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dence on A (an upward shift of the oxygen 2p orbitals). It is seen 
that the H O M O  energy becomes almost independent of angle, 
if it becomes too close to the empty 5f-like levels. (The sum of 
the five lowest orbital energies is approximately independent of 
the angle and is therefore omitted from Figures 4 and 5.) The 
central feature for Th, as a function of decreasing bond length, 
is seen to be that the “linearizing” influence of MO 10 grows faster 
than the bending influence of MO 11, with shortening bond length. 
This tendency is seen quantitatively in Table VIII. 

Comparing the two metals, the linearizing tendency of MO 10 
and the R dependence of this trend are very similar. The difference 
appears in M O  11 where the bending tendency is stronger for Th 
than for U. 

A variation of A for T h o z  a t  191 pm gives a bent molecule for 
A = 0, two minima (at 180 and 100’) for A = 2 and a clearly 
linear molecule at 4 eV. For uranyl, all A values give a linear 
molecule (see Figure 5). 

Without the 6p orbitals, using a 7s7p6d5f metal basis, all cases 
were linear but only very weakly. 

The Walsh-type REX argument, based on the energies of MOs 
10 and 1 1, can be summarized as follows (the bond lengths are 
here input data). 

T h o 2  is bent, first because it has a larger bond length and 
therefore a weaker “linearizing” tendency from M O  10 (see Figure 
4), second because it has lower lying 6d levels (in ref 11 as in 
Figure 2 but not in Figure 1) that tend to bend the molecule and, 
third because it has a higher lying 5f level, which therefore does 
not “flatten” the HOMO, MO 11. 

Inversely, uranyl is linear because it has a shorter bond length 
(due to good multiple bonding, a smaller 6p core and, eventually, 
its positive net charge) and has therefore a strong linearizing 
tendency from the MO 10, second uranium has higher lying input 
6d levels, and third uranium has lower lying input 5f levels, which 
tend to “flatten” M O  11. 

To obtain the strong 5f character of MO 11 the REX/EHT 
requires the “pushing from below” by the semicore 6p AOs. With 
the 6p but without the 5f orbitals, MO 11 would be strongly 

bending.4,12 Without the 6p orbitals, M O  10 would not become 
strongly linearizing because this trend was attributed to 2p-6p 
repu1~ion.l~ 

As a technical detail, it is interesting that the uu M O  11 is 
apparently repelled by the 5f band above it, although none of the 
other 5f levels have a a, symmetry that could lead to a noncrossing. 
Similar stationary levels have been reported e l ~ e w h e r e ~ ~ - ~ ~  for 
Hamiltonian matrices of the type 

O a  
h =  (i‘ b )  

a3 
(5) 

In that case the combination bll ) - a12) of the two degenerate 
orbitals is orthogonal to 13) and stays at E = al. 

In the present case, we instead have the matrix structure 

a6p a 

= (I: basr L2) 
This matrix has an (Newton-Raphson, S = 1, a5f = 0) eigenvalue 
a t  

E q p b z / ( a Z  + b2 - a6pa2p) (7) 

As, typically, a = +17 e v ,  b = +3 eV, a 6 p  = -19 eV, azp = -6 
eV for A = 0, this level lies about 1 eV below asp 
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With the use of the numerical Hartree-Fock method, a set of average-of-configuration calculations have been carried out for the 
atoms from H to Cu, as well as for the corresponding mono- and dipositive ions. The focus of this work is on the study of the 
occupation of 3d and/or 4s orbitals. Attempts are made to relate configurational energy differences to simple orbital energy 
differences, so as to provide additional insight into the Aufbau principle of the periodic system of the elements. 

I. Introduction 
In discussions of the Aufbau principle of the elements, it is 

customary to start from a qualitative energy diagram,’-j where 
the evolution of the different orbital energies e is shown as a 
function of Z .  Up to argon, the ground-state configuration of the 
atoms can be obtained by filling the orbitals in the expected 
sequence Is, 2s, 2p, 3s, 3p. The first deviation from the hydrogenic 
order is apparently due to a crossover of the 3d and 4s curves. 
Obviously, the 3d-4s crossover has important consequences for 
the electronic configuration of transition-metal elements. 

Yet, it appears that the theoretical basis of the c(Z)  orbital 
energy diagram is somewhat unclear: the diagrams presented in 

(1)  Latter, R. Phys. Rev. 1955, 99, 510. 
(2) Levine, I. N. Quantum Chemistry; Allyn & Bacon, Inc.: Boston, MA, 

1974; p 244. 
(3) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; 

J .  Wiley & Sons, Inc.: New York, 1988; p 628. 

the literature either are purely qualitative, are deduced from 
spectral data in a semiempirical way, or else are based on very 
approximate Thomas-Fermi-type calculations. To our knowledge, 
no systematic ab  initio treatment is available, describing the 
evolution of the orbital energies e as a function of Z .  

It is the purpose of this paper (i) to discuss a systematic series 
of ab  initio calculations on the relevant configurations with 4s 
and/or 3d occupation, from H up to Cu, (ii) to relate configu- 
rational energy differences to orbital energy differences, and (iii) 
to extend the calculations to the mono- and dipositive ions of the 
elements. 
11. Hartree-Fock Treatment of the Average of a 
Configuration 

For the systems under consideration, it is possible to predict 
the experimental ground states and to calculate quantitatively term 
splittings and ionization energies by MCSCF type techniques and 
configuration intera~tion.”~ If one is more interested in general 
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experimental information is lacking for Ti’ d3s0 and for V2+ d’s2). 
Table I also shows the energy of the seven individual states 
(averaged over J) corresponding to the Sc d2s’ configuration. The 
difference between AESCF and AEfray is only of the order of 1%,  
showing that the loss in numerical accuracy resulting from our 
procedure is actually quite small. 

For the individual states, the agreement between the experi- 
mental AE,,, on the one hand and AEsCF or AEfrav on the other 
hand is qualitatively satisfactory, but quantitatively the error can 
amount to more than 40%. In all but one case, the relative 
sequence of the d2s’ states is predicted correctly; the inversion of 
the (close-lying) 4P and 2D states is probably due to the fact that 
Hartree-Fock calculations tend to favor high-spin states (char- 
acterized by a correspondingly high Pauli correlation). 

In the averaging process, the differential Pauli correlations tend 
to cancel; as a consequence, the relative energy of configuration 
averages is more reliable than the relative energy of the individual 
states: the error (with respect to experiment) is smaller, and the 
correct sequence is predicted in all cases. 

The main advantages of the average-of-configuration formalism 
are however that (i) we can now limit ourselves to a comparison 
of only two or three different situations, each one being the 
weighted mean of a number of states and (ii) the orbital energies 
of open and closed shells now both satisfy Koopmans’ theorem, 
and therefore they do have a comparable meaning.’ 

The here presented treatment is related to the work of Claydon 
and Carlson,’* who discussed the results of restricted Hartree-Fock 
calculations on the ground states of first-row transition metals. 
The Claydon-Carlson paper did not focus on orbital energies 
however, and as such, it left a number of questions unanswered, 
giving rise to several conflicting discussions on ground-state en- 
ergies in terms of orbital o c ~ u p a n c y . ~ ~ - ~ *  
111. Energy Expressions 

average is given by9 
Quite generally, the total energy of a (...3dP4~4) configuration 

Table 1. Energy Difference (in eV) between the Ground 
Configuration Average and a Number of Excited States and 
Configuration Averages in Sc, Ti’, and V2+ ( N  = 3)n 

4F 
2F 
2D 
4P 

2G 
2P 
2s 

Avd2s1 
Avd3so 

1.427 1.007 
1.846 1.772 
2.097 2.181 
2.129 2.063 
2.500 2.669 
2.555 2.924 
3.327 4.438 
1.992 1.934 
4.638 5.464 

1.014 
1.890 
2.182 
2.094 
2.686 
2.969 
4.696 
1.971 
5.477 

Ti’ Avd2s1 0 0 0 

V2’ Avd3so 0 0 0 
Avd1s2 2.152 2.763 2.740 

Avd2s’ 4.830 4.589 4.590 

OThe experimental energies AEeXp are taken from Sugar and Cor- 
1iss;ll AESCF is the energy difference between the situations under 
consideration, based on the solution of the Hartree-Fock equations for 
each state individually; AErrav is the energy difference between the sit- 
uations under consideration, calculated from one set of frozen orbitals 
per configuration. 

qualitative features however, and especially if one is interested 
in the relationship between orbital energies and state energies, 
Hartree-Fock calculations are perhaps more appropriate-though 
certainly less accurate. 

For each one of the neutral atoms from H to K, two different 
configurations are relevant for our purposes: (...3d14s0) and 
(...3d04s1). Both configurations are characterized by N = 1 ,  where 
N is the number of electrons in the 3d,4s orbital subset. For the 
heavier atoms, from Ca to Cu, where N I 2 ,  three different 
configurations should be considered: 3dP4~4, where q = 0, 1,  or 
2 and where p + q = N .  A complete Hartree-Fock treatment 
of all these systems would be rather involved and probably not 
very illuminating. Indeed, most of the configurations give rise 
to several multiplets, and each multiplet is characterized by its 
own set of orbitals and orbital energies. 

Therefore, we prefer to work within the average-of-configuration 
procedure. That is, we solved the Hartree-Fock equation for the 
average field of each particular configuration, using Fischer’s 
numerical Hartree-Fock In this way, we obtain the 
best possible orbitals describing simultaneously the different states 
corresponding to any one of the relevant configurations. It is 
well-known that these average orbitals are only very slightly 
different from the optimal Hartree-Fock orbitals for each indi- 
vidual state.1° As a matter of fact, if  the average orbitals are 
frozen and used to calculate the different multiplet energies, only 
very small errors resuit. Table I illustrates some of these points 
for N = 3 systems. First of all, it is clear that the experimental 
energy difference between two configuration averages is only 
known if all states of both configurations have been observed and 
identified. Even for the first transition series, this condition is 
only occasionally satisfied. Table I shows the experimental relative 
energy for the three Sc configuration averages, d1s2, d2s1, and d3s0, 
and for two of t h e  three Ti’ and V2+ configuration averages ( the  

Bauschlicher, C. W., Jr.; Walch, S. P.; Partridge, H. J .  Chem. Phys. 
1982, 76, 1033. 
Dunning, T. H.; Botch, B. H.; Harrison, J. F. J .  Chem. Phys. 1980, 72, 
3419. 
Fischer, C. F. J .  Chem. Phys. 1982, 74,  1934. 
Botch, B. H.; Dunning, T. H.; Harrison, J. F. J .  Chem. Phys. 1981, 75,  
3466. 
Fischer, C. H. Comput. Phys. Commun. 1969, 1 ,  151. Fischer, C. H. 
The HartreP-Fock Method for  Atoms; Wiley Interscience: New York, 
1977. 
Slater, J. C. Quantum Theory of Atomic Structures; McGraw-Hill: 
New York, 1960; Vol. 11. 
Vanquickenborne, L. G.; Haspeslagh, L. Inorg. Chem. 1982, 21 ,  2448. 
Sugar, J.; Corliss, C. J. J .  Phys. Chem. Ref: Data 1978, 7 .  1191; 1979, 
8, I ;  1980, 9, 473. 

Here, E ,  is the core energy, containing the total one-electron 
contribution of the core, as well as the total repulsion between 
these electrons, but not the repulsion between the core and the 
3d or 4s electrons. For the 3d transition metals, the core corre- 
sponds to the argon core; for the N = 1 systems, one electron is 
promoted from the highest occupied orbital of the ground-state 
configuration to 3d or 4s. Therefore, the number of core electrons 
decreases with decreasing Z ,  being equal to the total number of 
electrons minus one.” The parameter w can be considered as 
the effective one-electron energy of a valence (Le. 3d or 4s) electron 
moving in the average field of the core: 

u 4 s  = 24s + lis + (C,4S) ( 2 )  
t is the kinetic energy, 1 is the electron-nucleus attraction, (c,3d) 
and (c,4s) are the average repulsion between one 3d (or 4s) 

(12) Claydon, C. R.; Carlson, K. D. J .  Chem. Phys. 1968, 49, 1331. 
(13) Hochstrasser, R. M. J .  Chem. Educ. 1965, 42, 154. 
(14) Pilar, F. L. J .  Chem. Educ. 1978, 55, 3. 
(15)  Carlton, T. S .  J .  Chem. Educ. 1979, 54, 767. 

Pilar, F. L. J .  Chem. Educ. 1979, 56, 761. 
De Kock, R. L.; Gray. H. 8. Chemical Structure and Bondina; Ben- 
jamin: New York, 1980. 
Cook, D. B. Mol. Phys. 1984, 53, 631. 
In  eq 1,  we use the designation ‘valence orbital” for the 3d,4s set and 
“core orbital” for all lower lying orbitals. This is in line with the 
conventional terminology for transition metals, but not for the pre- 
transition elements. For instance, for C ls22s22p13d1, we consider 
ls22s22p1 to be the “core” and 3d’ to be the ‘valence” shell. This rather 
unusual convention allows us to write a single energy expression (eq 1)  
for all elements under consideration. 
Virtual orbital energies cannot be obtained from eq 9, which presuppose 
occupied orbitals. 
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electron and the core. If the individual core orbitals are designated 
as Y 

( ~ $ 3 4  = ENY(y,3d)  
Y 

(c,4s) = "(y,4s) (3) 
Y 

where for instance (y,3d) is the average repulsion between an 
electron in a y-core orbital and another one in 3 4  Ny is the number 
of electrons in y. In eq 1, (3d,3d) represents the average repulsion 
between two electrons in the d shell: 

5 5  

a b  
(3d93d) = f / d ~ C C ( 2 J a b  - K a b )  (4a) 

where a and b range over the five 3d orbitals. The corresponding 
expression for (4s,4s) consists of only one term 

( 4 ~ , 4 ~ )  = J4S,ds (4b) 

whereas 
5 

a 
(3d,4s) = 1 / 1 0 ~ ( 2 5 4 s , a  - K4s,a) (4c) 

All J and K integrals can of course be expressed in terms of the 
appropriate Slater-Condon parameters Gk and Fk. It is convenient 
to introduce a separate symbol for the valence-shell repulsion terms 
in eq 1: 

Similarly the repulsion between valence shells and core shells can 
be denoted as 

( 6 )  

(7) 

C, = p(c,3d) + q(c,4s) 

c = c, + c,, + c, 
and the total repulsion C becomes 

where C, is the intracore repulsion included in E,. 
The orbital energies t3d and t4d in 3dp4s4 can easily be found 

from eq 1, since Koopmans' theorem is always satisfied for con- 
figuration averages. For instance, from 

t3d = E,,(dPs*) - EaVP*Q(dP-'S'7) (8) 
where the superscript p,q means that the frozen orbitals of dPsq 
have to be used, we find 

(9a) 

(9b) 

t3d = 0 3 d  + (p - 1)(3d,3d) + q(3d ,4~)  

64s = ~4~ + (4 - 1 ) ( 4 ~ , 4 ~ )  + p(3d ,4~)  

and similarly 

Both t3d and are seen to have their usual meaning as the energy 
of an electron in a particular orbital, moving in the field of all 
other electrons. 

Substitution of eq 9a,b into eq 1 (and using the definition of 
C,, eq 5 )  gives the total energy in terms of the valence-orbital 
energies: 

EaV(dW) = E,  p t 3 d  + qt4s - cv (10) 

IV. The N = 1 Case 
Many of the expressions of the previous section become of 

course much simpler in the N = 1 case. More specifically, when 
applied to the two configurations 3di4s0 and 3d04s', eq 9a and 
9b become 

t3d(d'S0) = W3d(d'So) 

t4,(d0s') = u4,(dos') (11) 

and eq 1 yields 

E,,(d'so) = E,(d'so) + 03d(d's0) 

E,,(dos') = E,(dos') + u4,(d0s') ( 1 2 )  

Table 11. Numerical Hartree-Fock Results for the Total Energy (in 
Atomic Units), Energy Difference (in eV), Orbital Energies (in eV), 
and Orbital Parameters (in Atomic Units of Length) of Three 
19-Electron Svstems ( N  = 1): K. Cat. and Sc2+ 

K Cat  

EaddOs') -599.1650 -676.5702 
Eadd'sO) -599.0759 -676.4987 

c4s(d0si) = ~ s , i  -4.013 -11.328 
%d(disO) = f3d,f -1.581 -9.7 17 
63d.f - t4s.i 2.432 1.611 
r4s 5.2437 3.7284 
r3d 9.5382 2.3417 
AEC -0.008 0.335 

AEav(s + d) 2.424 1.946 

~ 

sc2+ 
-758.981 1 
-759.0926 

-3.034 
-20.867 
-24.61 1 

-3.744 
3.0330 
1.5436 
0.710 

The corresponding energy difference AEav(s - d) can therefore 
be expressed as 

AE,,(s - d) = E,,(d'so) - E,,(dos') 
= E,(d'So) - Ec(dos') + w3d(d'S0) - ~4~(dOs')  
= t3d(d'So) - ~4~(dOs') + AE, 

(13) 
where AE, is the relaxation energy of the nontransferred core 
electrons, due to their shape change following the 4s - 3d transfer. 

Now, the single valence electron moves in a region of space that 
is well separated from the space occupied by any of the other 
electrons. As an example, Table I1 shows a number of illustrative 
data for the isoelectronic series K, Ca', and Sc2+. For the neutral 
K atom for example, the core electrons are on the average only 
some 1.5 au or less from the nucleus, whereas r4, = 5.24 and r3d 
= 9.54 au (Table 11). As a consequence, the core electrons are 
not very much affected by the presence of the valence electron, 
and Table I1 shows that AE, is negligibly small for K, and a fortiori 
so for the lighter atoms.*' As a result, for the neutral atoms, the 
configurational energy difference AE,,(s - d) can to a good 
approximation be written as a simple orbital energy difference: 

AE,,(s + d) t3d(d's0) - ~4~(dOs') = t3d.f - t4,,i (14) 
As stressed before, the two orbital energies refer to different 
configurations (added in parentheses); they are eigenfunctions of 
different Hartree-Fock Hamiltonians. For the here considered 
s - d transition, des' is the initial configuration and d'so the final 
configuration-hence the shorthand notation in terms of 63d.f and 

Figure 1A shows the evolution of the two orbital energies as 
a function of Z for the neutral atoms. It is well-known from 
spectroscopic data24 on AEav that the here presented orbital energy 
differences reproduce the experimental energy level evolution. 
Figure 1A confirms the conventional picture of an almost non- 
penetrating 3d orbital of nearly constant energy, characterized 
by Zeff 1 up to K. Due to its nodal structure, the 4s orbital 
does penetrate the core however. The corresponding decrease in 

23 
%,i. 

(21) Following Koopmans' theorem, the value of AEc can formally be sub- 
divided into two components: 

AEc hEc(di) - AE,(si) 

where AE,(d') and AE,(s') stand for the positive relaxation energy 
accompanying the ionization of the 3d or 4s electron, respectively. The 
sign of AEc then reflects whether the core electrons are more affected 
by the presence of the 3d (AE, > 0) or 4s electron (AE, < 0). For K, 
AE, has a very small negative value, indicating that the valence electron 
affects the core more when it is in 4s than when it is in 3d (rc << 
r3d)-akhough the effect is small in both cases. For the positive ions, 
3d has contracted much more than 4s. and its interaction with the core 
has increased significantly; therefore AE, has become positive. A rather 
detailed analysis of AEc is also given by Calabro and Lichtenberger in 
ref 22. However, for the K atom, these authors present erroneous 
relative values of AE,(d') and AEc(s'). In ref 14, Pilar claims incor- 
rectly that c4* > cjd for both K and Na. 
Calabro, D. C.; Lichtenberger, D. L. Inorg. Chem. 1980, 19, 1732. 
The alternative energies c M i  and tkf would correspond to virtual orbitals 
and cannot be given a physical meaning in the same sense as the oc- 
cupied orbitals. 
Moore, C. E. Atomic Energy Levels as Derived from the Analysis of 
Optical Spectra; NBS Circular 467; National Bureau of Standards: 
Washington, DC, 1952; Vol. 11. 
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V. Results for N > 1 
1. Total Energies. Figure 2A shows the total energy evolution 

of the three configuration averages for the neutral metal atoms 
M and for the mono- and dipositive ions M', M2+. The energy 
is plotted not as a function of Z but as a function of N, the number 
of valence (3d and/or 4s) electrons, where N I 2. As a conse- 
quence, isoelectronic series (such as Sc, Ti+, V2+ or Co, Ni+, Cu2+) 
are represented on the same vertical line.26 For N = 3, Figure 
2A incorporates the results of Table I. 

The neutral atoms (except for the heaviest: Ni and Cu) have 
a d"s2 ground configuration, and their energy increases with each 
s - d transition: 

0 ,  

'3d 'i 

l l l l , l l l I l I l I I I l l l  
H ti B N F N a A l  P CI  K 

he' Be' C' 0' Ne' M; 51' 5' ar' ca' 
i," g. N" F.. Na.*  A(.. p'. c,.. K.. si. 

Figure 1. 3d (-) and 4s ( - - - )  orbital energies calculated in the (3d)' 
and (4s)' configurations as  a function of Z ( N  = 1 in all cases) for the 
neutral atoms (M) and the mono- (M') and dipositive (M2') ions pre- 
ceding the transition metals in the periodic system. Isoelectronic series 
a re  represented on a vertical line. In the terminology of an s - d 
transition, cjd = cM.[ and e4s = elSJ According to eq 14 the difference (c3d,l 
- also represents the energy change involved in the s' - d' transition. 

energy leads to the well-known crossover in the neighborhood of 
C (in perfect agreement with experiment) and a positive (t3d,f - 
c.,~,~) value of up to 2.4 eV for K (as defined in eq 14). 

It is important to realize however that the general features of 
the ( ( Z )  curves as shown in Figure 1 are strongly charge de- 
pendent. Parts B and C of Figure l show how the situation is 
changed from neutral M to M+ and M2+. Increasing the nuclear 
charge (at constant N) stabilizes all orbitals, but especially 3d. 
This is already evident in the one-electron case, where the sta- 
bilization of 3d with respect to 4s increases as Z 2 ( ' / ,  - As 
a consequence of the corresponding orbital contraction (see Table 
11), the 3d orbital does overlap with the 3s and 3p orbitals in the 
ions M+ and M2+, so that if we start from the point where these 
core orbitals are filled, the effective charge felt by the 3d electron 
increases abruptly, and Cjd drops rather steeply.25 The 4s orbital 
is much less affected by the Z increase. As a result, the 3d,4s 
crossover comes later for M+ and is inexistent for M2+. 

As can be seen from Table 11, the 3d contraction also affects 
the value of AE,, which is no longer negligible (see eq 13) .  Still, 
AEC decreases to the left side of Figure 1, and the values of Table 
I1 are larger than those of any of the preceding elements. 
Therefore, eq 14 remains a valid description, and even for the 
positive ions, it remains qualitatively correct to approximate U a v ( s  - d) by the orbital energy difference t jd , f  - t4s,i. 

The curves of Figure 1 have been discontinued when the argon 
core is fully occupied, because a t  that point further addition of 
electrons makes N 1 2, so that we have to consider three instead 
of only two configurations, with q = 0, 1, or 2 in 3dP4sq. In the 
3dP4sq configurations, neither of the valence orbitals is in general 
virtual; each one of the three relevant Hartree-Fock Hamiltonians 
yields one or two (occupied) orbital energies leading to a total 
of four or five E values for each atom or ion. In the next section, 
we describe in detail the results for 2 I N I 10. 

(25) It  is interesting to observe that ejd remains virtually constant (both for 
M+ and M2'), corresponding to Z N 2 and 2 N 3, respectively, as long 
as 3s remains unoccupied. This suggests that 3d does penetrate 3s and 
3p, but not the inner core is22s22p6-at least not to a significant extent. 

light M: Ea,(d"s2) < E,,(d"+lsl) < Eay(d"+2so) (1  Sa) 

For the M2+ ions one has exactly the opposite situation: 
all M2+: Eav(d"+2so) < Eav(d"+'sl) < E,,(d"s2) (15b) 

The monopositive ions M+ have an intermediate position: for N 
L 6 they follow the same pattern as the dipositive ions (15b), 
whereas for N < 6 they are closer to the neutral heavy atoms (Ni, 
Cu) with a 3dfl+'4s' ground configuration. 

In summary, Figure 2A shows quite clearly how the tendency 
to populate 3d increases with the number of valence electrons and 
with the charge of the ion. Indeed, for a given degree of ionization, 
the curves of Figure 2A illustrate how the relative stabilities of 
3dR+24s0 and 3dn+'4s' increase with respect to that of 3d"4s2, when 
the number of valence electrons increases: all curves of Figure 
2A have negative slopes a t  all points. Also, ionization is seen to 
have a very drastic effect on the relative stability of the three 
configurations: the more positive the ion, the more the s2 popu- 
lation becomes ~ n s t a b l e . ~ '  

It is also interesting to observe that, for a given number of 
valence electrons N a n d  a given nuclear charge Z ,  the first s - 
d transition (d"s2 - d"+'s') is always more favorable, in that either 
it  requires less energy or else it releases more energy than the 
second one (d"+'sI - dfl+2 s 1. 

AE,,(d"s2 - d"" s I ) < AE,,(d"+'s' - dnf2 s ) (16) 

2. Orbital Energies of 3d and 4s. The orbital energies of 3d 
and 4s, corresponding to the different configurations of M, M', 
and M2+ are shown in Figure 3. As before, virtual orbitals are 
not included, because they do not have the same physical meaning 
as the occupied orbitals. 

The most striking feature of Figure 3 is of course the expected 
appearance of five orbital energies (for each entity M, M+, and 
M2+) rather than just two as in Figure 1. In order to link the 
two figures, the 4s curve of 3dn+'4s' and the 3d curve of 3d"+'4s0 
could be extrapolated to N = 1 (or n = -1 j; this extrapolation 
yields two points, which are exactly coincident with the rightmost 
points of Figure 1. The appearance of the three additional curves 
in Figure 3 is the most obvious manifestation of the inadequacy 
of the conventional E ( Z )  curves commonly used in discussions of 
the Aufbau principle.'-3 Apparently, the energies of the 3d and 
the 4s orbitals increase (at fixed Z and N) with increasing 3d 
population-and much more so for 3d than for 4s. Before we carry 
out a more detailed analysis of this phenomenon, it is interesting 
to highlight some of the other qualitative features of Figure 3. 

As could b e  expected, the slope of al l  orbital energy curves is 
negative. Indeed, going from one point on such a curve to the 
next one corresponds to increasing Z by 1 unit, while a t  the same 
time adding one d electron. As a consequence of this operation, 
both orbitals are stabilized, but 3d more so than 4s. This evolution 
can be compared with the application of Slater's screening 
 rule^,**^^^ where the addition of one d electron and 1 unit of nuclear 

(26) Strictly speaking, we should use a different symbol for E,, in eq 1 and 
E,, in Figure 2 (where relative quantities are shown, as detailed in the 
figure caption). However, no confusion is possible and the meaning of 
the symbols is always obvious from the context; in order to alleviate the 
notation, we will use the same symbol in both cases. 

( 2 7 )  Figure 2 does not contain any information on ionization energies, since 
the reference situation for each ion separately has been set equal to zero. 

(28) Slater, J .  C. Phys. Reti. 1930, 36, 57.  
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Figure 2. (A) Total average energy E,, (in eV) of the first-row transition metals M and their ions M+ and M2+ as a function of the number of valence 
(3d and/or  4s) electrons N .  The energy is given for the 3d"+24s0 (-) and 3d"+'4s1 (- - - )  configuration averages, in each case with respect to 3dn4s2 
( N  = II  + 2). The abscissa thus corresponds to a superposition of three situations: for any given value of N ,  it represents the neutral atom, the 
monopositive ion, and the dipositive ion in the 3dn4s2 configuration ( e g .  Sc, Ti', and V2+ in 3d14sZ are superposed at N = 3 and E,, = 0). All the 
results were obtained from numerical Hartree-Fock calculations. (B) Total average energy Eavl (in eV) of the first-row transition metals M and their 
ions M+ and M2+ as a function of N .  The EaV1 energies were calculated on the basis of the frozen orbitals of the 3dn+'4s1 configuration for each ion. 
(C) Total average energy E,,'+ (in eV) of the first-row transition metals M and their ions M+ and M2+ as a function of N .  The E,,I+ energies were 
calculated on the basis of the frozen orbitals of the 3dn++'4s' of the M+ ion; therefore, the M+ curves in (B) and (C) are identical. 

charge is predicted to induce a decrease in the effective nuclear 
charge Zcrf by 1 - 0.35 = 0.65 units for 3d, but only 1 - 0.85 = 
0.1 5 units for 4s. Apparently, Slater orbitals are roughly similar 
to the S C F  orbitals, where the same evolution is found; therefore 
c4s - t3d increases with N .  

A comparison of the three parts of Figure 3 shows that, for 
constant N ,  progressive ionization also pulls the two orbitals 
strongly apart. Indeed, for any specific choice of configuration, 
ionization is seen to stabilize both orbitals very strongly, but 3d 
always drops more in energy than 4s. Again, this evolution may 
be compared with Slater-type orbitals, where Z -., Z + 1 (for 
constant N) induces Zeff - Z e ~  + 1 in both cases, but where the 
orbital exponent is Zeff/3 for 3d and only Z,ff/3.7 for 4s. 
Therefore, tdS - 63d increases upon increasing the positive charge 
on the metal (other things being kept equal). 

The general trends of Figure 3 thus confirm the preliminary 
conclusions from Figure 2A: the stability of the 3d orbital-with 
respect to the 4s orbital-increases in the same circumstances that 
make configurations with increasing d population comparatively 
more stable. The two extreme cases are Cu2+ on the one side, 
where 3d is some 30 eV below 4s, and neutral Ca on the other 
side, which is the only case in Figure 3 where 3d is actually above 
4s. 

Apart from Ca, and more specifically, for all transition 
metals-neutral or positively charged-in any given particular 
configuration 

€gd(dPSq) - ~ 4 ~ ( d W )  0 (17a) 

Therefore, a very simple ab  initio answer is available in the 
c o n t r o ~ e r s y ~ ~ - ~ *  on the orbital energies: for transition metals and 
their ions (but not for Ca), 4s is always above 3d. This means 

(29) According to Slater's theory the total energy of an atom or ion is given 
by (in Ha): E = x,-1/2(Zem,,/n,*)z where i runs over all electrons, n,* 
= n, = 3 for 3d, and nj* = 3.7 for 4s. Although the individual e, # 
- ' / z (Ze~f . , /~ i * ) z ,  the general trends of the ti evolution can be expected 
to be described approximately by the evolution of -(Zeff,,/n,*)2. 

that the hydrogenic sequence has been restored at, or just before, 
s c .  

It is instructive to compare the evolution of the orbital energy 
(as displayed in Figure 3) with the corresponding evolution in 
orbital size. Figure 4 shows the expectation value of rjd and r4s 
as a function of N ,  for those configurations where both orbitals 
are occupied s i m u l t a n e ~ u s l y ~ ~  (dns2 and d"+'s'). Figure 4 shows 
that a 3d electron is on the average much closer to the nucleus 
than a 4s electron, irrespective of charge and configuration. Table 
111 confirms this picture by detailing the different energy com- 
ponents of 3d and 4s for the example of N = 3, that is the iso- 
electronic series Sc, Ti+, V2+. The smaller size of 3d finds ex- 
pression in a correspondingly larger electron-nucleus attraction, 
a larger electron-core repulsion, and a higher kinetic energy than 
those of 4s. The diffuseness of 4s is also apparent from the valence 
repulsion parameters in Table 111. In any given column, we find 

(4s,4s) < (3d,4s) < (3d,3d) (18) 

suggesting that the average distance between two electrons in a 
4s orbital is quite large, even larger than that between one electron 
in a 4s orbital and another one in 3d. From eq 18 and 9, it is clear 
that the 4s orbital must carry less valence repulsion than the 3d 
orbital. Still, the dominant contributions in the orbital energy, 
determining the relative order of t3d and t4s, are the one-electron 
energies w-more specifically, the nuclear attraction terms 1. The 
dominance of the one-electron contributions w may be at the basis 
of the simple rationalization of Figure 3 in terms of Slater-type 
orbitals and effective nuclear charges. 

3. Orbital Energy and Relaxation Phenomena. The fact that 
eq 17 holds even for those atoms where Figure 2 shows d"s2 or 
dn+lsl to be the lowest configuration clearly illustrates that eq 17 

(30) An extrapolation of Figure 4 to the N = 1 case is possible but should 
be carried out in the same way that Figures 1 and 3 were linked (section 
V.2). Therefore, the ru value of e.g. K 3d'4s0 (Table 11) cannot be seen 
as an extension of any of the two M curves in Figure 4, since the latter 
correspond to 3dn4s2 and 3dn+'4s', but not to 3d"+*4s0. 
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Figure 3. Hartree-Fock orbital energies e (in eV) of 3d (-) and 4s (- - -) corresponding to the different situations of Figure 2A. For the configuration 
dn+'s0, no e4s curve is included (virtual orbitals were not considered). N is the number of valence electrons (3d and/or 4s). 

Table 111. Orbital Energies and Energy Components (in eV), and Orbital Radii (in Atomic Units) for 3d and 4s in the Configurations 3d'4s2, 
3d24s', and 3d3 of the Isoelectronic Series Sc, Ti+, Vz* ( N  = 3)" 

s c  Ti+ V2+ 

3d'4s2 3d24s' 3d34s0 3d'4s2 3d24s' 3d34s0 3d14s2 3d24s' 3d34s0 
13d -456.577 -390.604 -322.606 -590.568 -545.065 -494.203 -714.563 -675.353 -633.446 
t3d 83.682 64.310 47.354 124.1 22 107.583 90.874 164.303 148.180 132.117 
14s -183.047 -166.464 
r4r 15.236 1 1.786 

348.227 
148.218 

-24.668 
-19.593 

(14.746) 
6.215 
7.657 

-9.353 
-5.717 

1.6755 
3.9597 

302.148 
135.938 

-24. I45 
-18.741 

12.079 
(5.698) 
6.841 

-5.227 
-5.059 

2.0942 
4.3204 

-244.810 -226.447 
27.734 22.752 

253.172 422.815 
185.629 

-22.080 -43.632 
-3 1.446 

9.404 (1  8.725) 
7.856 
9.671 

-3.274 -24.289 
-1 3.91 9 

2.7751 1.3024 
3.1231 

393.328 
173.087 

-44.154 
-30.608 

16.967 
(7.331) 
8.953 

-18.229 
-12.700 

1.4485 
3.3466 

-306.105 -288.504 
42.345 36.736 

360.001 484.297 
218.681 

-43.327 -65.962 
-45.079 

14.994 (21.974) 
9.274 

1 1.424 

-13.345 -43.112 
-24.382 

1.6590 1.1039 
2.6406 

460.215 434.380 
207.385 

-66.958 -66.950 
-44.383 

20.531 18.980 
(8.803) 
10.787 

-35.637 -28.992 
-22.806 

1.1863 1.2906 
2.7831 

'The symbols are defined in eq 1-4 and eq 9. All these results were obtained from numerical Hartree-Fock calculations. Values in parentheses 
are not components of the orbital energy e ,  but they can be calculated from the orbital functions. 

is not  be  itself conclusive in de te rmining  t h e  relative energy  of 
t h e  different configurations. I t  suggests  t h a t  tjd(dPsq) - ~ ~ ~ ( d P s 4 )  
needs t o  a t t a i n  a cer ta in  (negative) threshold value before  t h e  
populat ion of 3d  becomes energetically favorable. 

Applying now our  ( N  = 1) line of thinking t o  transition metals, 
we ra ther  should consider 

€3d,f - €dS,i = €3d(dP+'Sq-') - ~ 4 ~ ( d P ~ 4 )  
~~ 

T h e  exis tence of this threshold value can be  understood by 
realizing t h a t  tjd(dPSq) - ~ ~ ~ ( d P s 4 )  m a y  not  b e  t h e  most  relevant 
quant i ty  in discussing AE,,(s - d) .  Indeed,  a l ready  for N = 1 
systems,  it was  shown in e q  14 t h a t  t h e  most  impor tan t  orbital  
energy difference was 63d.f - t4s,i. By way of contrast, eq 17a should 
b e  rewrit ten a s  

Now,  F igure  3 shows t h a t  c3d is a n  increasing funct ion of 3d  
populat ion,  and therefore c3d,f > t3d,i. Hence ,  t h e  existence of a 
threshold value connected with e q  17 m a y  b e  related t o  t h e  fac t  
t h a t  t h e  condition t3d.f - e4s,i = 0 provides a better indication for 
a c h a n g e  in ground-state  configurat ion t h a n  t3d.i - qs,, = 0. 
Therefore ,  i t  is impor tan t  t o  see how a n d  why t3d changes  in a n  

( 17b)  

where  both orbital  energies refer t o  t h e  same (initial) configu- 
ra t ion .  

s - d transit ion.  
If  we c o m p a r e  t h e  different configurat ions a t  constant  N a n d  

Z ,  Figure  4 a n d  T a b l e  I11 show t h a t  bo th  4s a n d  3d  a r e  char -  
acterized by a significant expansion with increasing d population 

63d,i - c4r.i < 0 
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eq 21a are larger than those calculated from eq 21b. 

(3d,3d)l - (3d ,4~) '  > (3d,4s)I - ( 4 ~ , 4 ~ ) '  (22) 

As a consequence, the frozen-orbital approximation predicts a 
pronounced upward shift of the 3d orbital and a smaller upward 
shift of the 4s orbital, when the 3d population is increased. 

Figure 3 shows that this conclusion remains valid for relaxed 
orbitals, even though relaxation tends to counteract the effect of 
eq 21. The counteracting effect of relaxation can easily be un- 
derstood by realizing that a dn+Is1 - d"+2 frozen-orbital transition 
leads to an increase of the valence repulsion felt by the 3d electrons 
(eq 21a). Therefore, the original 3d orbitals-that were ideally 
suited to describe the dn+lsI configuration-will not satisfy the 
Hartree-Fock equations for the dn+2 configurations. In order to 
reduce the undue repulsion imposed upon them, they will expand, 
thereby decreasing the absolute value of all the energy contri- 
butions in the dn+lsl columns of Table 111. This expansion is then 
accompanied by a decrease of the 3d-orbital energy: t3d(dn+2) C 
t3d'(d"+2). The latter inequality can readily be verified from Table 
111, where all the relevant numeric parameters are available for 
N = 3. In the opposite case, the d"+'sl - d"s2 transition causes 
a decrease of the valence repulsion of both the 4s and 3d orbitals, 
inducing now a contraction and a corresponding increase of the 
energy of both orbitals: t3d(d"s2) > t3d1(d"s2) and t4s(dn~2) > 
~ ~ ~ ' ( d " s ~ ) .  

VI. Analysis of the 4s - 3d Transitions in a Frozen-Orbital 
Approximation. 

With the use of the same set of frozen orbitals as in section 
V, it is now also possible to calculate the total energy of the three 
relevant configurations. The result is shown in Figure 2B, which 
has been set up in exactly the same way as Figure 2A. The general 
features of both figures are quite similar, and the relative energy 
of the three considered configurations is generally well predicted 
by Figure 2B. Both parts A and B of Figure 2 agree in that the 
neutral atoms with small N are characterized by the energy se- 
quence described by eq 15a, whereas the situation gradually evolves 
until for dipositive ions the opposite sequence of eq 15b is obtained. 
However, the dns2-dn+ls1 crossover comes too early for the neutral 
atoms, and there is no crossover at all for the monopositive ions. 
Both anomalies are related to the fact that in Figure 2B the first 
4s - 3d transition is too low (with respect to Figure 2A), whereas 
the second 4s - 3d transition is too high. This trend can be traced 
back to the obvious relationships 
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Figure 4. Orbital radii (in atomic units) for 3d and 4s as a function of 
the number of valence electrons N ,  corresponding to Figure 2A (r3d = 
(R3d(r)IrlR3d(r)) and rdS = (R48(r)lrJR4a(r)). The results (based on 
numerical Hartree-Fock calculations) are shown for M, M', and M2+, 
in each case for 3d"+'4s1 (-) and 3d"4s2 ( - - - ) ,  For N = 3, the plot 
corresponds to the results of Table 111. 

(relaxation effect), while Figure 3 shows a concomitant upward 
shift of the orbital energies tqs and t3d. However, the energy 
increase of both orbitals is not a consequence of their expansion, 
but rather it takes place in spite of their expansion. Indeed, the 
orbital energies tC and t3d both change as a consequence of the 
4s - 3d transition, even in the absence of relaxation effects. This 
can easily be verified by first defining one set of common frozen 
orbitals for the three configurations, corresponding to a given N 
and Z ,  and afterward considering the effect of relaxation. For 
this purpose, it is natural to start from the orbitals of the inter- 
mediate configuration 3d"+14s1; the Corresponding parameters will 
henceforth be designated as 

(19) W3d', W C ' ,  (3d,3d)', (4s,4s)', (3d ,4~) '  

where the superscript 1 refers to the 4s1(3d"+') population, on 
which the orbitals are based. If we use eq 9, the orbital energies 
can now be expressed for any one of the three configurations in 
terms of the frozen-orbital parameters of eq 19: 

t3dl(dnS2) = W j d l  + ( n  - 1)(3d,3d)' + 2(3d,4~) '  

€3dl(d"+lSl) = W j d l  + n(3d,3d)' + (3d,4s)' = t3d(dn+lS1) 

€3,jl(d"2So) = W3dl  + (n + 1)(3d,3d)' (20) 

Therefore, within the frozen-orbital approximation, each 4s - 
3d transition increases the 3d-orbital energy <)dl by the amount 
of 

(3d,3d)' - (3d ,4~) '  (2 1 a)  
Similarly, the 4s - 3d transition (d"s2 - d"+'s') increases t4s1 

by 

(3d,4~) '  - ( 4 ~ , 4 ~ ) '  (21b) 
Because of eq 18, both quantities in eq 21a and 21 b are positive. 
Table 111 also shows that the numerical values calculated from 

Eavl(d"s2) > EaV(d"s2) 

Eav'(d"+'s1) = Eav(dn+Is1) 

Eav1(dn+2so) > Eav(d"+2so) (23) 

where the Eavl values on the left are calculated by using the frozen 
orbitals of the dn+ls' configuration. Both inequalities are due to 
the fact that the frozen orbitals are optimal for dn+lsl, but not 
for the other two configurations. As a consequence of eq 23 

The sums of the two energy differences in eq 24 are nearly equal3I 
in both approximation schemes: 

AE,,'(d"s2 - d"+2) N AEaV(d"s2 - d"+2) (25) 

In summary, in spite of the inequalities in eq 24, the basic 
similarity between parts A and B of Figure 2 suggests that the 
frozen-orbital approximation, using ma"', is able to capture some 
of the essential features of the energy evolution, AE,,, as a function 
of N ,  Z ,  p ,  and q.  

(31) Equation 25 is in agreement with Slater's transition-state theory9 sug- 
gesting the use of the orbitals of an intermediate configuration in cal- 
culating interconfigurational energy differences. 
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The relevance of this observation becomes clear if we go back 
to section IV ( N  = 1 systems), where the configurational energy 
difference AEav(s - d) was shown to be quite well approximated 
by a simple orbital energy difference (eq 14). The close corre- 
spondence between parts A and B of Figure 2 now points to an 
alternative way of approximating AEav-through the mediation 
of SEav'-as a simple orbital energy difference. Indeed, from a 
combination of eq 1 and 20, we find 

Vanquickenborne e t  al. 

vicinity of the nucleus, the fact that r3d < rc leads unambiguously 
to the conclusion that (c,4s) < (c,3d). It is obvious that the correct 
treatment, leading to eq 28, is compatible with the latter ine- 
quality.33 

Considering the apparent success of eq 26 and 28, one might 
wonder whether it would be possible to simplify the problem even 
further and use one single set of frozen orbitals for M, M+, and 
M2+ (that is for a given 2 and the three different :V values). 

Attempts along these lines were presented by De Kock and 
Gray," using a semiempirical approach on the basis of the frozen 
orbitals of Sc2+. The authors neglected exchange integrals, and 
a t  several places they had to make rather crude approximations. 
Still the idea seems worthwhile to pursue in some detail a t  the 
ab  initio rather than a t  the semiempirical level. In order to carry 
this out quantitatively, we used the orbitals of the intermediate 
ions Mf and the intermediate configurations dn+lsl. Let us 
represent the corresponding frozen orbital parameters by the 
quantities 

This equation is formally very similar to eq 14, but now, both 
orbital energies are based on the frozen orbitals of the d"+'s' 
configuration average, and eq 26 is valid for both transitions (d"s2 

Equation 26 can be given a slightly different form, by using 
and dfl+lSI + dfl+2 0 - dfl+l 1 32 s 1. 

eq 20: one obtains for a 4s - 3d transition 

t3d,l1 = ~ 3 d , ~ l  (3d,3d)' - (3d ,4~) '  (27) 

and therefore a t  the frozen-orbital level, it is now possible to write 
down a very simple relationship between the total energy difference 
associated with a 4s - 3d transition and the orbital energies t3d,11 

and t4s, , i .  From a combination of eq 26 and 27, we find 

AEav(s - d) e AEaV'(s -+ d) = AEavl(dPsq - dP+'s4-') = 
[t3d,lI - t4s ,111 + [(3d33d)' - (3d,4s)ll (28) 

where the first square brackets enclose the energy difference 
between the two relevant orbitals of the initial configuration, both 
calculated with the energy parameters corresponding to the dflfisl 
configuration; the second square brackets contain a correction 
term. 

Equation 28 provides a qualitative explanation for the fact that 
an s - d transition can sometimes be energetically unfavorable, 
even if the 4s orbital is above 3d. Indeed, the first term in square 
brackets is negative for all transition metals under consideration 
(eq 17; Figure 3). Yet, a given (N,Z) transition-metal ion in dpsq 
configuration can lower its energy by dropping an electron from 
4s into 3d only if  the relevant orbital-energy difference is large 
enough to overcome the second term in square brackets, which 
is always positive (eq 21). Apparently, (3d,3d)' - (3d,4s)' is the 
frozen-orbital equivalent of the threshold value, which we had to 
introduce in our phenomenological description of section V.3. 
Clearly, i f  4s is only slightly above 3d, the larger (dd) repulsion 
will prevent the electron(s) from leaving 4s and populating 3d. 

I t  is well to stress that eq 26 and 28 are formally identical for 
the two s - d transitions (d"s2 - d"+' s I and dflfls' - dn+2), This 
does not mean that both energy differences are predicted to be 
also numerically identical a t  the frozen-orbital level. Indeed as 
shown i n  eq 20, the tI values are configuration dependent, and 
substitution of eq 20 (together with the corresponding equations 
for cis) into eq 28 reveals that 

AEavl(d"+'s' - d"+2 s 0 ) = AEaV1(d"s2 - d"" S I +  

[(3d,3d)' - (3d ,4~) ' ]  - [ (3d ,4~) '  - ( 4 ~ , 4 ~ ) ' ]  (29) 

Because of the inequality eq 22, AEavl is always larger for the 
second s - d transfer than for the first one-in agreement with 
Figure 2 and eq 16. 

The simple rationalization of eq 28 comes into conflict with 
an earlier attempt of Pilari6 to relate the relative energy of dPsq 
and dp+'s'?-' to an orbital-energy difference. According to Pilar, 
the additional energy term is not the valence repulsion-as shown 
in eq 28-but is supposed to be the core-valence repulsion. On 
the basis of the purely qualitative idea that 4s penetrates the core 
more than 3d, Pilar assumes that (c,4s) > (c,3d). Table 111 shows 
that this assumption is incorrect for N = 3; as a matter of fact, 
it is incorrect for all transition metals and their ions. Although 
the 4s density is indeed larger than the 3d density in the immediate 

(32) Actually, when applied to transition metals, the numerical accuracy of 
eq 26 turns out to be better than that of eq 14-due to a partial can- 
cellation of compensating relaxation effects. 

0 3 d ' + ,  0 4 ~ ' + ,  (3d,3d)I+, ( 4 ~ , 4 ~ ) ' + ,  (3d ,4~) '+  (30) 
which are just the parameters of eq 19 for M+. Therefore, for 
dps9 - dP+'sq-l in M', we have 

AE,," = AE av (31a) 

and for the corresponding M (with N + 1 valence electrons) 

.3Ea,l+(dP+'~9 - dPf2sq-') = SE,," + [(3d,3d)'+ - (3d,4~)"] 
(31b) 

while for M2+ (being an N - 1 electron system) 

AEa,l+(dpisq - dPs4- I ) - - AEavl+ - [(3d,3d)lf - (3d,4~)"] 

Therefore, the energy required to induce a 4s -+ 3d transition 
decreases with increasing atomic charge (at constant 2). This 
result is correct, but numerically, it fails even semiquantitatively: 
the lAE,,'+( values are much too large, both for M2+ and for M. 
Figure 2C shows that the difference with Figure 2A has become 
rather drastic. In this approximation there is no way to obtain 
any other ground-state configuration for the neutral atoms but 
dfls2; the slope of the dfl+2 curve for M has the wrong sign, and 
the largest numerical errors (for both M and M2+) amount to more 
than 15 eV. We have to conclude that the approximations of eq 
31 and Figure 2C have too many drawbacks to be useful as a 
semiquantitative guide. 
VII. Conclusions 

The ground configuration of an atom is simply related to the 
corresponding orbital energies if N = 1. In that case, the con- 

( 3 1 ~ )  

(33) Pilar's argumentation is based on the following general formula (of 
which eq 10 is a special case), valid for configuration averages: 

= EN,c, - C, - C, - C, 

where the summation over Y is over all occupied orbitals (core and 
valence; = p ,  Nd8 = q), and where eq 7 has been used. He claims 
that-since "4s is above 3d"-the quantity E J V ~ ~ ,  (as in eq 10b) has 
to be larger for dpsq than for dp+'sF'. Apparently, this erroneous con- 
clusion is based on a frozen-orbital view (otherwise no simple conclusion 
of any kind would be possible). Pilar then goes on using the above 
equation and claiming-incorrectly-that C, more specifically C,, 
should be larger for d V .  In his view, this would be the only way to 
reconcile the greater stability of dpsq with its (supposedly) larger value 
of ~ J n c p .  The fallacy of this argument lies in that Pilar ignores the 
cu  dependence o f p  and q. This has been detailed in eq 20 for 3d, but 
it is also true for the core orbitals: the orbital energy c7 of an electron 
in the frozen-core y orbital changes if a 4s - 3d transition takes place. 
It is increased by the amount (y,3d) - (y,4s). Summation over all core 
orbitals and use of eq 3 yields a total increase in ~ , " , c ,  to the amount 
of (c,3d) - (c,4s). On the other hand, the difference between the C, 
terms of the above equation (entering with a minus sign) contributes 
-Cm(dP+'s4-') + C,(dW) = -(c,3d) + (c,4s), where eq 6 has been used. 
Therefore, both C, contributions in AEa, cancel exactly, and we are left 
with eq 28, where the explicit dependence on the core-valence repulsion 
has completely disappeared. 
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figurational energy difference is given by eq 14, where the two AE,,(s --+ d) N AE,,I(s - d) = 
AEav(s - d) €3d,f - €4s,i (14) (€3d,i' - €4s,il) + [(3d,3dI1 - (3d,4s)l] (28) 

orbital energies are eigenvalues of two different Hartree-Fock 
Hamiltonians. The validity of this approximation is excellent for 
the lighter atoms and ions; it correctly predicts the 3 d - 4 ~  crossover 
a t  carbon. 

If N 1 2, the conventional t(Z) curves are no longer appropriate. 
Indeed, not two, but five different orbital-energy curves are to 
be considered. Yet, by the use of the frozen orbitals of the 
intermediate dn+lsl configuration average, the Hartree-Fock 
AEa,(s - d) curves could be reproduced rather satisfactorily. In 
this case, one finds eq 26, which is formally reminiscent of eq 14. 

where the term in square brackets represents a (positive) threshold 
value. 

In the neutral atoms, t3d,jl - c4s,i1 is negative but smaller (in 
absolute value) than the threshold value (4s above 3d, but only 
slightly). Therefore, the ground state is characterized by 4s 
population. Dropping an electron from 4s into 3d would increase 
both orbital energies with no resulting energy gain. Upon ioni- 
zation however, the resulting contraction causes a strong increase 
of the 4s-3d orbital-energy difference, accompanied by a much 
smaller increase of the valence repulsion so that, for positive ions, 
it does become favorable to deDoDulate the 4s orbital. As a 

AE,,(s - d) AE,,i(s --+ d) = tjd,t - t4s,ii (26) consequence, the 4s electrons are'%st ionized", although eq 14a 
shows they were also "first populated". 

If both orbital energies are calculated in the initial configuration, 
eq 26 takes the alternative form 
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The spin-lattice relaxation time ( T I )  and spin-spin relaxation time (T2) of 73Ge nuclei in GeBr, and GeI, have been measured 
at various temperatures. It has been shown that TI is almost exclusively dominated by the quadrupole relaxation mechanism, 
while T2 is dominated by the combination of the scalar coupling and the quadrupole relaxation mechanisms in the high-temperature 
region. 

Introduction 
As is always the case with a quadrupole nucleus, the relaxation 

mechanism of 73Ge nuclei with a spin of 9 / 2  has not been exten- 
sively investigated. For the last few years, however, the relaxation 
mechanism of symmetric tetrasubstituted alkylgermanes and 
halogermanes were studied. Thus, the spin-lattice relaxation of 
73Ge in tetramethylgermane and tetraethylgermane was found 
to proceed via the quadrupole relaxation mechanism.'** We also 
showed that both the spin-lattice and spinspin relaxations of 73Ge 
in GeR, ( R  = methyl (Me), ethyl (Et), n-propyl (Pr), n-butyl 
(Bu)) were solely through the quadrupole relaxation mechani~m.~ 

On the other hand, there remain ambiguities concerning the 
relaxation mechanism of 73Ge nuclei in tetrahalogermanes. Ta- 
rasov et aL4 showed that the spin-lattice relaxation of 73Ge in 
GeBr, was solely via the quadrupole relaxation mechanism while 
in GeC1, the relaxation occured mostly via the spin-rotation 
mechanism above 57 OC and mostly via the quadrupole relaxation 
mechanism below 57 "C. We found, however, that scalar coupling 
relaxation was involved in the spinspin relaxation of 73Ge in GeC1, 
and GeBr4.5v6 We investigated the scalar coupling relaxation of 
73Ge in GeC1, in detail in the temperature range between -50 and 
+50 0C.6 In that temperature range, however, the temperature 

~ ~~ ~~ ~ ~ ~ ~ ~ ~ ~ 
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Table I. Values of TI(IR) and T 2 ( A v l I 2 )  for 73Ge in Tetrahalogermanes 

comod solvent ms ms temo/OC ref 
TI(IR)/ Tz(Au1/2)/ 

GeBr, CDC1, 160 130 30 6 

GeI, CS2-C6D, (1:l) 80 80 30 6 
toluene-d8 88 ' 81 25 this work 

toluene-d8 51 50 45 this work 

effect on the relaxation time of 73Ge nuclei in GeBr, and GeI, 
was obscure. We thought that the temperature range investigated 
was so low for these heavier halogens that we failed to observe 
the temperature effect. 

In the present paper we describe the details of the relaxation 
of 73Ge in GeBr, and GeI, in the high-temperature region. For 
this purpose we determined the 73Ge spin-lattice relaxation times 
( T I )  and spin-spin relaxation times ( T I )  of GeBr4 and GeI, in 
the temperature range between 25 and 105 OC. 
Experimental Section 

Preparation of Compounds. GeBrP (bp 82-83 OC (32 mmHg)) and 
GeI, (mp 146 "C) were prepared by the procedures given in the litera- 

The purity of the compounds was confirmed by the GLC (Shi- 
madzu GC-3BT). GeBr, (50% v / ~ )  and GeI, (0.5 g/1.5 mL) were 
dissolved in toluene-d8. The solution was put in an egg-shaped cell and 
degassed by the freeze-thaw method. 

73Ge NMR Spectra. The 73Ge N M R  spectra were recorded on a 
JEOL FX-90Q instrument equipped with the low-frequency insert NM- 
ITlOLF at 3.10 MHz. T I  was determined by the inversion-recovery 
method (T](IR)), while T2 was determined by the half-line-width method 
( T 2 ( A u I I z ) ) .  The error in T I  and T2 thus determined was estimated to 
be about or less than 5%. Other conditions of the measurements have 

(7)  Laubengayer, A. W.; Brandt, P. L. J .  Am. Chem. SOC. 1932, 54,  621. 
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