Volume **28**

Number 14

July 12, 1989

Inorganic Chemistry

0 Copyright 1989 by the American Chemical Society

Communications

Base Hydrolysis of $[Co(NO₂)₃(NH₃)₃]⁰$

This is the first report, to the best of our knowledge, on the base hydrolysis of a nonelectrolyte complex, $[Co(NH_3)_3(NO_2)_3]^0$ (I), which avoids the complications arising out of ion-pair formation (and the "unreactive blind alley"') and follows saturation kinetics.

Almost all **Co(111)** complexes follow first-order dependence on hydroxide ion concentration in their base hydrolyses.^{1,2} There are, however, a few instances where departures from first-order dependence on hydroxide ion concentration have been observed 1,2 and where the dependence is given by the expression³

$$
k_{\text{obs}} = a[\text{OH}^-]/(1 + b[\text{OH}^-])
$$
 (A)

as in Scheme **I.**

Scheme I

$$
[L_4M(HNR_2)X]^{n+} + OH = \frac{K_{\text{hy}} = k_1/k_1}{[L_4M(NR_2)X]^{(n-1)+}} + H_2O(1)
$$

$$
[L_4M(NR_2)X]^{(n-1)+\xrightarrow{k_2} [L_4M(NR_2)]^{n+}+X^-(2)}
$$

$$
[L_4M(NR_2)]^{n+} + H_2O \xrightarrow{\text{fast}} [L_4M(HNR_2)OH]^{n+} \quad (3)
$$

This rate expression is further complicated by the formation of an ion pair between the complex (mostly always cationic) and the hydroxide ion. The hydroxide ion can also abstract a proton from the complex (forming a conjugate base) while remaining associated with the complex in the ion pair $(I_d cb)$.

An attempt to evaluate ion-pair and acidity constants was made by Buckingham et al.⁵ in the base hydrolysis of $[Co($ tren $) (NH_3)_2$ ³⁺ (II), *S*-[Co(Me(tren))(NH₃)₂]³⁺ (III), and *anti-p*- $[Co(Me(tren))(NH₃)₂]³⁺$ (IV) (tren = 2,2',2''-triaminotriethy amine Me(tren) = 2-methylamino-2',2"-diaminotriethylamine).⁶ These authors observed a departure from first-order dependence of *kobs* on [OH-] and obtained a rate expression

$$
k_{\text{obs}} = k_{\text{OH}} K_{\text{ip}} K_{-\text{H}} [\text{OH}^-]/\{1 + K_{\text{ip}} [\text{OH}^-](1 + K_{-\text{H}})\} \quad \text{(B)}
$$

conforming to Scheme II, where Co³⁺ represents these complexes
and CoH²⁺ represents their conjugate bases.
Scheme II
Co³⁺ + OH⁻ $\frac{K_{10}}{1}$ Co³⁺, OH⁻ $\frac{K_{-H}}{1}$ Co-H²⁺ $\frac{K_{OH}}{1}$ products and $CoH²⁺$ represents their conjugate bases.

Scheme I1

$$
\text{Co}^{3+} + \text{OH}^- \xleftarrow{\text{K}_{ip}} \text{Co}^{3+}, \text{OH}^- \xleftarrow{\text{K}_{-H}} \text{Co}-\text{H}^{2+} \xrightarrow{\text{K}_{OH}} \text{products}
$$

-
- (1) Tobe, **M. L.** *Adu. Inorg. Bioinorg. Merh.* **1983,** *2,* **1. (2)** Singh, Shiv. Ph.D. Thesis, Sukhadia University, Udaipur-3 13001, India, **1988.**
- **(3)** Since we are interested **in** only this form of rate expression, the dependence on [OH⁻] as given by the expression⁴ $k_{obs} = k_{OH}$ [OH⁻] + k'_{OH} [OH⁻]² is not being considered.
(4) Jordan, R. B.; Taube, H. *J. Am. Chem. Soc.* **1966**, 88, 4406.
-
- **(5)** Buckingham, D. A.; Clark, C. R.; Lewis, **T.** W. *Inorg. Chem.* **1979,** *18,* 204 1.
- (6) For nomenclature, please see: Buckingham, D. A,; Cresswell, P. J.; Sargeson. A. **M.** *Inorg. Chem.* **1975,** *14,* **1485** and ref *5.*

Table I. Variation of Rate for Base Hydrolysis of **Trinitrotriamminecobalt(II1)** with the Concentration of Sodium Hydroxide^a

10 ³ [NaOH], M	10^5k_{obs} , s ⁻¹	10^3 [NaOH], M	$10^5 k_{\text{obs}}$, s ⁻¹	
1.0	2.25	8.0	7.00	
2.0	3.70	10.0	7.60	
4.0	5.30	15.0	8.33	
6.0	6.10	18.0	8.70	

 a [complex] = 2×10^{-4} M; temp = 50 °C.

Estimates of the values of K_{hy} from proton exchange data suggest that only in the case of IV could the kinetics be due to the saturation of the amido conjugate base. In I1 and **111,** this was shown to be complicated by the ion-association formation constant. This work points out the danger of taking a too naive view of these saturation kinetics. It, however, does not point out that there is a further ambiguity.' The same kinetics would be observed if ion-pair formation was an "unreactive blind alley" and the rate law still required a second-order interaction between the free substrate cation and hydroxide.' Similar behavior was observed in the base hydrolysis of the $Ru(NH_3)_{6}^{3+}$ complex.⁸

We are, therefore, prompted to present our findings on the base hydrolysis of a nonelectrolyte cobalt(II1) complex, I, where this "blind alley" does not complicate matters with alternative interpretations conforming to the observed rate law.

I was prepared by the reported method⁹ and analyzed chemically for Co and NO_2^- . Anal. Calcd: Co, 23.8; NO_2^- , 55.6. Found: Co, 23.6; NO_2^- , 55.3. It has λ_{max} at 254, 348, and 440 nm with ϵ (molar extinction coefficient values) of 1.7×10^4 , 4.93 \times 10³, and 28.5 L mol⁻¹/cm⁻¹ respectively.¹⁰ The reaction was followed at 348 nm on a Bausch & Lomb Spectronic 21 UVD spectrophotometer fitted with a thermostating jacket and using cuvettes of I-cm path length. The determination of the effect of [OH⁻] on the reaction was carried out at 50 $^{\circ}$ C and at constant ionic strength of 0.1 M using NaClO₄-NaOH mixtures. The results of an average of three runs are collected in Table I.

The data clearly points to a deviation of k_{obs} from first-order dependence on [OH-] and show saturation kinetics (Figure I). A plot of $1/k_{obs}$ v/s $1/[OH^-]$ gives a straight line with least-squares slope ($=k_2K_{\text{hv}}$) and definite positive intercept on the $1/k_{\text{obs}}$ axis $(=1/k_2)$ (cf. Figure 2). The values of k_2 and K_{hy} so obtained (using a linear least-squares program on an IBM compatible PC XT) are (1.0 \pm 0.02) \times 10⁻⁴ s⁻¹ and 288 \pm 20 M⁻¹.

The value of K_{hy} (= $K_{\text{a}}/K_{\text{w}}$) derived kinetically can be due to the ability of nitro group to vacate a p orbital on its nitrogen and form a pd π bond with d electrons of cobalt. The presence of a

⁽⁷⁾ Reference 1, pp 45, 84.
(8) Waysbort, D.; Navon,

⁽⁸⁾ Waysbort, D.; Navon, G. *Inorg. Chem.* 1979, 18, 9.

(9) Schlessinger, G. *Inorg. Synth.* 1960, 6, 189.

(10) The two isomers, meridional and facial, could not be isolated by ion-

exchange chromatography.¹¹ Attempt

Figure 1. Plot of k_{obs} vs [NaOH] for base hydrolysis of $[Co(NH₃)₃(N [O_2)_1$. $[complex] = 2.0 \times 10^{-4}$ M at 50 °C.

Figure 2. Base hydrolysis of $[Co(NH₃)₃(NO₂)₃]$ by NaOH presented as $1/k_{\text{obs}}$ vs $1/[\text{OH}^{-}]$. [complex] = 2.0 \times 10⁻⁴ M at 50 °C.

 π -bonding ligand in the complex would tend to stabilize the transition state $Co-NH_2$ --H--OH⁻ by enhancing the delocalization of the p electrons on the amido nitrogen.¹²

(12) Palmer. J. W.; Basolo, F. *J. Phys. Chem.* **1960, 64, 778**

This clearly demonstrates the D_{cb} nature of the mechanism. Whether it is $D(ish)cb$ or D_{cb} (or even Id(ish)cb) mechanism (in the purist's sense)¹³ will be subject of detailed report on the base hydrolyses of other nonelectrolyte complexes of types [Co(SC- N ₃($NH₃$)₃], [Co($N₃$)₃($NH₃$)₃], and I.

Acknowledgment. Financial support from the University Grants Commission, New Delhi, is gratefully acknowledged.

Department of Chemistry University College of Science Sukhadia University Udaipur-3 13001, India

Shiv Singh R. Shanker*

Received December 6, 1988

Stability Range of Heterometal Cubane-Type Clusters MFe₃S₄: Assembly of Double-Cubane Clusters with the ReFe3S4 Core

It is now apparent that the heterometal cubane-type clusters $[MF_{2S_4L_n}]^2$ with anionic terminal ligands L ($n = 3-5$) and overall negative charge $z = 1 -$ to $4 -$ exhibit a stability plateau at the 50-52e cores $[MF_{3}S_{4}]^{q}$ ($q = 1+$ to 4+). Under the conditions of cluster assembly systems, which contain an Fe(I1) or Fe(II1) salt, $[VS_4]^{3-}$ or $[MS_4]^{2-}$ $(M = Mo, W)$, and $L = RS^-$ or halide, the heterometal is **reduced,** a portion of the iron reactant is **reduced** or oxidized, and the *isoelectronic* (5 le) core oxidation levels $[VE_{3}S_{4}]^{2+1.2}$ and $[MF_{3}S_{4}]^{3+2-5}$ are formed without exception.⁶ Oxidation levels differing by one electron are recoverable from these by redox reactions. Since the initial syntheses of $MoFe₃S₄$ and WFe₃S₄ clusters in 1978-80,^{3,4} the stability range of MFe₃S₄ clusters has been tested only by the synthesis of those with $M =$ V.',2 We report here a significant extension of this range, with implications for the stabilities of as yet unrealized clusters.

The findings that $[Res_4]^{-9-11}$ in acetonitrile undergoes a chemically reversible one-electron reduction¹² at $E_{1/2} = -1.12$ V

- (I) Kovacs, **J.** A.; Holm, R. H. *Inorg. Chem.* **1987, 26, 702,** 711.
- (2) Carney, M. **J.;** Kovacs, **J.** A.; Zhang, Y.-P.; Papaefthymiou, G. C.; Spartalian, K.; Frankel, R. B.; Holm, R. H. *Inorg. Chem.* **1987,26,719.**
- **(3)** Holm, R. H. *Chem. SOC. Reu.* **1981,** *10,* **455.**
- **(4)** Holm, R. H.; Simhon, **E.** D. **In** *Molybdenum Enzymes;* Spiro, T. *G.,* Ed.; Wiley-Interscience: New York, **1985;** Chapter 1.
- **(5)** Kovacs, J. A.; Bashkin, J. K.; Holm, R. H. *J. Am. Chem. SOC.* **1985, 107. 1784;** *Polyhedron* **1987, 6, 1445.**
- When $L = R_2NCS_2^-$, a more highly oxidized core ($[MoFe₃S₄]^{5+}$) has been obtained;' this result is another manifestation of the stabilization of high oxidation states by dithiocarbamates. The compound $[(OC)_3MoFe₃S₄(SEt)₃]³⁻⁸$ contains a more reduced core $([MoFe₃S₄]⁰)$ but was not made by an assembly reaction of the above type. On a structural basis, this cluster is a weak complex between $[Fe_3S_4(SEt)_4]$ ³⁻ and the Mo(CO)₃ fragment, whereas in other MoFe₃S₄ cubanes the Mo atom is tightly integrated into the core.²⁻⁵
- **(7)** Liu, *Q.;* Huang, **L.;** Kang, B.; Yang, Y.; Lu, **J.** *Kexue Tongbao* **1987, 32, 898.**
- **(8)** Coucouvanis, D.; AI-Ahmad, *S.;* Salifoglou, A.; Dunham, W. R.; Sands, R. H. *Angew. Chem., Int. Ed. Engl.* **1988, 27, 1353.**
- **(9)** Muller, **A.;** Diemann, E.; Jostes, R.; Bogge, H. *Angew. Chem., Int. Ed. Engl.* **1981, 20, 934.**
- (10) Do, *Y.;* Simhon, **E.** D.; Holm, R. H. *Inorg. Chem.* **1985,** *24,* **4635.**
- **(1 1)** Muller, **A,;** Krickemeyer, **E.;** Bogge, H.; Penk, **M.;** Rehder, D. *Chimia* **1986, 40,** 50.

0020- 1669/89/ 1328-2696\$01.50/0 *0* 1989 American Chemical Society