tution has a similar but smaller effect **upon** nitrogen protonation.

A computer fit of the NMR chemical shift vs pH **curves** allowed the intrinsic shifts of the various ligand protonated species, H,L, to be obtained. The ³¹P shifts for the various H_nL species are dependent upon protonation of the nitrogen and the phosphonate oxygen atoms, and also **on** the possible formation of intramolecular hydrogen bonds between NH⁺ and O⁻ neighboring groups. Those effects are reflected in the 31P chemical shifts in a complex way through σ and π contributions to the electronic structure of the phosphonate moiety.44 The protonation shifts of the phosphonate ligands were used to obtain microscopic protonation fractions at various pH values. Although a quantitative fit of the experimental data was difficult due to pH-dependent conformational effects, the general picture of microscopic protonation of the macrocyclic phosphonate ligands is not very different from that found for the $\frac{1}{2}$ acetate couterparts.²⁷⁻²⁹ The most basic sites are two ring nitrogens, followed by the phosphonate oxygens, which are protonated to different degrees depending on the ring structure. **In** the tetraaza ligand, the protonation of the pendant phosphonate oxygens is more extensive than in the triaza ligand before further protonation of the ring nitrogens occurs.

Finally, the magnitude and sign of the Na⁺-induced shift on the IH and **31P** signals of the phosphonate chelates indicate that this ion binds within the macrocyclic cavities of NOTP and DOTP but not DOTRP, at least below pH 13. This may be due to an unusually high first protonation constant for DOTRP or to unique conformational features of the bridging propylenes in this chelate that precludes $Na⁺$ binding in its cavity.

Acknowledgment. This work was supported in part by grants from the Robert A. Welch Foundation (No. AT-584), Mallinckrodt, Inc., and the Meadows Foundation.

Contribution from the Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama **35294**

Evidence for the Donor Capacity of Nitrogen in Acyclic Aminophosphines: A Multinuclear NMR Study

R. K. Kanjolia, D. K. Srivastava, **C.** L. Watkins, and L. K. Krannich*

Received January **23,** *1989*

The reactions of R_2PNMe_2 , $Me_2PNR'_2$, and $(Me_2N)_nPMe_{3-n}$, where $R = Me$, Et, Ph, and Cl, $R' = Me$, Et, Prⁿ, Prⁱ, and SiMe₃, and $n = 1-3$, with varying mole ratios of $BH₃THF$ have been carried out and studied by using multinuclear NMR spectroscopy. Although P-B-bonded monoadducts were always obtained, B-P-N-B-bonded bisadducts were also obtained for $Me₂$ PNMe₂, $Me₂PNEt₂$, and Et₂PNMe₂. These are the first reported examples where the nitrogen atom in acyclic aminophosphines demonstrates reactivity toward BH₃. The extent of bisadduct formation decreases dramatically in going from Me_2NMe_2 to Me_2NRE_2 . From the Robert A. Welch Foundation (No. AT-584), Mal-

from the Robert A. Welch Foundation (No. AT-584), Mal-

from the Robert A. Welch Foundation.

Contribution from the Department of Chemistry,

University of Alabama at

 K_{eq} , ΔH , and ΔS values were obtained for the Me_2 PNMe₂·BH₃/H₃BP(NMe₂·BH₃)Me₂ and Et₂PNMe₂·BH₃/H₃BP(NMe₂·

 $BH₃$)Et₂ equilibrium systems. The results are compared with those reported previously for analogous aminoarsines. A competition study involving the Me₃N, Me₃P, Me₃As, Me₂PNMe₂, Me₂AsNMe₂, and BH₃.THF systems is discussed relative to the nature of P-N and As-N bonding.

Introduction

The borane coordination chemistry and Lewis basicity of the phosphorus and nitrogen atoms in aminophosphines have been studied extensively, $1-19$ with experimental results suggesting that the phosphorus atom is the more basic site. For example, in the reactions of B_2H_6 with acyclic aminophosphines of the type $(Me_2N)_nPMe_{3-n}$ ^{14-17,19} Me_2NPF_2 , $(Me_2N)_2PF$, Me_2NPBu_2 , 18

- (I) Cowley, A. H.; Dewar, M. J. **S.;** Jackson, W. R.; Jennings, W. B. *J. Am. Chem.* **SOC. 1970,** *92,* **5206.**
- **(2)** Verkade, J. **G.** *Coord. Chem. Reu.* **1972/73,** *9,* 1.
- **(3)** Romming, C.; Songstad, J. *Acta Chem. Scand.* **1978,** *A32,* **689.**
- **(4)** Dakternieks. D.: DiGiacomo. R. *PhosDhorus Sulfur* **1985,** *24.* **217.**
- **(5)** Kroshefsky, R. D.; Verkade, J. *0.;* Pipl,*J. R. *Phosihorus Sulfur* **1979,** *6.* **317.**
- **(6)** Riess, J. *G. Phosphorus Sulfur* **1986, 27,93.**
- **(7)** Jessup, J. **S.;** Paine, R. T.; Campana, C. F. *Phosphorus Sulfur* **1981,** 9, **279.**
- **(8)** Paine, R. T. *Inorg. Chem.* **1977, 16, 2996.**
- **(9)** Fleming, **S.;** Parry, R. W. *Inorg. Chem.* **1972,** *I!,* **1.**
- (10) Lundberg, **K.** L.; Rowatt, R. J.; Miller, N. E. *Inorg. Chem.* **1969,** *8,*
-
-
-
- 1336.
(11) Morris, E. D., Jr.; Nordman, C. E. *Inorg. Chem.* 1969, 8, 1673.
(12) La Prade, M. D.; Nordman, C. E. *Inorg. Chem.* 1969, 8, 1669.
(13) Holmes, R. R.; Carter, R. P., Jr. *Inorg. Chem.* 1963, 2, 1146.
(14) Holme
- *31,* **1353. (16)** Jugie, *G.;* Laussac, J. P.; Laurent, J. P. *J. Inorg.* Nucl. *Chem.* **1970,** *32,*
- **3455. (17)** Jouany, C.; Laurent, J. P.; Jugie, *G. J. Chem.* **Soc., Dalron** *Trans.* **1974,**
- **1510. (18)** Noeth, **H.;** Vetter, H. J. *Chem. Ber.* **1963,** *96,* **1298.**
- **(19)** Burg, **A.** B.; Slota, P. J., Jr. J. *Am. Chem.* **SOC. 1960,** *82,* **2145.**
-

and $(Me_2N)_2PBu$,¹⁸ the BH₃ moiety binds only to the phosphorus atom. The prevailing view is that in these phosphines the nitrogen atom assumes a planar configuration and through $d\pi$ -p π multiple bonding it experiences diminished basicity, and the phosphorus atom, enhanced basicity.²⁰⁻²⁴ Only in some constrained cyclic aminophosphines is there evidence for the binding of $BH₃$ to the nitrogen atom.^{5,20,21,24} With $P(NMeCH₂)₃CMe₂⁵$ coordination to the nitrogen occurs after BH_3 binds to the phosphorus. Sim-

ilarly, the constrained bicyclic $P(OCMe,CH₂)$ ₂N forms a bis-(borane) adduct. $21,24$

In a recent communication,²⁵ we demonstrated conclusively¹⁹ the synthesis and characterization of the first known bis(borane) adduct, $H_3BP(NMe_2·BH_3)Me_2$, of an acyclic aminophosphine. Previously, the possibility of the nitrogen atom serving as a donor site in this compound was dismissed. $6,$ ^{15,17} We have now extended this work to establish the generality of N-B bonding and those factors influencing P-B and N-B bonding in acyclic aminophosphine/ $BH₃$ reaction systems. In this paper, we describe a systematic study of the reaction of $BH₃$. THF in varying reactant mole ratios with three series of aminophosphines: series A,

- **(20)** Grec, **D.;** Hubert-F'falzgraf, L. G.; Grand, **A.;** Riess, J. G. *Inorg. Chem.* **1985, 24,4642.**
- **(21)** Febvay, J.; Casabianca, F.; Riess, J. G. *Inorg. Chem.* **1985,** *24,* **3235. (22)** Dupart, J. **M.;** Le Borgne, G.; Pace, **S.;** Riess, J. G. J. *Am. Chem. Soc.*
- **1985,** *107,* **1202.**
- **(23)** Dupart, J. **M.;** Pace, **S.;** Ria, J. G. *J. Am. Chem. Soc.* **1983,105, 1051. (24)** Grec, **D.;** Hubert-Pfalzgraf, **L.** G.; Ria, J. G.; Grand, **A.** J. *Am. Chem.*
- **SOC. 1980,** *102,* **7133.- 125)** Kaniolia. R. K.: Watkins. C. L.: Krannich, L. K. *Inora. Chem.* **1987,** *26.* **i22.**

Table I. Multinuclear NMR Data for R_2PNMe_2 ($R = Me$, Et, Ph, Cl) and Resulting Borane Adducts at 25 °C

^a Data at -70 °C. ^b Respective J_{P-C} values are given in parentheses; C-1 = ipso carbon.

 R_2PNMe_2 (R = Me, Et, Ph, Cl); series B, Me_2PNR_2 (R = Me, Et, Prⁿ, Prⁱ, SiMe₃); series C, Me_2N _nPMe_{3-n} $(n = 1-3)$. These results are compared with those obtained previously^{26,27} for analogous acyclic aminoarsines. This study also establishes the influence that the substituents on the phosphorus and nitrogen atoms have on the initial coordination site and investigates the equilibrium and kinetics of the bis- versus mono(borane) adduct formation. Lastly, a competition study suggests the role these substituents play in determining the $BH₃$ binding site in multiple intermolecular Lewis base site systems.

Results and Discussion

Me₂PNMe₂/BH₃·THF System.²⁸ A detailed NMR study of the $Me₂PNMe₂/BH₃THF$ system was undertaken to determine the kinetic and thermodynamic stabilities of the P-B-, N-B-, and $B-P-N-B$ -bonded borane adducts of $Me₂PNMe₂$. The reactions of $Me₂PNMe₂$ and $BH₃THF$ in $Me₂PNMe₂:BH₃THF$ mole ratios ranging from 1:0.5 to 1:3.0 were studied by 1H , ^{11}B , ^{13}C , and 31P NMR spectroscopy as a function of temperature and time. Regardless of the reactant mole ratio, the formation of $Me₂PNMe₂BH₃$ (I), $H₃BP(NMe₂BH₃)Me₂$ (II), and Me₂PNMe₂·BH₃ (III) is always observed at -90 °C (NMR data, Table I). However, the relative quantities of **1-111** were found to be dependent upon the reactant mole ratio, temperature, and time. When the $Me₂PNMe₃:BH₃THF$ mole ratio is 1:<1, the intensities of the NMR peaks of **I1** and **111** decrease and those of I increase with an increase in temperature and/or time. After 12 h at room temperature, the spectra indicate complete conversion of **I1** and **I11** to I. Its and Discussion
 e_2 PNM e_2 /BH₃·TH
 Re_2 PNM e_2 /BH₃·TH

inetic and thermody

-N-B-bonded boran
 Re_2 PNM e_2 and BH

s ranging from 1:0.

¹PNMR spectrosco

ridless of the real

PNM e_2 ·BH₃ (1),

PN Me₂ (R = Me, Et, Ph, Cl); series B, Me₂PNR₂ (R = Me,

Pr¹, SiMe₃); series C, (Me₂N)_{*n*}PMe_{3-n} (n = 1-3). These

are compared with those obtained previously^{26,27} for

are compared with those obtained previ

At reactant mole ratios of $1: \ge 1$, the intensities of the NMR peaks associated with **I** and **111** decrease and those of I1 increase as the reaction mixture is warmed from -90 to -60 °C. After 24 h at -60 °C, complete conversion to the bisadduct, II, occurs when the reactant mole ratio is $1: \ge 2$. Thus, formation of the P-B-bonded monoadduct, I, is kinetically favored at low temperatures, while the bisadduct, 11, is the most thermodynamically stable product at $Me₂PNMe₂:BH₃:THF$ mole ratios 1: \geq 2. In all cases, the N-B-bonded adduct, 111, is much less stable than the P-B-bonded adduct, I.

Upon warming of the -60 °C solution to -30 °C, the NMR spectra indicate the reconversion of a small amount of I1 to I. Above -30 °C, a measurable equilibrium mixture of I and II exists. The intensities of the peaks of **I** increase with a concomitant decrease in those of II as the temperature is increased to 25 °C. Equilibrium constant values for several independent samples were calculated by using ³¹P and ¹¹B NMR integration data. The K_{∞} values at -30 , -17 , 0, and 25 °C were 1.1 \times 10³, 5.2 \times 10², 2.7 \times 10², and 1.1 \times 10², respectively, where $K_{eq} = [II]/[I][BH_3]$. A van't Hoff plot of $\ln K_{eq}$ versus $1/T$ shows excellent linearity $(r = 0.998)$. The resulting ΔH and ΔS values are -24.3 kJ/mol and -42.5 eu, respectively.

These large K_{eq} values indicate that the formation of the bisadduct is still favored thermodynamically at room temperature. Thus, by choice of the appropriate experimental conditions, I1 was synthesized and isolated in the following manner. The reaction of $Me₂PNMe₂$ with BH₃THF in a 1:2.2 mole ratio was carried out at -35 °C for 6 h. An 85% yield of a white crystalline product, MezPNMe2.2BH3 (NMR spectral data, Table **I),** was obtained after distillation of all volatiles while the reaction flask was maintained at -10 *0C.25* Every, where $X_{eq} = [11] [11] [1213].$
versus 1/7 shows excellent linearity
 ΔH and ΔS values are -24.3 kJ/mol
dicate that the formation of the bis-
nodynamically at room temperature.
Inpitate experimental conditions,

The formation and isolation of the bisadduct, 11, and the formation of the thermodynamically less stable N-B-bonded adduct, **111,** are the first examples where the nitrogen atom in an acyclic aminophosphine demonstrate a definite basicity toward borane. ${}^{1}J_{P-B}$ coupling constant data suggest that π bonding in the P-N bond is considerably less in the bis- (49.4 Hz) than in the monoadduct (68.7 Hz).²⁰

Series A: R_2 PNMe₂, Where $R = Me$, Et, Ph, and Cl. The reactions of R_2 PNMe₂ with BH₃-THF were studied to determine any electronic and/or steric effects that variation of the substituent on the phosphorus may have on the bonding selectivity of BH, and on the kinetic and thermodynamic stabilities of the resulting products. The reaction of Et_2PNMe_2 with $BH_3.THF$ (1:1 mole ratio) at -90 °C yields Et₂PNMe₂.BH₃ (IV, NMR data, Table I), which is the exclusive product from -90 to 25 °C. At oward borane.
Ing in the P-N
han in the mo-
, and Cl. The
d to determine
the substituent
cctivity of BH₃
of the resulting
IFIF (1:1 mole
IR data, Table
o 25 °C. At
IV is observed
ne and/or tem-
 NMe_2 -BH₃)Et₂
 V d

 $Et_2PNMe_2:BH_3$ -THF mole ratios of $1: \ge 1$, only IV is observed initially at -90 °C. However, with increasing time and/or tem-

perature, the formation of the bisadduct, $H_3BP(NMe_2\cdot BH_3)Et_2$ **(V),** is noted. The relative amounts of **IV** and **V** depend upon time, initial reactant mole ratio, and temperature. When addi-

⁽²⁶⁾ Kanjolia, R. K.; Krannich, L. K.; Watkins, C. L. *Inorg. Chem.* **1985,** *24,* **445.**

⁽²⁷⁾ Kanjolia, R. K.; Krannich, L. K.; Watkins, C. L. *J. Chem.* **Soc.,** *Dalton Trans.* **1986,** 2345.

⁽²⁸⁾ This work published in part as a short communication.²⁵

Table II. Multinuclear NMR Data for Me_2PNR_2 ($R = Me$, Et , $Prⁿ$, $Prⁱ$, $NSiMe₃$) Borane Adducts at 25 °C

						Table II. Multinuclear NMR Data for Me ₂ PNR ₂ (R = Me, Et, Pr ⁿ , Pr ⁱ , NSiMe ₃) Borane Adducts at 25 °C				
	chem shift, ppm									
			13 C				coupling const, Hz			
compd	^{11}B	31 _P	$*CH3-P$	N –* C – or $N-Si$ - \star C	$N - C - C -$	N-C-C-*C or $N-C-(CH_3)_2$	$^1J_{\rm PB}$	$^1J_{\rm PC}$	$^{2}J_{\text{PNC}}$	$^{3}J_{\text{PNCC}}$ or $^{3}J_{\rm PNSiC}$
$Me2PN(SiMe3)2$		32.6	19.4(d)	4.7 ^{<i>a</i>} (d)				23.3		8.2
$Me2PN(SiMe3)2 BH3$ Me ₂ PNEt ₂	-31.4	54.4 34.8	19.9(d) 16.7 (d)	5.5^{b} 42.4 (d)	15.4		63.4	40.8 17.6	14.4	<0.5 <0.5
					14.6		69.7	41.3	< 0.5	<0.5
	-38.1	60.6 36.1	14.5(d) 16.6 (d)	40.3 50.8 (d)	22.9	11.6		18.1	13.4	0.5
$Me2PNEt2·BH3$ $Me2PN(Pr2n)$ $Me2PN(Pr2n)·BH3$ $Me2PN(Pr2i)$	-37.9	61.5 7.2	14.4 (d) 16.3(d)	48.2 44.9 (d)	22.2	11.2 23.9(d)	69.8	41.5 16.6	< 0.5 7.6	0.5 7.1

 a^{29} Si = 6.5 ppm; ²*JSi*-P = 4.7 Hz. b^{29} Si = 9.9 ppm; ²*JSi*-P = <0.5 Hz.

tional BH,.THF is added to a solution containing **IV** and **V,** and bisadduct, V, forms.

Equilibrium studies were conducted between -30 and 25 °C on several solutions with $Et_2PNMe_2:BH_3.$ THF mole ratios of $1:\geq 2$. The equilibrium constant values, K_{eq} , were calculated by using ³¹P and ¹¹B NMR integration data. The K_{eq} values at -30, -17, 0, and 25 °C were 35.1, 24.2, 14.7, and 7.5, respectively, where $K_{eq} = [V]/[IV][BH_3]$. The ΔH and ΔS values were calculated to be -16.7 kJ/mol and -39.0 eu $(r = 0.999)$, respectively. All attempts to isolate the bisadduct gave **V** with some contamination due to IV.

The optimum temperature for studying the kinetics of $IV \rightarrow$ V conversion was determined to be -60 °C. At this temperature, the kinetics can be followed by NMR spectroscopy. K_{eq} for the formation of V is so large that only the forward reaction $(IV +$ $BH_3.THF \rightarrow V$ is important. Several solutions with Et₂PNMe₂:BH₃.THF mole ratios of 1: \geq 2 were investigated. In each case, formation of exclusively **IV** was first achieved at -90 \degree C. Then the temperature was raised directly to -60 \degree C for the kinetic studies. **A** second-order kinetics plot of In ([IV]/[BH,]) kinetic studies. A second-order kinetics plot of $\ln \{[IV]/[BH_3]\}$ versus *t* at -60 °C shows excellent linearity (R = 0.998). *k* was determined to be 3.1 $\times 10^{-2}$ L/(mol min). Thus, IV \rightarrow V conversion seems to follow a simple second-order pathway.

In the reactions of Ph_2PNMe_2 with $BH_3.THF$ for $Ph_2PNMe_2:BH_3\n$. THF mole ratios 1:22, only the P-B-bonded monoadduct is observed over the temperature range -90 to 25 °C. The analogous Cl_2PNMe_2/BH_3 . THF reactions also gave only the P-B-bonded adduct. However, the Cl₂PNMe₂ P-B adduct is not stable at room temperature and decomposes upon standing.

A comparison of the K_{eq} values for the mono \rightarrow bis conversion in the $Me₂PNMe₂$ and $E₁PNNMe₂$ cases indicates that the substitution of an Et for a Me group on phosphorus favors formation of the P-B-bonded monoadduct. This substituent effect **on** phosphorus is electronic rather than steric in nature, since similar ΔS values are obtained for both systems, while the ΔH values are significantly different. This apparent inductive effect is further substantiated by the Ph_2PNMe_2 and Cl_2PNMe_2 reaction results. In both cases, only P-B-bonded adducts are obtained when more electron-withdrawing groups are **on** the P. Thus, as expected, the Ph and CI groups appear to be very effective in lowering the basicity of the nitrogen atom.^{1,4}

Series B: Me_2 PNR₂, Where R = Me, Et, Prⁿ, Prⁱ, and SiMe₃. The reactions of $Me₂PNR₂$ with BH₃.THF were carried out to note what effect the variation of the substituent on the nitrogen has on BH₃ bonding selectivity and to compare these results and any subsequent decomposition mechanisms with those obtained previously with the analogous aminoarsines, $Me₂ AsNR₂ (R = Me,$ Et, Prⁿ, and Prⁱ).^{26,27} The reaction of a 1:2.5 mole ratio of $Me₂PNEt₂$ and $BH₃THF$ at -90 °C yields $Me₂PNEt₂BH₃$ (NMR spectral data, Table **11)** and less than 5% of the B-P-N-B-bonded bis species, $Me₂ PNEt₂ BH₃$. Both adducts were stable over the entire temperature range from -90 to 25 "C with no noticeable interconversion occurring between the mono- and bisadducts. The reactions of $Me_2PN(Pr^n)_2$, $Me_2PN(Pr^i)_2$, and $Me₂PN(SiMe₃)₂$ with BH₃. THF gave only the respective P-Bbonded monoadducts (NMR spectral data, Table **11).**

Thus, the extent of bisadduct formation decreases dramatically upon substituting an Et group for a Me group in the NR₂ moiety, with no evidence of bisadduct formation for the $Prⁿ$, $Prⁱ$, and SiMe₃ derivatives. B-N bond formation must be very dependent upon the steric requirements about the nitrogen atom in the parent aminophosphine. This is consistent with the series C results.

For analogous $Me_2PNR_{2'}BH_3$ and $Me_2AsNR_{2'}BH_3^{26,27}$ species, as expected, the P-B-bonded adducts are more thermally stable than the As-B-bonded adducts. N-B-bonded adducts are favored thermodynamically in the aminoarsines, except where $N-B$ bonding is blocked in the sterically hindered $Me₂ AsN(Pr)₂$. Owing to the lability of the As-N bond, all the aminoarsine/ borane adducts are thermally unstable at room temperature. On the other hand, P-B-bonded adducts are favored kinetically and thermodynamically for all the aminophosphines studied, except for $Me₂PNMe₂$ where the bis adduct is favored thermodynamically.

Series C: $(Me_2N)_nPMe_{3-n}$ Where $n = 1-3$. In this series, the successive substitution of the $Me₂N$ moiety for a Me group increases the number of potential N atom base sites, increases the competition between the electron lone pairs on the nitrogens for the available vacant d orbital on phosphorus (P-N $d\pi$ -p π bonding), and changes the molecular conformation. The literature states that both $(Me_2N)_2PMe$ and $(Me_2N)_3P$ react with B_2H_6 to form exclusively the P-B-bonded monoadducts, regardless of the reactant mole ratio.¹⁵⁻¹⁷ Because of the unexpected results with the R_2 PNMe₂ system, the $(Me_2N)_nPMe_{3-n}$ series was reinvestigated to determine what effect the replacement of one and two Me groups by $Me₂N$ moieties has on adduct formation under our reaction conditions. flucts, regardless of the
nexpected results with
 $\frac{1}{n}$ series was reinvesti-
ement of one and two
tt formation under our
ne exclusive formation
 $B(Me)P(NMe₂·BH₃)$ -
mperature reaction of

In contrast to the literature reports,¹⁷ the exclusive formation of the B-P-N-B-bonded bisadduct, $H_3B(Me)P(NMe_2\cdot BH_3)$ -NMe₂ (VI), was observed in the room-temperature reaction of $(Me_2N)_2$ PMe with B_2H_6 (1:1.5 mole ratio). The peaks at -11.7 and -41.2 ppm in the 11 B NMR spectrum were assigned to the $N-BH_3$ and P-BH₃ units, respectively. The ³¹P resonance was observed at 122.4 ppm. The ¹³C NMR spectrum shows signals for the uncoordinated $NMe₂$ at 39.9 ppm and the coordinated NMez at 48.0 and 48.6 ppm. between the sults with
 Ie_{3-n} series was reinvesti-

lacement of one and two

duct formation under our

⁷ the exclusive formation

¹₃B(Me)P(NMe₂·BH₃)-

temperature reaction of

tio). The peaks at -1,..?

um w

or ω , ω is tates that both $(Me_2N)_2$
to ω , ω or ω only the P-B
tanding.
the R₂PNMe₂ system, the R₂PNMe₂ system, the R₂PNMe₂ system, the sub-
formation gated to determine what
at the sub-
formati The reaction of a 1:3 mole ratio of $(Me_2N)_2PMe$ and $BH_3.THF$ was studied from -90 to 25 °C. At -90 °C, the NMR spectra indicated the formation of $(Me_2N)_2PMe-BH_3$ (VII) and VI (NMR spectral data, Table **111).** The relative amounts of **VI** and VI1 were temperature and time dependent. With increasing temperature and/or time, the formation of VI is favored. At -90 ^oC, the ¹³C NMR spectrum indicates restricted rotation about the P–C and N–C bonds for the P–Me, BPNMe₂, and $PMMe₂$ groups of **VI.** Upon increase of the temperature to -70 *OC,* the ¹³C NMR resonance is a sharp singlet for the PMe group. However, both $Me₂N$ moieties show \overline{Me} group nonequivalence. When the temperature is raised, there is conformational averaging

Table III. Multinuclear NMR Data for $(Me_2N)_nPMe_{3-n}$ $(n = 1-3)$ and Resulting Borane Adducts at 25 °C

chemical shift, mm

^{*a*} Data at -70 °C.

for the uncoordinated $NMe₂$ group until coalescence is observed at -20 *OC.* Above -20 *OC* rapid conformational averaging **occurs** as indicated by line-width narrowing of the singlet with increasing temperature. However, the nonequivalence of the two carbon methyls of the coordinated NMe₂ moiety remains up to room temperature, suggesting conformationally restricted motion. The 11 B NMR spectra show no evidence of BH₃ exchange between the two nitrogen atoms. No evidence was noted for the formation of a BH, trisadduct.

The reaction of $(Me_2N)_3P$ with BH₃·THF (1:4 mole ratio) yielded only the P-B-bonded adduct $(Me_2N)_3P\cdot BH_3$ (NMR spectral data, Table III), as reported previously.²² The ¹¹B and ³¹P NMR spectra indicate trace formation of a B-N-bonded monoadduct.

Thus, for the $(Me_2N)_nPMe_{3-n}$ series, when $n = 1$ and 2, P-B monoadduct formation is favored kinetically, but B-P-N-B bisadduct formation is favored thermodynamically. When $n = 2$, conformationally restricted motion suggests steric crowdedness at the NMe₂ moieties. This may explain why only one nitrogen atom is accessible to $BH₃$ coordination and a $BH₃$ trisadduct is not formed. When $n = 3$, the kinetically and thermodynamically stable adduct is the P-B-bonded monocompound. The replacement of the last Me group with a $NMe₂$ group may create sufficient steric constraints at the N atoms to preclude the formation of an N-B adduct.

Me2PNMe2/Me2AsNMe2/BH3.THF Competition Study. The reactions of solutions containing equimolar ratios of $Me₂PNMe₂$ and $Me₂ As NMe₂ with varying mole ratios of $BH₃$.$ studied to determine the relative basicity of the P-N and As-N bonds toward BH₃. At -90 °C a reaction system containing a 1:1:0.8 mole ratio of Me₂PNMe₂:Me₂AsNMe₂:BH₃.THF gave a mixture of Me₂PNMe₂.BH₃ (I), Me₂AsNMe₂.BH₃ (VIII), and unreacted aminoarsine and aminophosphine. The NMR spectra indicated surprisingly a greater concentration of **VI11** than of I (1.4:l) and no evidence for the formation of the bisadduct, **11.** When the relative mole ratios were changed to 1:1:1.8, the aminoarsine was preferentially consumed with **VI11** and **I** being formed at -90 °C in a 2:1 mole ratio. No significant change in the relative amounts of **VI11** and **I** occurred with increasing temperature. Solution is a show no evidence of BH₃ exchange between

show no evidence of BH₃ exchange between

toms. No evidence was noted for the formation
 $\mathbf{F} = \mathbf{B}$. Mo₂NNM
 $\mathbf{F} = \mathbf{B}$. The $\mathbf{F} = \mathbf{B}$ and
 \math

Due to these unexpected **results, we** studied the reactions of $BH₃THF$ toward a series of solutions containing competing monoand/or bis(Lewis base) (group **15)** site compounds. All reaction systems containing eguimolar amounts (1 mmol) of each reactant were studied in toluene- d_8 at -20 °C to minimize interfering adduct decomposition reactions.²⁷ The nature and composition of the reaction mixtures were determined by multinuclear NMR spectroscopy. The resulting products and product mole ratios for each system are summarized in Table **IV.** These data indicate the following order of reactivity of these Lewis bases toward BH, in displacing THF from BH_3 THF in toluene- d_8 solutions:

 $Me₃N \simeq Me₂AsNMe₂ > Me₂PNMe₂ \simeq Me₃P > Me₃As$

Such an ordering follows that expected for $Me₃E$ (E = N, P, As), on the basis of the relative electronegativities of the respective

group **15** atoms. This is in contrast to the order of base strength, i.e. $R_3P > R_3N > R_3As$, toward BH₃ determined from displacement reactions.^{29,30} Substitution of Me₂As for the Me group in Me₃N apparently produces no change in nitrogen basicity. Thus, the aminoarsine As and N atoms compete independently for $BH₃$ with the As-N base pair behaving as an amine nitrogen in displacing THF from BH_3 THF. This is consistent with the absence or substantially diminished importance of $d\pi$ -p π bonding in the As-N bond due to the large size of As and diffuseness of its d orbitals.

 $Me₂PNMe₂$ is slightly more effective than $Me₃P$ in competing for $BH₃$ where the phosphorus atoms behave as the Lewis base sites. Substitution of the less electronegative Me moiety for the $Me₂N$ in $Me₂PNMe₂$ to give $Me₃P$ (theoretical electronegativities: Me, 2.27 ; $Me₂N$, 2.40)^{31,32} should enhance the basicity of the P atom. On the other hand, $d\pi$ -p π P-N bonding considerations^{1,2,14-17} suggest that the aminophosphine P and N atoms compete cooperatively through the P-N bond with this base pair behaving as a phosphine phosphorus atom. Thus, our results suggest that $d\pi$ -p π bonding is an important factor and it counters the group electronegativity effect in the intermolecular, aminophosphine/phosphine competition toward BH₃ in displacing THF. the order of oase strength,
H₃ determined from dis-
of Me₂As for the Me group
ange in nitrogen basicity.
ms compete independently
aving as an amine nitrogen
This is consistent with the
portance of $d\pi$ -p π bonding

The comparable base strengths of $Me₃N$ and $Me₂PNMe₂$ toward BH₃ were also investigated by using a displacement reaction involving an equimolar mixture of $Me₃N·BH₃$ and $Me₂PNMe₂$. A very slow reaction occurred. After **4** days at room temperature

a 1:2 molar ratio of Me₃N.BH₃:Me₂PNMe₂.BH₃ was observed. No displacement reaction occurred between Me₂PNMe₂ and

-
- **(31) Huheey, J. E.** *J. Phys. Chem.* **1965,69, 3284. (32) Mann, B. E.** *J. Chem. Sac., Perkin Trans. 2* **1972, 30.**

⁽²⁹⁾ Parshall, *G.* **W. In** *The Chemistry of Boron and Its Compounds;* **Muetterties,** E., Ed.; **Wiley: New York, 1967; pp 617-667.**

⁽³⁰⁾ Coyle, T. D.; Stone, F. G. A. In *Progress in Boron Chemistry;* **Steinberg, H., McCloskey, A. L.,** Eds.; **Macmillan: New York, 1964; Vol 1, pp 83-160.**

 $Me₃P·BH₃$ over an extended period of time. Thus, under the conditions of our competition studies, displacement reactions are not important.

Experimental Section

All experimental manipulations were carried out in a standard high- vacuum line and a Vacuum Atmosphere HE-43 Dri-Lab equipped with an He-493 Dri-Train. The NMR data were obtained by using a Nicolet 300-MHz multinuclear Fourier Transform NMR Spectrometer operating at 75.5 MHz for ¹³C, 300.1 MHz for ¹H, 121.5 MHz for ³¹P, 96.3 MHz for 11 B, and 59.6 MHz for 29 Si. The 11 B and ^{31}P chemical shift values were measured relative to external BF_3 ·OEt₂ and 85% H_3PO_4 , respectively, high-field shifts being taken as negative. δ_{H} , δ_{C} , and δ_{Si} were measured by using Me₄Si as an internal standard. THF-d₈ and toluene-d, were purchased from Aldrich and stored over molecular sieves (note: use of fresh THF- d_8 is recommended). Low-resolution EI-MS data were recorded **on** a HP 5986A GC/MS/DS mass spectrometer operated at 70 eV, 2400-V electron multiplier, and with a direct-insert probe. The source temperature was maintained at 200 "C, and the probe temperature, at 25 "C.

Diborane(6) was synthesized by the reaction of N aBH₄ and I_2 in $(MeOCH₂CH₂)₂O$ and purified by trap-to-trap fractionation.³³ The aminophosphines, R_2PNR_2 , were synthesized by two general methods: (a) the reaction of $Me₂NPCl₂$ with $EtMgX³⁴⁻³⁶$ and (b) the reaction of Me₂PCI with the corresponding secondary amine, $R'_2NH (R' = Me, Et,$ $Prⁿ$, $Prⁱ$).³⁵ Method b was also used for the preparation of $Ph₂PNMe₂$. $(Me₃Si)₂NPMe₂$ was synthesized by reacting $(Me₃Si)₂NLi$ with PCl₃ and subsequently using MeMgBr via a Grignard reaction.³⁷ Me₂AsNMe₂ was synthesized by the aminolysis of Me₂AsCl.³⁸ The reaction of Me₃A1 with $As₂O₃$ yielded $Me₃As.³⁹$

(33) Freeguard, G. F.; Long, L. M. *Chem. Ind.* **1965,** 471.

- (34) Burg, A. B.; Slota. P. J.. Jr. *J. Am. Chem.* Sot. **1958,** *80,* 1107.
- (35) Mak, L. *Helv. Chim. Acta* **1964,47,** 2129.
- (36) King, R. B.; Sadanani, N. D. *Synth. React. Inorg. Met.-Org. Chem.* **1985,** *15,* 149.
- (37) Neilson, R. H.; Wisian-Neilson, P. *Inorg. Chem.* **1982, 21,** 3568.
- (38) Moedritzer, K. *Chem. Ber.* **1959,** *92,* 2637.
- (39) Stamm, W.; Breindel, A. *Angew. Chem.* **1964,** *76,* 99.

3345

PNMe₂·BH₃ (I) and H₃BP(\overline{NMe}_2 ·BH₃)Me₂ (II) were synthes-

previously reported.²⁵ Satisfactory elemental analyses of II (mp)

(mp) were obtained from Schwarzkopf Microanalytical laboratory.

C, 36.92; Me_2 PNMe₂.BH₃ (I) and H₃BP(NMe_2 ·BH₃)Me₂ (II) were synthesized as previously reported.25 Satisfactory elemental analyses of **I1** (mp 117 °C) were obtained from Schwarzkopf Microanalytical laboratory. Calcd: C, 36.23; H, 13.74; B, 16.29. Found: C, 36.92; H, 13.57; B, 16.96. The EI-MS data (greater than 20% abundance) of **I1** suggest the following peak assignments {[species], *m/z* (relative abundance)}: $[Me₂PNMe₂·2BH₃]⁺$, 133 (22); $[Me₂NPH₃]⁺$, 78 (100); $[Me₂NPH₂]^{**}$, 77 (22); $[Me₂PB]^{•+}$, 72 (21); $[Me₂PH₂]⁺$, 63 (88); $[Me₂PH]^{•+}$, 62 (54); $[Me₂NBH₂]$ ⁺⁺, 57 (29); $[Me₂NBH]⁺$, 56 (52); $[MePH]⁺$, 47 (25); $Me₂NH$]**, 45 (45); [Me₂N]*, 44 (47).

All aminophosphines were purified by distillation on a spinning-band column: Me_2PNMe_2 (100 °C), Me_2PNEt_2 (136–138 °C), $\text{Me}_2\text{PNPr}^n_2$ (172-174 °C), Me₂PNPr¹₂ (166 °C), (Me₃Si)₂NPMe₂ (55-60 °C/4 Torr), Et₂PNMe₂ (86 °C/146 Torr), Ph₂PNMe₂ (96 °C/0.1 Torr), $Me₂NPCl₂$ (150 °C). $(Me₂N)₂PMe$, $(Me₂N)₃P$, and $Me₃P$ were obtained from Strem Chemicals Co., and Me₃N was obtained from Matheson. The purity of these compounds was checked by ${}^{1}H$ and ${}^{13}C$ NMR spectroscopy.

 $Me₃N·BH₃$, $Me₃P·BH₃$, and $Me₃As·BH₃$ were synthesized by the direct reaction of B_2H_6 with the respective Lewis base in the vacuum line. The purity of these adducts was determined from their ^{11}B , ^{13}C , and ^{31}P NMR spectra in toluene- d_8 at room temperature (all δ values in ppm): $Me₃N·BH₃$ [δ_{B} , -7.53; δ_{C} , 53.54], Me₃P·BH₃ [δ_{B} , 36.71 (d), ¹J_{PB} = 58.0 Hz; δ_c , 12.38 (d), ¹J_{PC} = 36.7 Hz; δ_p , -1.28 (q)], Me₃As-BH₃ [δ_p , -33.18; *6c,* 8.481.

General Reaction of R₂PNR[']₂ with BH₃·THF. A Pyrex NMR tube (10) mm **X** 22.5 cm) equipped with a greaseless vacuum adapter and stopcock containing 3.0 mL of toluene-d₈, 0.5 mL of THF-d₈, and 1 drop of TMS was degassed on the vacuum line by using freeze-and-thaw cycles. The appropriate amount of B_2H_6 was condensed into it at -196 °C. The reaction mixture was allowed to warm to 20 "C to ensure complete formation of BH₃·THF. The NMR tube was recooled to -196 °C, and the appropriate amount of $R_2PNR'2$ was condensed (or added by using an addition tube) into it. The NMR tube was sealed, agitated at -95 °C (toluene/liquid N_2 slush), and inserted into the precooled probe of the NMR spectrometer. The ¹H, ¹¹B, ¹³C, and ³¹P NMR spectra of the reaction mixture were recorded at different temperatures. The NMR data for all the adducts formed in these reactions are listed in Tables **1-111.**

> Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843

Insertion of Nitriles into the Nitrogen-Chlorine Bond. Synthesis of Polyfluoro- and (Perfluoroalkyl) tetrazanes

Ghulam Sarwar, Robert L. Kirchmeier,* and Jean'ne M. Shreeve*

Received March **7,** 1989

Photolysis of CF₃N(CF₂CFXCl)Cl with ClCN leads to CF₃N(CF₂CFXCl)N=CCl₂ (X = Cl, F). Similarly, RCN (R = CF₃, Cl) with $CF_3(C_2F_5)$ NCI forms $CF_3(C_2F_5)$ NN=C(Cl)R. Chlorine fluoride adds readily to the carbon-nitrogen double bond in $CF_3(C_2F_5)NN=\tilde{C}(C_1)R$ to give $CF_3(\tilde{C}_2F_5)NN(C_1)CC1FR'$ $(R' = F, CF_3)$. While photolysis of $CF_3(C_2F_5)NN(C_1)CF_2Cl$ results in a tetrazane, $[CF_3(C_2F_5)NNCF_2Cl]_2$, under analogous conditions chlorine is eliminated from $CF_3(C_2F_5)NN(Cl)CClFCF_3$ to form $CF_3(C_2F_3)NN=CFCF_3$. Addition of chlorine fluoride to the latter compound followed by photolysis produces a tetrazane with perfluorinated alkyl substituents, $[CF_3(C_2F_5)NNCF_2CF_3]_2$. With CsF, $CF_3(C_2F_5)NN=CCl_2$ gives a rearranged perfluoro dimer, $CF_3(C_2F_5)NN=CFN(CF_3)N(C_2F_5)CF_3$. Photolysis of the product obtained after reacting the latter with CIF results in
a highly substituted tetrazane, $[CF_3(C_2F_5)NN(CF_3)CF_2NN(C_2F_5)CF_3]_2$. These highly catenated nitrog

Introduction

The study of the chemistry of nitrogen-halogen bonds in fluorinated compounds has been ongoing for nearly 35 years, but heretofore the reactivity of these bonds has not been utilized in the preparation of fluorinated, highly catenated nitrogen-containing compounds. It has been shown that both fluorinated and nonfluorinated olefins can be inserted with ease into the nitrogenhalogen bond, e.g., hexafluoropropane or ethylene into the nitrogen-halogen bond of bromo- or iodobis(trifluoromethy1) amine¹⁻⁵ or olefins into chlorobis(trifluoromethyl)amine.⁶⁻⁷ More

(2) Alexander, E. *S.;* Haszeldine, R. N.; Newlands, **M.** J.; Tipping, **A.** E. *J. Chem.* **SOC.** *C* **1968,** 796.

recently we reported the stepwise insertion of $CF_2=CFX$ ($X =$ Cl, F) into the N-Cl bonds of dichloro(perfluoroalkyl)amines. 8 Insertions of cyanogen chloride and/or trifluoroacetonitrile into nitrogen-hlorine bonds, e.g., in **chlorobis(trifluoromethy1)amine:**

- (3) Emeltus, H. J.; Tattershall, B. **W.** *2. Anorg. Allg. Chem.* **1964, 327,** 147.
- **(4)** Haszeldine, R. N.; Tipping, A. E. *J. Chem.* **SOC. 1965,** 6141. **(5)** Barlow, **M.** G.; Fleming, *G.* L.; Haszeldine, R. N.; Tipping, A. E. *J.*
- *Chem. SOC. C* **1971,** 2744.
- (6) Fleming, G. L.; Haszeldine, R. N.; Tipping, **A.** E. *J. Chem.* **Soc.** *C* **1971,** 3829.
- (7) Fleming, **G.** L.; Haszeldine, R. N.; Tipping, A. E. *f. Chem. Soc. C* **1971, 3833.**
- **(8)** Sarwar, *G.;* Kirchmeier, R. L.; Shreeve, J. **M.** *Inorg. Chem.* **1989, 28,** 2187.

⁽¹⁾ Young, **J.** A,; Tsoukalas, *S.* N.; Dresdner, R. D. *f. Am. Chem. Soc.* **1958,80,** 3604.