Volume 28

Number 10

May 17, 1989

Inorganic **Chemistry**

0 Copyright 1989 by the American Chemical Society

Communications

A K3-Containing Trigonal-Bipyramidal Cluster: Synthesis of (KSCN)₃-5HMPA by Reaction of Solid NH₄SCN with **Solid K or KH in Toluene/HMPA and Its Crystal Structure Revealing a Triangle of Three K⁺ Ions Linked by** Three Equatorial μ_2 -HMPA Ligands and Bicapped by Two μ_3 -HMPA Ligands

We have previously reported a versatile route to anhydrous lithium complexes of type $(LiX·xL)_n$, with $X = Cl$, Br, I, or SCN and with L (Lewis bases) = HMPA $[O=P(NMe₂)₃]$, TMEDA, or PMDETA, by reacting solid ammonium salts, $NH₄X$, with BuⁿLi solution in toluene containing stoichiometric amounts of $L¹$ More recently, several of these so-synthesized complexes have been shown to adopt novel structures, most notably, (LiNCS-TMEDA)_∞, a 1-D polymer,² (LiBr)₂.3HMPA, consisting of two LiBr monomers bridged by μ_2 -HMPA ligands,³ and (LiNCS. $2HMPA)_2$, an asymmetric dimer of form $(HMPA)_2Li(\mu_2 HMPA$ ₂Li(NCS)₂.⁴ Here we report a two-way extension of the above: from lithium to potassium and from using, as the metal source, a solution of an organometallic compound (BuⁿLi) to using *solids,* and moreover decidedly *inorganic* ones. Thus, it is shown that solid NH4SCN reacts with solid K metal or with solid KH in toluene/HMPA media to give $(KNCS)_{3}$. SHMPA (1). An X-ray diffraction study reveals unprecedented structural features, **1** consisting of a triangle of K^+ ions (cf. the M or M_2 units found above when $M = Li$) attached to the N ends of three exo NCS⁻ anions, bridged in the equatorial plane by three μ_2 -HMPA ligands, and then capped, above and below, by two μ_3 -HMPA ligands.

Potassium metal (0.39 g, 10 mmol) was added to solid NH₄-SCN (0.76 g, 10 mmol) suspended in toluene (10 mL) and HMPA $(3.58 \text{ g}, 20 \text{ mmol})$,⁵ under nitrogen and at room temperature. An immediate reaction occurred, with gas evolution and development of a green color in the liquid. After ca. 5 min this color began to fade, with concomitant production of a white precipitate. Careful warming of the mixture accelerated this process so that, within 15 min, no potassium metal remained. The white solid was dissolved by addition of toluene/hexane (10 mL/25 mL) and of further HMPA (5.37 **g,** 30 mmol). Refrigeration then gave colorless crystalline needles, identified as $(KSCN)_{3}$.5HMPA (1).⁶

- Barr, D.; Snaith, R.; Wright, D. **S.;** Mulvey, R. E.; Wade, K. *J. Am. Chem.* Soc. **1987,** *109,* 7891. The paper **notes** the advantages of this in situ route and the likely applications of these complexes; the route is under patent (European Patent No. 88309913.7) filed by the Associated Octel Co. Ltd.
- (2) Barr, D.; Doyle, M. J.; Mulvey, R. **E.;** Raithby, P. R.; Snaith, R.; Wright, D. **S.** *J. Chem. Soc., Chem. Commun.* **1988,** 145.
- (3) Barr, D.; Doyle, M. J.; Mulvey, R. E.; Raithby, P. R.; Reed, D.; Snaith, R.; Wright, D. **S.** *J. Chem. Soc., Chem. Commun.* **1989,** 318.
- Barr, D.; Doyle, M. J.; Drake, **S.** R.; Raithby, P. R.; Snaith, R.; Wright, (4) D. *S. J. Chem. Soc., Chem. Commun.* **1988,** 1415.
-
- HMPA is a cancer suspect agent and should be treated with extreme
For 1: yield 3.51 g, 89% with respect to K metal taken; mp from 60
PC. ¹H NMR spectrum (C₆D₆, 250 MHz): HMPA ³¹P{¹H} doublet,
 δ 2.44, 2.41 ppm (6)

Figure 1. A PLUTO plot of the molecular structure of $(KNCS)_{3}$.5HMPA **(1).** Methyl hydrogen atoms have been omitted for clarity; dashed lines between K* ions have been inserted to give perspective and have no structural or bonding implications.

The same product is formed, in similarly high yield (90%), by reacting KH solid with $NH₄SCN$ solid in HMPA (1:1:5) and toluene; as in the metal route, the vigorous reaction proceeds through colored (here, turquoise) intermediates.

The stoichiometry of 1 hinted at an unusual structure, as did the (so far, unexplained) closeness of the HMPA doublet in its ¹H NMR spectrum⁶ (0.03 ppm; cf. \sim 0.10–0.12 ppm in HMPA itself and in previous HMPA-complexed lithium species). An X-ray diffraction study' has now shown that 1 does indeed have an unprecedented solid-state structure, as illustrated in Figure 1. It consists of a $(K^+)_3$ triangle whose K \cdot K edges [length 3.655] (4) Å; K⁺ ionic radius \sim 1.4 Å] are bridged in this equatorial plane by three μ_2 -HMPA ligands $[K-\mu_2$ -O distance 2.748 (8) Å]; the metal triangle is then capped, above and below, by two μ_3 -HMPA ligands $[K-\mu_3-O$ distance 2.712 (5) Å], and each K^+ reaches formal pentacoordination by exo contacts to a thiocyanate anion [K-N distance 2.690 (12) **A].**

Comparisons of 1 with other potassium-containing structures (or with alkali-metal ones in general) are difficult. **A** literature search⁸ reveals some 45 structurally characterized KSCN com-

⁽⁷⁾ Crystal data for **1:** $(KSCN)_{3}$. SHMPA, $C_{33}H_{90}K_{3}N_{18}O_{5}P_{5}S_{3}$, $M_{r} =$ 1187.56, hexagonal, *P6,/m* (No. 176), *a* = 16.354 (3) **A,** c = 14.061 (6) **A,** *V=* 3257 **A3,** *Z* = 2 trimers, *R* = 0.099 and *R,* = 0.1 19 for 1291 unique observed reflections at $T = 235$ K (20 range 5-116°, Cu Ka radiation).

⁽⁸⁾ Search of the Cambridge Crystallographic Data Base. Director: Dr. 0. Kennard, University of Cambridge, Cambridge, U.K.

plexes, but all with macrocyclic, crown-type ligands (so giving, usually, single K^+ units); any bonding $K^+ \cdots NCS^-$ contacts are typically of length 2.8-3.0 **A.** Perusal of a recent review of organometallic compounds containing heavier alkali metals $(Na-Cs)^9$ has also failed to find a structure comparable with that of **1.** Some comment can, though, be made concerning this structure; cf. that of $(LINCS·2HMPA)₂$.⁴ The ionic radii of (six-coordinate) Li' and K+ differ by about 0.62 **A,** so that the M-N distances (2.007 Å in the Li complex, \sim 0.69 Å longer when $M = K$, in 1) and the M- μ_2 -O distances (of HMPA; 2.015 Å in the Li complex, ~ 0.74 Å longer in 1) only roughly fall in line. Within the thiocyanate anions of the two complexes, there is better agreement (N-C and C-S distances in the Li complex being 1.1 56 and 1.629 **A,** respectively, and in **1** being 1.142 (16) and 1.625 (12) Å, respectively), enabling their formulation as

$[N= C - S]$ ⁻

For the M^+ - μ_3 -O (of HMPA) coordinations, there are seemingly no precedents in alkali-metal chemistry. Even though each (Me_2N) ₃P=0 ligand has just two lone pairs formally available for bonding to, one supposes, just two metal centers, the $O = P$ distances within the μ_2 and μ_3 ligands of 1 show no significant difference [being 1.473 (9) and 1.491 (8) Å, respectively], which could be attributed to use of π -electron density in the latter case.

Clearly, **1** has a highly ionic structure. It can be viewed as a bicapped $(K_3O_3)^3$ ⁺ hexagon [see Figure 1, looking along O(1)-K(1)-O(1a); angles at K 156.6 (2)^o] or as a $(K_3)^{3+}(\mu_3$ -HMPA)₂ trigonal bipyramid whose K^+ \cdots K^+ edges are stitched (borane-like) by μ_2 -HMPA ligands. Either way, the equatorial belt is pulled out, presumably to maximize $K^+ \cdots K^+$ distances.

Acknowledgment. We thank the SERC (D.B., P.R.R., R.S., D.S.W.), the Associated Octel Co. Ltd. (R.S., D.S.W.), the IC1 (M.J.D.), and St. John's College, Cambridge (S.R.D.), for financial support.

Supplementary Material Available: Details of the crystal structure determination, Tables Sl-S4, listing final atomic coordinates, bond lengths, bond angles, and thermal parameters, and a view of the unit cell contents showing the two trimeric molecules of **1** (6 pages); a listing of calculated and observed structure factors (10 pages). Ordering information is given on any current masthead page.

(9) Schade, C.; Schleyer, P. v. R. *Ado. Organomet. Chem.* **1987,27,** 169.

Received November 30, 1988

Tris(trimethylsilyl)silyl Derivatives of Tri-tert-butoxyzirconium and Tri-tert-butoxyhafnium. X-ray Crystal Structure of $(Me_3CO)_3ZrSi(SiMe_3)_3$

Recent investigations in our laboratory have focused on the formation and reactivity of early-transition-metal-silicon bonds.] Studies with d^0 zirconium and hafnium derivatives such as $Cp_2M(SiMe_3)Cl$ ($Cp = \eta^5-C_5H_5$),² $Cp_2M[Si(SiMe_3)_3]Cl,^{2c}$ $Cp^*_{2}Zr(SiHMes_2)Cl(Cp^* = \eta^5-C_5Me_5; Mes = 2,4,6-Me_3C_6H_2),$

Figure 1. ORTEP view of $Me₃CO₃ZrSi(SiMe₃)₃ (1)$ with thermal ellipsoids drawn at the 20% probability level. Important bond lengths (A) and angles (deg) are as follows: $Zr(1) - Si(1) = 2.753(4), Zr(1) - O(1)$ $= 1.90 (1)$, $Zr(1)-O(2) = 1.884 (7)$; Si(1)- $Zr(1)-O(1) = 107.5 (3)$, $Si(1)-Zr(1)-O(2) = 107.7 (2), O(1)-Zr(1)-O(2) = 110.9 (3), Si(2) Si(1)-Zr(1) = 110.7$ (2), $Si(3)-Si(1)-Zr(1) = 110.2$ (1), $Zr(1)-O (1)$ -C(51) = 165 (1), Zr(1)-O(2)-C(61) = 167.2 (8).

Figure 2. View of **1** down the Zr(1)-Si(1) bond.

Cp^{*}Cl₂MSi(SiMe₃)₃,⁴ and CpCp^{*}M[Si(SiMe₃)₃]Cl^{1c,5} have shown that these metal-silicon bonds are unusually reactive toward a variety of substrates. A common feature of these silyl compounds is the presence of cyclopentadienyl $(C_5H_5$ or C_5Me_5) ancillary ligands. Because the reactivity of early-transition-metal-silicon bonds is dramatically influenced by substituent effects at both the transition metal and silicon, $16,26,3,5$ we have sought syntheses of early-transition-metal-silyl complexes with different ligand environments. We now report the synthesis of complexes $(Me₃CO)₃MSi(SiMe₃)₃$ (1, M = Zr; 2, M = Hf), which to our knowledge are the first group 4 silyl derivatives that do not contain cyclopentadienyl ligands.

By a modification of the literature procedure for $(CH_3CH_2CH_2CH_2O)_3MCl$,⁶ the alkoxides $(Me_3CO)_3MCl$ were generated in solution by reaction of MCl₄ with 3 equiv of M-
(OCMe₃)₄⁷ in diethyl ether for 12 h at 0 °C. After the solution was warmed to room temperature addition of (THF),LiSi- $(SiMe₃)₃⁸$ to this solution resulted in formation of silyl complexes **1** and **2** (reaction time **3** h), isolated in 60-70% yield by crys-

- (5) (a) Elsner, F. H.; Woo, H.-G.; Tilley, T. D. *J. Am. Chem. Soc.* **1988**, *110*, 313. (b) Woo, H.-G.; Tilley, T. D. *J. Am. Chem. Soc.*, in press. (6) Weidmann, B.; Maycock, C. D.; Seebach, D. *Helo. Chim. Acta* **1981,**
- *64,* 1552.
- **(7)** Thomas, **I.** M. *Can. J. Chem.* **1961,** *39,* 1386.
- (8) Gutekunst, G.; Brook, A. *G. J. Organomet. Chem.* **1982,** *225,* 1.

^{(1) (}a) Tilley, T. D. **In** *The Chemistry of Organosilicon Compounds;* Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; Chapter 24, p 1415.
(b) Arnold, J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J.; Arif, A. M.
J. Am. Chem. Soc. 1989, *III*, 149. (c) Elsner, F. H.; Tilley, T. D.;
Rheingold, references therein.

^{(2) (}a) Tilley, T. D. *Organomelallics* **1985,** *4,* 1452. (b) Tilley, T. **D.** *J. Am. Chem. SOC.* **1985, 107,** 4084. (c) Campion, B. K.; Falk, **J.;** Tilley, T. **D.** *J. Am. Chem. Sot.* **1987, 109.** 2049.

⁽³⁾ Roddick, D. M.; Heyn, R. H.; Tilley, T. **D.** *Organometallics* **1989,** 8, 324.

^{(4) (}a) Arnold, J.; Woo, H.-G.; Tilley, T. D.; Rheingold, A. L.; Geib, S.
J. *Organometallics* 1988, 7, 2045. (b) Arnold, J.; Roddick, D. M.;
Tilley, T. D.; Rheingold, A. L.; Geib, S. J. *Inorg. Chem.* 1988, 27, 3510. (c) Arnold, **J.;** Elsner, F. **H.;** Engeler, M. **P.;** Heyn, R. H.; Tilley, T. D. Submitted for publication.