η^2 -disulfides (S1-S2Cl, S3-S4) and an oxo ligand (O1). This orientation is populated 87% of the time. In orientation b the disulfide S1X-S7 serves as a bridge the same way S8-S7 does in orientation a. In orientation b the ligand sites S2Cl and Cl1S are populated by a chloride and a sulfur atom, respectively. The dimer contains pseudo-seven-coordinate Mo(VI) ions. The ligands define a distorted-pentagonal-bipyramidal arrangement similar to the one observed in [M0₄O₄S₁₈]²⁻. Intramolecular bond distances and angles in IV (Tables VI and VII) are very similar to those in III. The Mo-Cl_{eq} bond length at 2.388 (3) Å is slightly shorter than the one observed in the *cis-mer* pentagonal-bipyramidal complex Mo(O)Cl₂(Et₂NCS₂)₂.³⁸ In this complex the Mo-Cl distance associated with the equatorial chloride lies at 2.417 (1) Å. In the same complex, the Mo-Cl_{ax} bond across the axial oxo ligand at 2.504 (1) Å is nearly 0.1 Å longer than the Mo-Cl_{eq} bond. This is due to the strong trans effect of the oxo group.

X-ray crystallography does not distinguish between a chloride (Cl⁻) ligand and a hydrosulfido (SH⁻) ligand. For this reason two formulations were considered: (a) $[Mo_2O_2S_8Cl]^-$ and (b) $[Mo_2O_2S_8SH]^-$. Formulation b would be analogous to the thiotungstate $[(\mu-\eta^2,\eta^{1-}S_2)W_2(S)_2(\eta^2-S_2)_3SH]^-$, $[W_2S_{11}H]^{-39}$ anion.

(38) Dirand, J.; Ricard, L.; Raymond, W. J. Chem. Soc., Dalton Trans. 1976, 278.

Elemental analysis for chloride indicated that formulation a is the chemically correct one. Single-crystal structure determination of the iodo analogue, $[Mo_2O_2S_8I]^{-,40}$ obtained from the reaction of $(Et_4N)_2[Mo_2O_2S_{9,14}]$ with NiI₂, shows that a halide substitution for a sulfide is indeed taking place. In the structure of the $[Mo_2O_2S_8I]_2^{-}$ anion (R = 0.04) no disorder is encountered and, as in IV, the Mo coordination sphere geometry and the Mo—S and Mo=O bond lengths in this complex are similar to those in III. The Mo-I length is 2.766 (2) Å.

Acknowledgment. The financial support of this project by the National Science Foundation is gratefully acknowledged.

Note Added in Proof. Recently the synthesis and structural characterization of the $Ta_2S_{11}^{4-}$ and $Nb_4Se_{22}^{6-}$ anions were reported (Schreiner, S.; Aleandri, L. E.; Kang, D.; Ibers, J. A. *Inorg. Chem.* **1989**, *28*, 392). These complexes are closely related structurally to the $[Mo_2O_2S_9]^{2-}$ and $[Mo_4O_4S_{18}]^{2-}$ anions reported herein.

Supplementary Material Available: Table S1, listing thermal parameters and hydrogen atom positions for I, and Tables S2–S4, listing thermal parameters, hydrogen atom positions, and detailed bond distances and angles for II–IV (24 pages); Tables S5–S8, listing observed and calculated structure factors for I–IV (48 pages). Ordering information is given on any current masthead page.

Contribution from the Dow Corning Corporation, Midland, Michigan 48686

Selective and Sequential Reduction of Polyhalosilanes with Alkyltin Hydrides

John J. D'Errico[†] and Kenneth G. Sharp*

Received September 29, 1988

The reactions between alkyltin hydrides and a variety of polyhalo- and mixed halosilanes have been investigated. For SiCl₄ and SiCl₃H, the reductions proceed in a stepwise manner to yield the monoreduced species as the major products. The reduction of SiBr₄ occurs much faster to yield a mixture of SiBr₃H and SiH₄, or, in the vapor phase, SiBr₃H as the sole product. SiF₃X (X = Br, Cl) is converted into SiF₃H, with no further reduction of SiF₂H observed upon addition of a second equivalent of alkyltin hydride. SiF₂HX compounds (X = Br, Cl) are obtained from SiF₂X₂ and are converted into SiF₂H₂ with excess Me₃SnH. Redistribution becomes competitive with reduction in reactions between Me₃SnH and SiFBr₃, leading to mixtures of SiH₄, SiF₂H₂, and SiF₃H. The major products in the reaction between SiCl₂Br₂ and Me₃SnH are SiCl₃H and SiH₄ (no SiCl₂H₂ was observed). Several probable intermediates were independently synthesized and allowed to react with Me₃SnH. Together with deuterium labeling experiments, these reactions shed light on the mechanisms involved in these systems. In particular, the reactions appear not to proceed via free radicals.

Introduction

Historically, the reduction of polyhalosilanes using conventional hydridic reducing agents has led to completely hydrogenated species.¹ When LiAlH₄ is used, it is not possible to obtain partially reduced species, even when a deficiency of the reducing agent is present. Other hydrides such as NaH and CaH₂ have been used with some success.^{2,3} However, elevated temperatures (300 °C) or a catalyst such as Al₂Cl₆ is required. The latter can promote extensive redistribution reactions.

Partial substitution of hydrogen for chlorine in polychlorosilanes such as MeSiCl₃ can be effected via H/Cl redistribution with trialkylsilanes in the presence of catalytic quantities of Al_2Cl_6 .⁴ A superior catalyst—tetraalkylammonium chloride—allows H/Cl exchange between di- and triorganosilanes without skeletal participation.⁵

Organotin hydrides have long been known as effective reducing agents in organic chemistry, and their reactivity patterns have been well documented.⁶ Our interest in the work described in this report lay in evaluating alkyltin hydrides as reducing agents

for a variety of halosilanes.⁷ A particular area of interest was the selective reduction of one halogen species to the exclusion of another in molecules such as SiF_2Br_2 and $SiCl_2Br_2$. To our knowledge, such preferential reduction of halogen has not been previously demonstrated in a polyhalosilane.

- (1) Eaborn, C. Organosilicon Compounds; Butterworths: London, 1960.
- Antipin, L.; Blekh, L.; Mironov, V. Zh. Obshch. Khim. 1970, 40, 812.
 Simon, G.; Lefort, M.; Birot, M.; Dunogues, J.; Duffaut, N.; Calas, R.
- J. Organomet. Chem. 1981, 206, 279.
- (4) Whitmore, F. C.; Pietrusza, E. W.; Sommer, L. H. J. Am. Chem. Soc. 1947, 69, 2108.
- (5) Weyenberg, D. R.; Bey, A. E.; Ellison, P. J. J. Organomet. Chem. 1965, 3, 489.
- (6) (a) Neumann, W. P. The Organic Chemistry of Tin; Interscience: New York, 1970.
 (b) Poller, R. C. Chemistry of Organotin Compounds; Academic Press: New York, 1970.
 (c) Kupchik, E. J. In Organotin Compounds; Sawyer, A. K., Ed.; Marcel Dekker: New York, 1971.
 (d) Wardell, J. L. In Reaction of Electrophilic Reagents with Tin Compounds Containing Organofunctional Groups; Zuckerman, J. J., Ed.; Advances in Chemistry Series 157; American Chemical Society: Washington, DC, 1976.
- (7) Although the term "reduction" should be reserved for formal changes in oxidation state, we will adhere to the usage of the term common in halosilane chemistry to describe the conversion of Si-X (X = Br, Cl) into Si-H in exchange reactions.

⁽³⁹⁾ Secheresse, F.; Manoli, J. M.; Potvin, C. *Inorg. Chem.* 1986, 25, 3967.
(40) Hadjikyriacou, A.; Coucouvanis, D. Manuscript in preparation.

[†]Present address: Monsanto Chemical Co., Indian Orchard Plant, 730 Worcester St., Springfield, MA 01151.

Table I. Room-Temperature Reactions between Halosilanes and Me₂SnH^a

halosilane	time, h	product mixture
SiCl ₄	36	SiCl ₄ (50%), SiCl ₃ H (25–30%), SiCl ₂ H ₂ (15%), SiH ₄ (10%)
SiCl ₃ H	12	SiCl ₃ H (44%), SiCl ₂ H ₂ (41%), SiH ₄ (15%)
SiBr₄	0.25	$SiBr_4$ (60%), ^b SiBr ₃ H (20%), ^b SiH ₄ (20%)
SiF ₃ Br ^c	6-8	$SiF_{3}H$ (95%), $SiF_{2}H_{2}$ (trace), SiH_{4} (trace)
SiF ₃ Cl	60	$SiF_{3}H$ (95%), $SiF_{2}H_{2}$ (trace), SiH_{4} (trace)
SiFBr ₃ ^d	0.5	SiH ₄ (60%), SiF ₃ H (20%), SiF ₂ H ₂ (20%)
SiCl ₂ Br ₂ ^e	2	SiCl ₃ H (35-40%), SiH ₄ (40%), SiCl ₂ HBr (10%) ^b
SiCl ₃ Br	3	SiCl ₃ H (85%), SiH ₄ (5%), SiCl ₄ (5%)

"Unless otherwise noted, equimolar amounts of halosilanes and Me₃SnH were used. ^bEstimated from IR spectra. ^cThe same results were obtained with Et₃SnH or Me₂SnH₂. ^dThree equivalents of Me₃SnH was used. 'Two equivalents of Me₃SnH was used.

Experimental Section

Spectral Measurements. NMR tubes (5 mm o.d., wall thickness 0.77 mm) were flamed out and degassed prior to loading. Toluene- d_8 was the solvent used in each case. High-resolution ¹H and ¹⁹F NMR spectra were obtained on a Varian XL200 instrument operating at 200 and 188 MHz, respectively. Infrared spectra were obtained on a Nicolet 5SXB Fourier transform spectrometer with a resolution of 2 cm⁻¹. Mass spectral data were obtained on a Hewlett-Packard 5970A mass spectrometer.

Materials and General Procedures. The alkyltin hydrides used in this study-Me₃SnH, Me₃SnD, Me₂SnH₂, and Et₃SnH-were prepared from the LiAlH₄ (LiAlD₄) reduction of the corresponding alkyltin halides.⁸ All manipulations were conducted in the absence of air and moisture with use of a recirculating-atmosphere drybox (N₂ atmosphere), Schlenk techniques (Ar atmosphere), or a grease-free glass high-vacuum line (background pressure $<10^{-4}$ Torr). The reactions were performed in a fixed U-trap on a high-vacuum line in the absence of solvent; liquid was often present in the bottom of the trap. Typically, 2-5 mmol of each reactant was used. The progress of the reactions was monitored by observing changes in the Si-H (2400-2000 cm⁻¹) and Sn-H (1900-1750 cm⁻¹) stretching regions of the IR spectra. The Sn byproducts of these reactions were shown to be R_3SnX and R_2SnX_2 (X = Cl, Br) by their ¹H NMR and IR spectra.⁶ The results of several room-temperature reactions between halosilanes and Me₃SnH are collected in Table I. The relative amounts of $SiCl_xH_{4-x}$ (x = 0, 2, 3) quoted in Table I were obtained by using IR calibration curves.⁹ The SiF_xH_{4-x} (x = 2-4) mixtures (see Table I) resulting from several reactions could not be purified on a volatility basis; the amount of each component was estimated from IR spectra. Caution! Mixtures containing SiH4 and/or SiCl₂H₂ should be handled with care as they are liable to form explosive mixtures with air.

Calibration Curves for SiCl₃H, SiCl₂H₂, and SiH₄. The area and peak height of the Q branch of the Si-H stretch of SiCl₂H₂ and SiH₄ were monitored vs pressure. For SiCl₃H, the Si-H bend at 806 cm⁻¹ was monitored, due to interference from the R branch of the Si-H stretch of SiCl₂H₂. Several test mixtures of these three compounds were analyzed by using these calibration curves; these indicated an accuracy of 5% for SiCl₃H and SiCl₂H₂ and 1% for SiH₄.

The following sections describe experiments performed under conditions different from those cited in Table I.

Reactions of Me₃SnH with SiBr₄. (a) SiBr₄, Me₃SnH, and CF₂=CF₂ (1:1:2) were warmed to room temperature for 30 min. An IR spectrum indicated a product distribution which was the same as that described in the absence of tetrafluoroethylene (see Table I).

(b) Equimolar quantities of SiBr₄ and Me₃SnH were mixed together in the gas phase for 12 h at room temperature. An IR spectrum of the mixture indicated the sole product to be SiBr₃H.¹⁰

Preparation of Bromofluoro- and Chlorofluorosilanes. SiFxBr4-x and SiF_xCl_{4-x} (x = 1-4)¹¹⁻¹⁴ were obtained from the thermal redistribution

- (a) Dillard, C. R.; May, L. J. Mol. Spectrosc. 1964, 14, 250.
 (b) Maddox, M. L.; Flitcroft, N.; Kaesz, H. D. J. Organomet. Chem. 1965, 4, 50.
 (c) Potter, P. E.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1964, (8)
- Niki, H.; Maker, R. D.; Savage, C. M.; Breitenbach, L. P. J. Phys. Chem. 1985, 89, 1752.
- (10) Burger, H.; Cichon, J. Spectrochim. Acta 1971, 27A, 2191.
 (11) (a) Hofler, F.; Pletka, H. D. Monatsh. Chem. 1973, 104, 1. (b) Dubois, M. L.; Delhaye, M. B.; Wallhart, F. C. R. Seances Acad. Sci., Ser. B 1969, 269, 260.
- (12) Hamada, K.; Ozin, G. A.; Robinson, E. A. Bull. Chem. Soc. Jpn. 1971, 44, 2555.

of SiF₄ and SiBr₄ or SiCl₄ (300-350 °C, 24 h). For SiF₃Cl, an Si-F stretch was observed at 1010 cm⁻¹ that was not reported in the cited reference.12

Reactions of Alkyltin Hydrides with SiF₂Br₂. An equimolar mixture of Me₃SnH and SiF₂Br₂ was warmed to room temperature for 12 h. The products were passed through a trap cooled to -131 °C (pentane, to remove Me₃SnBr) into a trap cooled to -196 °C. The material held at -196 °C was analyzed by IR and ¹H and ¹⁹F NMR spectroscopy; these data were consistent with the new compound SiF_2HBr (90% isolated yield, 95% pure). IR (cm⁻¹): 2283 (m), 979 (s), 969 (s), 888 (vs), 832 (s), 826 (s), 469 (m). ¹H NMR: 4.99 ppm (t), $J_{H-F} = 80.5$ Hz, J_{H-Si} = 378.8 Hz. ¹⁹F NMR: -81.7 ppm (d, relative to external CFCl₃), J_{F-H} = 80.4 Hz, J_{F-Si} = 320.0 Hz. Features due to SiF₃H and SiH₄ were also observed in the IR and NMR spectra of SiF₂HBr.

Addition of a second equivalent of Me₃SnH resulted in the disappearance of SiF₂HBr and the formation of SiF₂H₂ (90% yield). The amounts of SiF₃H and SiH₄ increased slightly (to ca. 5% each). No further reduction of SiF₂H₂ was observed upon addition of excess Me₁SnH. The same results were observed with Et₁SnH and Me₂SnH₂.

Reaction of Me₃SnH with SiF₂Cl₂. Equimolar quantities of Me₃SnH and SiF₂Cl₂ were warmed to room temperature; the new compound SiF₂HCl appeared after 1 h, and its concentration increased over the course of 3.5 days. The mixture was passed through a trap cooled to -131 °C (to remove Me₃SnBr) into a trap cooled to -196 °C. The following spectral data refer to SiF_2HCl held at -196 °C. IR (cm⁻¹): 2293 (m), 985 (s), 975 (s), 900 (s), 839 (m), 832 (sh), 582 (m). ¹H NMR: 4.41 ppm (t). ¹⁹F NMR: -123.0 ppm (d), $J_{H-F} = 84.2$ Hz. Small quantities of SiF₃H, SiH₄, and SiFCl₂H¹⁵ (ca. 5% each) were observed during the synthesis of SiF2HCl. A second equivalent of Me₃SnH was added, and the reaction was monitored for an additional 2.5 days. During this time, SiF₂HCl was converted to SiF₂H₂. The concentrations of SiF₁H (10%) and SiH₄ (10%) also increased.

Reaction of SiF₃Br with Vitride. SiF₃Br (0.2 mmol) was condensed into a Vitride solution (70% NaAlH₂(OCH₂CH₂OCH₃)₂ in toluene, 0.5 mmol) and warmed to room temperature for 10 min. An IR spectrum of the volatile compounds indicated the presence of SiH₄ (99%) and a trace of SiF₃H.

Reactions of Me₃SnH with SiCl₂HBr.¹⁶ The following data pertain to SiCl₂HBr. IR (cm⁻¹): 2252 (w), 796 (s), 596 (m), 552 (m), 422 (w). MS (m/e(relative intensity)): 178 (100), 144 (25), 100 (43), 81 (20), 80 (9), 63 (43), 35 (25). ¹H NMR 5.79 ppm, $J_{H-Si} = 366.3$ Hz.

(a) Equimolar quantities of SiCl₂HBr and Me₃SnH were condensed into a cold finger attached to an IR cell. After 10 min at room temperature, peaks due to SiCl₃H, SiClHBr₂ (vide infra), and a trace of SiH₄ appeared. The concentrations of these compounds increased during 40 min, at which time a weak absorption was observed at 2233 cm⁻¹. This frequency is midway between those of $SiCl_2H_2$ (2236 cm⁻¹) and $SiBr_2H_2$ (2229 cm⁻¹) and is assigned to $SiClBrH_2$.¹⁷ After 2 h, the mixture contained SiCl₃H (45-50%), SiH₄ (31%), and a small amount of SiCl-HBr₂ (<5%); the remainder consisted of unreacted SiCl₂HBr.

(b) Equimolar amounts of SiCl₂HBr and Me₃SnD were condensed into a trap and warmed to room temperature for 3 h. An IR spectrum indicated that the major products of the reaction were SiCl₃H and SiH_xD_{4-x} . There was no evidence for the formation of $SiCl_3D$.

Reaction of Me₃SnH with SiClHBr₂. The following data pertain to SiClHBr₂. IR (cm⁻¹): 2245 (w), 783 (s), 573 (m), 481 (m), 389 (w). MS (m/e (relative intensity)): 221 (100), 186 (19), 142 (51), 107 (25), 80 (20), 81 (52), 63 (52), 35 (20). ¹H NMR 5.58 ppm, $J_{H-Si} = 360.5$ Hz. Equimolar quantities of SiClHBr₂ (a trace of SiCl₂HBr was also present) and Me₃SnH were condensed into a cold finger attached to an IR cell. After 5 min at room temperature, the amount of SiCl₂HBr increased and peaks due to SiBr₃H appeared. After 10 min, the concentrations of SiCl₂HBr and SiBr₃H increased and peaks due to SiCl₃H and SiH₄ appeared. The concentrations of these four compounds increased over the next 30 min, at which point SiClH₃⁹ and SiClBrH₂ (2233 cm⁻¹) appeared. There was no evidence for the formation of SiCl₂H₂ or SiBr₂H₂

Reactions of Alkyltin Hydrides with Organosilanes. No reaction was observed when equimolar quantities of various organosilanes (Me₃SiCl,

- (13) Bures, M.; Cerny, C.; Pavlicek, J. Chem. Listy 1982, 76, 375.
- (14)
- Duncan, J. L. Spectrochim. Acta 1964, 20, 1807. D'Errico, J. J.; Sharp, K. G. Main Group Met. Chem., in press. (15)
- Details regarding the synthesis and redistribution chemistry of bromo-(16)chlorosilanes will be published elsewhere.
- An excellent correlation has been observed between the position of the (17)Si-H stretch and the substituents on silicon. See: Smith, A. L. In Chemical, Biological and Industrial Applications of Infrared Spectroscopy; Durig, J. R., Ed.; Wiley-Interscience: New York, 1985.
 Burger, H.; Ruoff, A. Spectrochim. Acta 1970, 26A, 1449.

Me₂SiCl₂, MeSiCl₃, MeSiCl₂H, Me₃SiOMe, and PhSiCl₃) and alkyltin hydrides were heated to 60-75 °C for several hours.

Results and Discussion

Reactions of Alkyltin Hydrides with Chloro- and Bromosilanes. The primary products in the reactions of the alkyltin hydrides with $SiCl_4$ and $SiCl_3H$ ((1) and (2)) are the monoreduced species

$$Me_{3}SnH + SiCl_{4} \rightarrow SiCl_{3}H + SiCl_{2}H_{2} + SiH_{4} + Me_{3}SnCl_{25-30\%} + 15\% + 10\%$$
(1)

n = 2, R = Me+ SiCl₃H \rightarrow n = 3, R = Me, Et $\frac{\text{SiCl}_{2}\text{H}_{2} + \text{SiH}_{4} + \text{R}_{n}\text{SnCl}_{4-n}}{41\%} (2)$

SiCl₃H and SiCl₂H₂, respectively. In each case, unreacted starting material (50% of the SiCl₄ in (1), 44% of the SiCl₃H in (2)) remains in the mixture. These results stand in contrast to those obtained with conventional reducing agents such as LiAlH₄, with which it is not possible to obtain partially reduced species.¹

The formation of SiH₄ in (1) and (2) could result from redistribution reactions and/or successive reductions. If a redistribution process were responsible for the observed products, then one would expect to see SiCl₄ in eq 2. Since this molecule was not observed, the reduction appears to be kinetically controlled. That is, the rate of reduction decreases in the order $SiClH_3 >$ $SiCl_2H_2 > SiCl_3H$. This sequence may be related to steric effects. Although increasing chloro substitution results in a more electropositive silicon atom, it may also sterically hinder attack of the tin hydride. Similar results were reported by Burg,¹⁹ who investigated the stability of trialkylamine adducts of chlorosilanes. Very weak adducts were observed with SiCl₄, with stronger complexes formed with SiCl₃H and SiCl₂H₂. These results were rationalized in terms of steric crowding.

The results shown in (1) and (2) were obtained when the reactions were performed in the condensed phase. No reaction was observed when SiCl₄ or SiCl₃H was allowed to react with Me₃SnH in the vapor phase, even after the mixtures were warmed to 80 °C for 12 h.

The condensed-phase Me₃SnH reduction of SiBr₄ (1:1 molar ratio) to SiBr₃H (20%) and SiH₄ (20%) occurs at a much faster rate than that observed for the chlorosilanes. (As with the chlorosilanes, unreacted $SiBr_4$ (60%) remained in the mixture.) This observation is consistent with the Si-Br bond strength being ca. 15 kcal/mol weaker than the Si-Cl bond.²⁰

When SiBr₄ and Me₃SnH are mixed together in the vapor phase, the only reduced species observed is SiBr₃H. A possible explanation for the difference in reactivity when this reaction is performed in the condensed and vapor phases is that the tin hydride promotes H/Br redistribution much more effectively in the condensed phase. The initial product SiBr₃H would then be converted into $SiBr_4$ and $SiBr_2H_2$; the latter molecule is then available for additional redistribution reactions or could be directly reduced to SiH_4 by Me_3SnH .

Reactions of Alkyltin Hydrides with Halofluorosilanes. In a manner similar to that observed for mixed halofluorodisilanes,²¹ alkyltin hydrides selectively reduced SiF₃X (X = Br, Cl) to SiF₃H (eq 3). As with the tetrahalosilanes, the reduction of the sili-

$$R_{n}SnH_{4-n} + SiF_{3}X \rightarrow$$

$$n = 2, R = Me \qquad X = Br, Cl$$

$$n = 3, R = Me, Et$$

$$SiF_{3}H + SiF_{2}H_{2} + SiH_{4} + R_{n}SnX_{4-n} (3)$$

$$>95\% \qquad trace \qquad trace$$

con-bromine bond was appreciably faster than that of the silicon-chlorine bond. There was no evidence of further reduction or redistribution of SiF₃H on exposure to excess Me₃SnH. This type of selective reduction has been observed in the reaction of tributyltin hydride with alkyl halides²² but had not been previously observed with halosilanes.

Reducing agents such as LiAlH₄¹ and alkylaluminum hydrides²³ are known to easily reduce fluorosilanes. Indeed, when the reaction in eq 3 was attempted with Vitride (NaAlH₂(OCH₂CH₂OCH₃)₂), a 99% yield of SiH₄ was obtained. Similar results were observed with bromofluorodisilanes.²¹

The selective, stepwise reductive properties of alkyltin hydrides were further demonstrated in their reactions with SiF2Br2, in which a 90% yield of SiF_2HBr was isolated. This appears to be the first synthesis of SiF₂HBr; it has been cited in two theoretical papers,^{13,24} in which the frequencies of the fundamental vibrations of all the halogen derivatives of silane and germane were calculated. The calculated and experimental frequencies of SiF_2HBr differ by an average of 2.5%, which is within the accuracy of 3% claimed by the authors.¹³

SiF₂HBr is cleanly converted into SiF₂H₂ upon addition of a second equivalent of alkyltin hydride. Difluorosilane does not undergo further reduction or redistribution reactions in the presence of excess tin hydride. However, small quantities of SiF₃H and SiH₄ were observed during the synthesis of SiF₂HBr and its subsequent conversion of SiF_2H_2 . These results suggest that SiF_2HBr can undergo F/Br redistribution (eq 4) to some extent. SiFBr₂H may then react with Me₃SnH to ultimately form SiH₄, SiF_2H_2 , and SiF_3H (vide infra).

$$2SiF_2HBr \rightarrow SiF_3H + SiFBr_2H \tag{4}$$

The reaction between SiF₂Cl₂ and Me₃SnH resulted in the formation of SiF_2HCl (80%). In this case, the reaction occurred much more slowly. As a probable consequence, the chloro derivatives underwent F/Cl redistribution (4) to a greater extent, leading to higher concentrations of SiF₃H and SiH₄. Evidence for this redistribution was obtained by the observation of small amounts of SiFCl₂H.¹⁵

The above results encouraged us to explore the alkyltin hydrides' interactions with SiFBr₃, anticipating a convenient synthesis of SiFH₃. Several routes to SiFH₃ exist, but they involve handling dangerous and/or difficult to synthesize starting materials.²⁵⁻²⁸ The reaction between SiFBr₃ and 3 equiv of Me₃SnH resulted in the formation of SiH₄ (60%), SiF₂H₂ (20%), and SiF₃H (20%). Thus, SiFBr₃ appears to be undergoing reduction to SiFH₃, at which point F/H redistribution reactions become important.²⁹ Redistribution of intermediate bromofluorosilanes cannot be ruled out, however, as small amounts of SiF₂HBr were observed during the reaction. The reduction of SiFH₃ to SiH₄ is also a possibility.

Reactions of Alkyltin Hydrides with Mixed Bromochlorosilanes. An unanticipated series of reactions was observed when SiCl₂Br₂ was allowed to react with Me_3SnH (eq 5). Rather than the expected SiCl₂H₂, a mixture of SiCl₃H, SiH₄, and a small amount of SiCl₂HBr was obtained.

SiCl₂Br₂ + 2Me₃SnH
$$\rightarrow$$

SiCl₃H + SiH₄ + SiCl₂HBr + 2Me₃SnBr (5)
35-40% 40% 10%

In a separate experiment, SiCl₂HBr was combined with Me₃SnH in a 1:1 molar ratio. The products of this reaction consisted of SiCl₃H (45-50%), SiH₄ (31%), and a small amount of SiClHBr₂ (<5%); the remainder consisted of unreacted Si- $Cl_2HBr.\ These\ results\ suggest\ that\ SiCl_2HBr\ rapidly\ undergoes$ Cl/Br redistribution (eq 6).³⁰ The fact that SiCl₂HBr undergoes $2SiCl_2HBr \rightarrow SiCl_3H + SiClHBr_2$ (6)

- (22) Kuivila, H. G. Synthesis 1970, 499 (23)
- (a) Robinson, R. E. U.S. Patent 3 499 020, Stauffer Chemical, 1970. (b) Schmidt, H.; Jenkner, H. U.S. Patent 2857414, Kali-Chemie, 1958. (24)
- (25)
- Bures, M.; Cerny, C. Collect. Czech. Chem. Commun. 1984, 49, 1211. Sujishi, S.; Witz, S. J. Am. Chem. Soc. 1957, 79, 2447. Kriner, W. A.; MacDiarmid, A. G.; Evers, E. C. J. Am. Chem. Soc. 1958, 80, 1546. (26)
- (27) Hollandsworth, R. P.; Ingle, W. M.; Ring, M. A. Inorg. Chem. 1967, 6.844.
- Vanderwielen, A. J.; Ring, M. A. Inorg. Chem. 1972, 11, 246.
- (29)(a) Aylett, B. J. Adv. Inorg. Chem. Radiochem. 1968, 11, 249. Ebsworth, E. A. V. Volatile Silicon Compounds; Pergamon Press: New York, 1963.

⁽¹⁹⁾ Burg, A. B. J. Am Chem. Soc. 1954, 76, 2674

⁽²⁰⁾ Jackson, R. A. J. Organomet. Chem. 1979, 166, 17.

⁽²¹⁾ D'Errico, J. J.; Sharp, K. G. Inorg. Chem., in press.

redistribution prior to reduction was demonstrated during its reaction with Me₃SnD. If reduction occurred first, with SiCl₃H formed from H/Cl redistribution of SiCl₂H₂, then SiCl₃D should have been present in the product mixture via redistribution of SiCl₂HD. However, only SiCl₃H was observed.

From these results, it appears that SiClHBr₂ may be the source of SiH₄ in (5). To test this hypothesis, SiClHBr₂ was independently synthesized and allowed to react with Me₃SnH. As with the other bromochlorosilanes in this study, Cl/Br redistribution (eq 7) is the preferred pathway during the initial stages

$$2SiClHBr_2 \rightarrow SiCl_2HBr + SiBr_3H \tag{7}$$

of the reaction. The SiCl₂HBr from (7) is then available for additional Br/Cl redistributions; indeed, SiCl₃H is observed early in the reaction (see (6)). The reaction mixture also contained SiClBrH₂, SiClH₃, and SiH₄, all of which could result from the stepwise reduction of SiClHBr₂. Alternatively, SiH₄ could be formed from the reduction of SiBr₁H (eq 7).

The final bromochlorosilane to be examined in this study was SiCl₃Br. The primary product in the reaction with Me₃SnH was SiCl₁H (85%), although small amounts of SiCl₄ (5%) and SiH₄ (5%) were also observed. The redistribution of SiCl₃Br would lead to the formation of SiCl₄ and SiCl₂Br₂. The latter compound would ultimately be associated with the formation of SiH_4 (see (5)).

Mechanistic Considerations. Organotin hydrides typically react with organic halides and unsaturated bonds via a free-radical mechanism. These reactions require either heating or initiation by a free-radical source.²² However, in the case of the polyhalosilanes and mixed halosilanes, the reactions proceeded at room temperature and in the absence of free-radical initiators. In addition, the reaction of Me₃SnH with SiBr₄ was performed in the presence of CF2=CF2. Under free-radical conditions, products attributable to addition of the tin hydride to the olefin should be apparent.³¹ However, neither the rate of reaction nor the product distribution was affected. Additional evidence for a non-freeradical path comes from reactions involving halofluorodisilanes.²¹ in which there was no evidence for the formation of monosilanes.

A mechanism that is consistent with these observations involves a four-centered transition state (I) in which there is a pairwise

exchange between the silicon and tin atoms. It seems unlikely that polar transition states³² play an important role in these reductions, as many of these reactions occur in the gas phase.²¹

Alkyltin hydrides proved ineffective as reducing agents toward a variety of alkyl- and aryl-substituted halosilanes. A U.S. patent³³ described the reduction of various chlorosilanes (e.g. MeSiCl₃, Me₃SiCl) using alkyltin hydrides in the presence of a group III catalyst such as Al_2Me_6 .

Conclusion

Organotin hydrides have demonstrated selective, stepwise reducing properties toward a variety of polyhalosilanes. For SiCl₄ and SiCl₁H, the major products of the reductions were SiCl₁H and SiCl₂H₂, respectively. The course of the reaction of SiBr₄ with Me₃SnH depends on the phase of the reactants: vapor-phase reaction leads exclusively to SiBr₃H, while liquid-phase reaction also generates silane.

The alkyltin hydrides proved to be selective reducing agents for the Si-X (X = Br, Cl) bond in halofluorosilanes. Thus, SiF₁X was converted to SiF₃H with no evidence for further reduction of the Si-F bonds. For SiF₂Br₂, the new compound SiF₂HBr was isolated in 90% yield. Addition of a second equivalent of tin hydride resulted in the conversion of SiF₂HBr to SiF₂H₂. Similar results were observed with SiF₂Cl₂. For SiFBr₃, redistribution reactions are competitive with reduction, resulting in a mixture of SiF₃H, SiF₂H₂, and SiH₄.

SiCl₂Br₂ reacts with 2 equiv of Me₃SnH to form SiCl₃H, SiH₄, and a small amount of SiCl₂HBr. No SiCl₂H₂ was observed in the mixture. For SiCl₂HBr, deuterium labeling experiments demonstrated that Cl/Br redistribution precedes reduction. SiCl₃Br is primarily reduced to SiCl₃H, although redistribution takes place to a small extent to form $SiCl_4$ and $SiCl_2Br_2$.

The reactions between alkyltin hydrides and halosilanes proceed at room temperature and in the absence of free-radical initiators. Indeed, the reaction between SiBr₄ and Me₃SnH was unaffected by the presence of CF2==CF2, a free-radical scavenger. This leads us to suggest a four-centered transition state for the H-X (X = Cl, Br) exchange between tin and silicon.

Registry No. Me₃SnH, 1631-73-8; SiCl₄, 10026-04-7; SiCl₃H, 10025-78-2; SiBr₄, 7789-66-4; SiF₃Br, 14049-39-9; SiF₃Cl, 14049-36-6; SiFBr3, 18356-67-7; SiCl2Br2, 13465-75-3; SiCl3Br, 13465-74-2; Et3SnH, 997-50-2; Me₂SnH₂, 2067-76-7; Me₃SiCl, 75-77-4; Me₂SiCl₂, 75-78-5; MeSiCl₃, 75-79-6; MeSiCl₂H, 75-54-7; Me₃SiOMe, 1825-61-2; PhSiCl₃, 98-13-5; NaAlH₂(OCH₂CH₂OCH₃)₂, 22722-98-1.

⁽³⁰⁾ In the absence of catalysts, prolonged heating (e.g. 40 h, 90 °C) is required for the Cl/Br redistribution of SiCl₂HBr. See ref 16. (31) Clark, H. C.; Furnival, S. G.; Kwon, J. T. Can. J. Chem. **1963**, 41, 2889.

^{(32) (}a) Gaines, D. F.; Kunz, J. C.; Kulzick, M. J. Inorg. Chem. 1985, 24, 3336. (b) Emery, S. L.; Morrison, J. A. Inorg. Chem. 1985, 24, 1613. (c) Leusink, A. J.; Marsman, J. W. Recl. Trav. Chim. Pays-Bas 1965, 84. 1123.

⁽³³⁾ Berger, A. U.S. Patent 3 439 008, April 15, 1969, General Electric Co.