolyanions, they are of interest as possible soluble metal oxide support systems for transition-metal catalysts.^{3.5}

Herein we report that synthetic conditions of $3ZrO^{2+}$ + $SiW_9O_{34}^{10-}$, chosen initially with the goal of preparing the unknown zirconium-containing heteropolytungstate "SiW₉Zr₃-(OH₂)₃O₃₇⁴⁻" instead yield anions of the formula Si₂W₁₈Zr₃O₇₁¹⁴⁻. This new, Zr-substituted polyoxoanion has been characterized as

its H_2O -soluble, Me_4N^+ and Me_3NH^+ salts, by methods that include multinuclear NMR spectroscopy and a single-crystal X-ray

[†]Previous address: Chemistry Department, University of Dundee, Dundee DD1 4HN, U.K.

 ⁽a) For the most recent summary of this area see: Pope, M. T. Heteropoly and Isopoly Oxometallates; Springer-Verlag: New York, 1983.
 (b) This statement applies to multiple, M_x-containing, compounds possessing the Keggin (XW_{12-x}M_xO₄₀) and Dawson (X₂W_{18-x}M_xO₆₂) structures.
 (c) For an exception to this statement see: Katsoulis, D. E.; Pope, M. T. J. Am. Chem. Soc. 1984, 106, 2737.

<sup>E.; Pope, M. T. J. Am. Chem. Soc. 1984, 106, 2737.
(2) Two of the most powerful new methods are 1- and 2-D ¹⁸³W NMR spectroscopy.^{2a-f,3} FABMS^{3g-h} (fast atom bombardment mass spectroscopy) is another new method: (a) Acerete, R.; Hammer, C. F.; Baker, L. C. W. Inorg. Chem. 1984, 23, 1478. Kozik, M.; Hammer, C. F.; Baker, L. C. W. J. Am. Chem. Soc. 1986, 108, 2748. Kozik, M.; Hammer, C. F.; Baker, L. C. W. J. Am. Chem. Soc. 1986, 108, 7627. Kozik, M.; Baker, L. C. W. J. Am. Chem. Soc. 1986, 109, 7672. Kozik, M.; Baker, L. C. W. J. Am. Chem. Soc. 1987, 109, 3159. Jorris, T. L.; Kozik, M.; Casan-Pastor, N.; Domaille, P. J.; Finke, R. G.; Miller, W. K.; Baker, L. C. W. J. Am. Chem. Soc. 1987, 109, 7402. (b) Domaille, P. J. J. Am. Chem. Soc. 1984, 106, 7677 and references therein. (c) Knoth, W. H.; Domaille, P. J.; Rarlee, R. D. Organometallics 1985, 4, 62. (e) Finke, R. G.; Droege, M. W. J. Am. Chem. Soc. 1986, 108, 2947. For the original synthesis of A-β-SiW₉O₃₄¹⁰⁻, see ref 16. (g) Finke, R. G.; Droege, M. W.; Cook, J. C.; Suslick, K. S. J. Am. Chem. Soc. 1984, 106, 5750. (h) Suslick, K. S.; Cook, J. C.; Rapko, B.; Droege, M. W.; Einke, R. G.; Loroge, M. W.; Finke, R. G. Inorg. Chem. 1986, 25, 241.</sup>