Volume 28

Number 21

October 18, 1989

# **Inorganic Chemistry**

© Copyright 1989 by the American Chemical Society

## Communications

### A Simple Route to the First 1,3-Diaza-2-phosphetine Cations

Although neutral unsaturated four-membered phosphorus heterocycles are attracting increasing interest<sup>1</sup> the corresponding cationic species appear to be rather little known. Up to now, only a few  $\sigma^2$ -phosphorus species (I) have been prepared and fully



characterized.<sup>2</sup> Therefore, in connection with our investigations on the reactivity of chlorophosphenium salts<sup>3</sup> we are interested in whether a general synthesis of unsaturated cyclic  $\sigma^3$ -phosphorus cations could be developed.

We wish to report now the preparation of 1,3-diaza-2-phosphetine cations of compounds 3a-f-i.e. stabilized cyclic carbenium species-and the X-ray structure determination of one of them, namely the 1,3-bis(trimethylsilyl)-4-phenyl-2-(diisopropylamino)-1,3-diaza-2-phosphetine cation of 3a.

Silylated amidines are versatile reagents toward chlorinated phosphorus compounds, leading either to hexacoordinated phosphorus zwitterionic species<sup>4</sup> or to di- or tricyclic derivatives, as recently demonstrated.5

The cations of compounds 3a-f are prepared in good yield by treating the chlorophosphenium ions 1-generated in situ by adding (trimethylsilyl)trifluoromethanesulfonate to (diisopropylamino)dichlorophosphine-with N,N'-bis- or N,N,N'-tris-(trimethylsilyl) amidines 2 in dichloromethane<sup>6</sup> (Scheme I).

The constitution of the products 3 is substantiated in particular by the position of the signal and the magnitude of the coupling

- Sicard, G.; Baceiredo, A.; Bertrand, G.; Majoral, J. P. Angew. Chem. (1)1984, 96, 450; Angew. Chem., Int. Ed. Engl. 1984, 23, 459. Charrier, C.; Maigrot, N.; Mathey, F.; Robert, F.; Jeannin, Y. Organometallics 1986, 5, 623. Svara, J.; Fluck, E.; Riffel, H. Z. Naturforsch. 1985, 40b, 1258. Keller, H.; Maas, G.; Regitz, M. Tetrahedron Lett. 1986, 17, 1903. Cowley, A. H.; Hall, S. W.; Nunn, C. M.; Power, J. M. Angew.
- Chem. 1988, 100, 874; Angew. Chem., Int. Ed. Engl. 1988, 27, 838.
  (a) Veith, M.; Bertsch, B.; Huch, V. Z. Anorg. Allg. Chem. 1988, 559, 73.
  (b) Niecke, E.; Kröher, R. Angew. Chem. 1976, 88, 758; Angew Chem., Int. Ed. Engl. 1976, 15, 692.
  (c) Cowley, A. H.; Lattman, M.; Wilburn, J. C. Inorg. Chem. 1981, 20, 9916.
  Keat, R.; Thompson, D. C. L. Chem. 2041, 2042, 2042. (2) G. J. Chem. Soc., Dalton Trans. 1978, 634. Scherer, O. J.; Schnabl, G. Chem. Ber. 1976, 109, 2996.
- Mazières, M. R.; Roques, C.; Majoral, J. P.; Sanchez, M.; Wolf, R. Tetrahedron 1987, 9, 2109. Roques, C.; Mazières, M. R.; Majoral, J. P.; Sanchez, M. Tetrahedron Lett. 1988, 29, 4547. Roques, C.; Mazières, M. R.; Majoral, J. P.; Sanchez, M.; Wolf, R. Presented at the Euchem Conference, PSIBLOCS, Palaiseau, France, Aug 22-26, 1988
- (4) Kalchenko, V. I.; Negrebetskii, V. V.; Roudiy, R. B.; Markowski, L. N.
- Zh. Obshch. Khim. 1988, 58, 1216. Roesky, H. W.; Scholz, U.; Schmidpeter, A.; Karaghiosoff, K.; Shel-drick, W. S. Chem. Ber. 1988, 121, 1681. (5)

Scheme I



constant for the intracyclic carbon atom in the <sup>13</sup>C NMR spectra  $(\delta = 173.76 - 179.50 \text{ ppm}, {}^{2}J_{CP} = 15.00 - 20.65 \text{ Hz})$ . The following spectroscopic data also suggest structure 3. The <sup>31</sup>P chemical shift (105.9–112.3 ppm) is in good agreement with a  $\lambda^3$ -phosphorus atom and not with a cationic  $\lambda^2$ , which would give signals around +300 ppm.<sup>7</sup> Characteristic C=N and P-N vibrational frequencies were found by infrared spectroscopy: 1640-1665 and 890-910 cm<sup>-1</sup>, respectively.

0020-1669/89/1328-3931\$01.50/0 © 1989 American Chemical Society

### 3932 Inorganic Chemistry, Vol. 28, No. 21, 1989

The structure of **3a** has been clearly established by a singlecrystal X-ray diffraction study<sup>8</sup> and is illustrated in Figure 1. The four-membered ring is planar. Since the two intracyclic carbon-nitrogen bond lengths are equal (1.35 (1), 1.33 (1) Å) within experimental error and shorter than usual (normal C—N and C—N bonds ~ 1.50 and 1.25 Å, respectively), it is clear that the unsaturation is delocalized along the N-C-N fragment. The result of the delocalization is the opening of the N-C-N angle (106.8°) and therefore the pinching of the ring around phosphorus: to our knowledge, the intracyclic N-P-N angle (73.2°) is the smallest one reported for a four-membered phosphorus heterocycle.

(6) Procedure for 3a: A mixture of (diisopropylamino)dichlorophosphine (0.487 g, 2.41 mmol) and (trimethylsilyl)trifluoromethanesulfonate (0.536 g, 2.41 mmol) in dichloromethane (15 mL) was treated via syringe with a dichloromethane solution of bis(silyl) amidine 2a at -70 °C. After 1 h the resulting yellow solution was concentrated, and crystals of 3a were obtained at -20 °C. Recrystallization from dichloromethane afforded pure 3a as yellow crystals sensitive to hydrolysis: yield 92%; mp 88-90 °C. 3a: overall yield 92%;  $^{31}$ P NMR (CD<sub>2</sub>Cl<sub>2</sub>) yield 92%; mp 88–90 °C. 3a: overall yield 92%; <sup>31</sup>P NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  111.0; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  0.17 (s, 18 H, Me<sub>3</sub>Si), 1.23 (d, <sup>3</sup><sub>J</sub><sub>HH</sub> = 6.63 Hz, 6 H, Me<sub>2</sub>C), 1.42 (d, <sup>3</sup><sub>J</sub><sub>HH</sub> = 6.79 Hz, 6 H, Me<sub>2</sub>C), 3.65 (m, 2 H, CHMe<sub>2</sub>), 7.6 (m, 5 H, Ph); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  0.37 (s, Me<sub>3</sub>Si), 21.78 (s, CHMe<sub>2</sub>), 27.18 (d, <sup>3</sup>J<sub>CP</sub> = 12.76 Hz, CHMe<sub>2</sub>), 47.51 (d, <sup>2</sup>J<sub>CP</sub> = 29.88 Hz, CHMe<sub>2</sub>), 48.01 (d, <sup>2</sup>J<sub>CP</sub> = 7.9 Hz, CHMe<sub>2</sub>), 121.57 (q, <sup>1</sup>J<sub>CF</sub> = 321 Hz, CF<sub>3</sub>SO<sub>3</sub>), 129.36 (d, <sup>3</sup>J<sub>CP</sub> = 2.99, 1 C), 127.98 (d, <sup>4</sup>J<sub>CP</sub> = 2.55 Hz, 2 C) 129.8 (s, 2 C) and 133.6 (s, 1 C) (C<sub>6</sub>H<sub>4</sub>), 179.5 (d, <sup>2</sup>J<sub>CP</sub> = 15.6 Hz, C=N); <sup>30</sup>Si NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  14.8 (b s); <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  -0.2 (s, CF<sub>3</sub>SO<sub>3</sub>). TR (CD<sub>2</sub>Cl<sub>2</sub>) (C=N). Anal = 2.55 Hz, 2 C) 129.8 (s, 2 C) and 133.6 (s, 1 C) (C<sub>6</sub>H<sub>4</sub>), 179.5 (d, <sup>2</sup>J<sub>CP</sub> = 15.6 Hz, C=N); <sup>29</sup>Si NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 14.8 (b s); <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ -0.2 (s, CF<sub>5</sub>SO<sub>3</sub><sup>-</sup>); IR (CD<sub>2</sub>Cl<sub>2</sub>) 1656 cm<sup>-1</sup> (C=N). Anal. Calcd for C<sub>20</sub>H<sub>37</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>PSSi<sub>2</sub>: C, 44.18; H, 6.86; N, 7.73. Found: C, 44.07; H, 6.84; N, 7.67. 3b: 95% overall yield; <sup>31</sup>P NMR (C<sub>6</sub>D<sub>6</sub>) δ 112.3; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 0.06 (s, 18 H, *Me*<sub>3</sub>Si), 1.12 (d, <sup>3</sup>J<sub>HH</sub> = 6.70 Hz, 6 H, *Me*<sub>2</sub>C), 1.31 (d, <sup>3</sup>J<sub>HH</sub> = 6.7 Hz, 2 H, *CM*e<sub>2</sub>), 7.3 (m, 4 H, C<sub>6</sub>H<sub>4</sub>); <sup>13</sup>C NMR (C<sub>6</sub>H<sub>6</sub>) δ 0.03 (s, *Me*<sub>3</sub>Si), 21.28 (s, *Me*<sub>2</sub>CH), 21.54 (s, *Me*-C<sub>6</sub>H<sub>4</sub>), 3.50 (m, <sup>3</sup>J<sub>HH</sub> = 6.7 Hz, 2 H, *CH*Me<sub>2</sub>), 120.73 (m, 4 H, C<sub>6</sub>H<sub>4</sub>); <sup>13</sup>C NMR (C<sub>6</sub>H<sub>6</sub>) δ 0.03 (s, *Me*<sub>3</sub>Si), 21.28 (s, *Me*<sub>2</sub>CH), 21.54 (s, *Me*-C<sub>6</sub>H<sub>4</sub>), 26.70 (d, <sup>3</sup>J<sub>CP</sub> = 7.5 Hz, *CH*Me<sub>2</sub>), 120.73 (q, <sup>1</sup>J<sub>CP</sub> = 30.2 Hz, *CH*Me<sub>2</sub>), 47.27 (d, <sup>2</sup>J<sub>CP</sub> = 7.5 Hz, *CH*Me<sub>2</sub>), 120.73 (q, <sup>1</sup>J<sub>CP</sub> = 30.274 Hz, *CF*<sub>3</sub>SO<sub>3</sub>), 125.7 (s), 129.8 (s), 143.6 (s) (C<sub>6</sub>H<sub>4</sub>), 179.27 (d, <sup>2</sup>J<sub>CP</sub> = 15.09 Hz, *C*=N); <sup>39</sup>Si NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 14.86 (b s); <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ -0.19 (s, CF<sub>3</sub>SO<sub>3</sub>); IR (CD<sub>2</sub>Cl<sub>2</sub>) 1650 cm<sup>-1</sup> (*ν*C=N). Anal. Calcd for C<sub>21</sub>H<sub>39</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>PSSi<sub>2</sub>: C, 45.22; H, 7.05; N, 7.53. Found: C, 45.07; H, 7.21; N, 7.42. 3e: 92% overall yield; <sup>31</sup>P NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 111.6; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 0.20 (s, 18 H, *Me*<sub>5</sub>Si), 1.22 (t, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, 3 H, *Me*CH<sub>2</sub>N), 12.5 (q, <sup>3</sup>J<sub>CP</sub> = 43.14, 2(H<sub>2</sub>, 2(H<sub>2</sub>), 3.43 (dq, <sup>3</sup>J<sub>HP</sub> = 15.7 Hz, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, 2 H, CH<sub>2</sub>), 7.60 (m, 5 H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 0.16 (s, *Me*<sub>3</sub>Si), 13.77 (s, *Me*CH2N), 15.37 (d, <sup>3</sup>J<sub>CP</sub> = 7.12 Hz, *Me*-CH<sub>2</sub>N), 38.89 (d, <sup>3</sup>J<sub>CP</sub> = 8.3 Hz, CH<sub>2</sub>N), 142.15 (s), 129.35 (d, <sup>3</sup>J<sub>CP</sub> = 2.70 Hz), 129.73 (s), 133.62 (s) (C<sub>6</sub>H<sub>4</sub>), 179.2 (d, <sup>2</sup>J<sub>CP</sub> = 15.0 Hz, C=N); <sup>39</sup>Si NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 14.40 (b s); <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 0.25 (s, CF<sub>3</sub>SO<sub>3</sub>); IR (CD<sub>2</sub>Cl<sub>2</sub>) δ 14.40 (b s); <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 0.25 (s, CF<sub>3</sub>SO<sub>3</sub>); IR (CD<sub>2</sub>Cl<sub>2</sub>) δ 14.40 (b s); <sup>19</sup>F NMR Mark (CDCl<sub>3</sub>) 6.19 (H, *P*(4)) 1.35 (d, <sup>3</sup>J<sub>HH</sub> = 6.5 Hz, 6 H, *Me*<sub>2</sub>CH), 3.60 (m, 2 H, Me<sub>2</sub>CH), 7.65 (m, 5 H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ 0.27 (d, <sup>3</sup>J<sub>CP</sub> = 2 Hz, *Me*<sub>2</sub>Si), 20.89 (s, *Me*<sub>2</sub>CH), 21.63 (s, *Me*<sub>2</sub>CH), 26.40 (d, <sup>3</sup>J<sub>CP</sub> = 12.49 Hz, *Me*<sub>2</sub>CH), 26.70 (d, <sup>3</sup>J<sub>CP</sub> = 1.30 Hz, *Me*<sub>2</sub>CH), 30.14 (d, <sup>3</sup>J<sub>CP</sub> = 3.63 Hz, *Me*<sub>3</sub>C), 46.99 (d, <sup>2</sup>J<sub>CP</sub> = 31.43 Hz, Me<sub>2</sub>CH), 120.73 (g, <sup>3</sup>J<sub>CF</sub> = 320.7 Hz, *C*F<sub>3</sub>SO<sub>3</sub>), 174.47 (d, <sup>1</sup>J<sub>CP</sub> = 15.31 Hz, C=N); <sup>35</sup>Si NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 13.70 (d, <sup>3</sup>J<sub>SH</sub> = 3.05 Hz, Me<sub>3</sub>Si); <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ -0.15 (s, CF<sub>3</sub>SO<sub>3</sub>); IR (CD<sub>2</sub>Cl<sub>2</sub>) 1652 cm<sup>-1</sup> ( $\nu_{C-N}$ ), Anal. Calcd for C<sub>21</sub>H<sub>37</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>PSSi<sub>2</sub>: C, 47.80; H, 7.07; N, 7.96. Found: C, 47.97; H, 7.26; N, 7.89. 3e: 86% overall yield; <sup>31</sup>P NMR (CDCl<sub>3</sub>) δ 107.95; <sup>3</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 0.06 (s, 18 H, Me<sub>5</sub>Si), 1.34 (m, 12 H, Me<sub>2</sub>C), 1.54 (s, 6 H, (CH<sub>2</sub>)<sub>3</sub>), 2.26 (s, 3 H, *Me*C<sub>6</sub>H<sub>4</sub>), 7.20 (m, 4 H, C<sub>6</sub>H<sub>4</sub>); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>3</sub>) δ 0.06 (s, 18 H, Me<sub>5</sub>Si), 16.24 (s, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 21.56 (s, *Me*C<sub>6</sub>H<sub>4</sub>), 29.69 (s, *Me*C<), 34.05 (d, <sup>3</sup>J<sub>CH</sub> = 26.50 Hz, *Me*C<), 40.20 (d, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, <sup>3</sup>J<sub>CP</sub> = 3.05 Hz), 61.66 (d, <sup>3</sup>J<sub>CP</sub> = 332.07 Hz, CF<sub>3</sub>SO<sub>3</sub>), 125.81 (s), 128.82 (s), 129.93 (s), 144.30 (s) (C<sub>6</sub>H<sub>4</sub>), 173.76 (d, <sup>2</sup>J<sub>CP</sub> = 20.65 Hz, C=N); <sup>32</sup>Si NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 1.660 (c<sup>-11</sup> ( $\nu_{C-N}$ ). Anal. Calcd for C<sub>2</sub>H<sub>43</sub>J<sub>5</sub>N<sub>3</sub>O<sub>3</sub>PSSi<sub>2</sub>: C MR (CD<sub>2</sub>Cl<sub>3</sub>) δ 0.66 (s, *Me*<sub>2</sub>C<sub>3</sub>), 125.81 (s), 128.82 (s), 129.93 (s), 144.30 (s) (C<sub>6</sub>H<sub>4</sub>), 173.76 (d, <sup>2</sup>J<sub>CP</sub> = 20.65 Hz, C=N); <sup>32</sup>Si NMR (CD<sub>2</sub>Cl<sub>3</sub>) δ 0.66 (c (b, s); <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ -0.05 (s, CF<sub>3</sub>SO<sub>3</sub>); IR (CD<sub>2</sub>Cl<sub>3</sub>) δ 0.66 (s, *Me*<sub>5</sub>Si), 21.84 (s, CHMe<sub>2</sub>), 2.7.26 (d, <sup>3</sup>J<sub>CP</sub> = 3 Hz, CHMe<sub>2</sub>), 47.61 (d, <sup>3</sup>J<sub>CP</sub> = 39.6 Hz, CHMe<sub>2</sub>), 2.7.26 (d, <sup>3</sup>J<sub>CP</sub> = 3 Hz, CHMe<sub>2</sub>), 47.61 (d, <sup>2</sup>J<sub>CP</sub> = 39.6 Hz, CHMe<sub>2</sub>), 7.26 (d, <sup>3</sup>J<sub>CP</sub> = 3 Hz, CHMe<sub>2</sub>), 12.99 (q, <sup>1</sup>J<sub>CF</sub> = 320 Hz, CF<sub>3</sub>SO<sub>3</sub>); IR (CD<sub>2</sub>Cl<sub>2</sub>) 655 cm<sup>-1</sup> ( $\nu$ C=N). Anal. Calcd for C<sub>3</sub>H<sub>66</sub>F<sub>6</sub>N<sub>5</sub>P<sub>3</sub>S<sub>2</sub>Si<sub>4</sub>: C, 40.46; H, 6.79; N, 8.33. Fou



Figure 1. Crystal structure of 3a. Selected bond lengths (Å) and bond angles (deg):  $P_1-N_1 = 1.79$  (1),  $P_1-N_2 = 1.788$  (9),  $P_1-N_3 = 1.64$  (2),  $C_1-N_1 = 1.33$  (1),  $C_1-N_2 = 1.35$  (1);  $N_1P_1N_2 = 73.2$  (5),  $C_1N_1P_1 = 89.8$  (6),  $C_1N_2P_1 = 89.5$  (6),  $N_1P_1N_3 = 107.1$  (5),  $N_2P_1N_3 = 107.3$  (5),  $N_1C_1N_2 = 106.1$  (9).



The phosphorus-nitrogen distances also reflect the cationic structure of 3a: the P-N bonds are lengthened from 1.64 (2) (exocyclic P-N) to 1.788 (9) and 1.79 (1) Å (endocyclic P-N) and thus lie at the upper limit of known P-N single-bond lengths.

Preliminary investigations have shown that the reaction of chlorophosphenium salts with silylated amino compounds of general formula Me<sub>3</sub>Si-N-Y;, in which Y is a donor atom, might be a general way for preparing new cyclic cations. Such an observation is exemplified by the reaction of **1a** with the N,N'-bis(trimethylsilyl)-N-(diphenylphosphino) amidine **2g**: the cationic cyclic five membered ring **5** is thus obtained as two isomers ( $\delta$ <sup>(31</sup>P) = +67.40, +43.60 ppm, <sup>1</sup>J<sub>PP</sub> = 354.2 Hz;  $\delta$ <sup>(31</sup>P) = +67.70. +44.00 ppm, <sup>1</sup>J<sub>PP</sub> = 354.2 Hz). Mild hydrolysis of **5** led to the NH

- (7) See for example: Cowley, A. H.; Kemp, R. A. Chem. Rev. 1985, 85, 367.
- (8) **3a**: monoclinic  $P2_1/n$ , a = 10.748 (5) Å, b = 18.051 (9) Å, c = 15.436(6) Å,  $\beta = 92.58$  (7)°, Z = 4,  $\rho_{calod} = 1.207$  g·cm<sup>-1</sup>, R = 0.073,  $R_w = 0.079$  [Mo K $\alpha$ ,  $\lambda = 0.7107$  Å, 4357 unique reflections, 3124 reflections with  $I > 3\sigma(I)$ , anisotropic temperature factors, hydrogen atoms only positioned and introduced in the calculations, 301 refined parameters, only Lorentz-polarization corrections, no absorption corrections because of the small value, 2.75 cm<sup>-1</sup>, of the absorption coefficient]. This structure was solved by using SDP (structure determination package of Enraf-Nonius).
- (9) Compounds 3d and 3f were prepared respectively from the new amidine 2d and bis(amidine) 2f.<sup>11</sup>



Amidine 2g was prepared by reacting amidine 2a with chlorodiphenylphosphine.<sup>11</sup>

derivative  $6^{10}$  (only one compound detectable because of the fast hydrogen exchange between the two nitrogen atoms) (Scheme II).

Registry No. 1a, 122271-86-7; 2a, 24261-90-3; 2b, 117357-77-4; 2d, 122271-81-2; 2f, 117357-84-3; 2g, 122271-82-3; 3a, 122271-68-5; 3b, 122271-70-9; 3c, 122271-72-1; 3d, 122271-74-3; 3e, 122271-76-5; 3f, 122271-78-7; 5 (isomer 1), 122271-84-5; 5 (isomer 2), 122271-85-6; 6, 122271-80-1; i-Pr2NPCl2, 921-26-6; Et2NPCl2, 1069-08-5; (2,2,6,6tetramethyl-1-piperidinyl)phosphonous dichloride, 64945-24-0; chlorodiphenylphosphine, 1079-66-9; (trimethylsilyl)trifluoromethanesulfonate, 27607-77-8.

Supplementary Material Available: Tables listing bond lengths, bond angles, positional and anisotropic thermal parameters, and derived H

(10) 6: <sup>31</sup>P NMR ( $C_{6}D_{6}$ )  $\delta$  54.1, 49.9 (<sup>1</sup> $J_{PP}$  = 308.8 Hz); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.30 (d, <sup>3</sup> $J_{HH}$  = 6.5 Hz, 12 H,  $Me_2$ CH), 3.01 (m, 2 H,  $Me_2$ CH), 7.61 (m, 15 H,  $C_6$ H<sub>3</sub>), 10.36 (t, <sup>2</sup> $J_{HP}$  = <sup>3</sup> $J_{HP}$  = 10.36 Hz, 1 H, >NH); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  24.20 (s,  $Me_2$ CH), 47.91 (s,  $Me_2$ CH), 120.73 (q, <sup>1</sup> $J_{CP}$  = 319.9 Hz,  $CF_3$ SO<sub>3</sub>), 128 (m,  $C_6$ H<sub>3</sub>), 176.06 (dd, <sup>2</sup> $J_{CP}$  = 8.36 Hz, <sup>2</sup> $J_{CP}$  = 8.31 Hz,  $C-C_6$ H<sub>3</sub>); IR (CDCl<sub>3</sub>) 1670 cm<sup>-1</sup> ( $\nu$ C=N).

atom coordinates for 3a (13 pages); a table of calculated and observed structure factors (15 pages). Ordering information is given on any current masthead page.

(11) Roques, C.; Mazières, M. R.; Majoral, J. P.; Sanchez, M. Unpublished results.

| Laboratoire de Synthèse, Structure et<br>Réactivité de Molécules Phosphorées<br>UA 454, Université Paul Sabatier<br>118, Route de Narbonne<br>31062 Toulouse Cedex, France | Christian Roques<br>Marie-Rose Mazières<br>Jean-Pierre Majoral*<br>Michel Sanchez* |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Laboratoire de Chimie de Coordination<br>du CNRS                                                                                                                           | Joel Jaud                                                                          |

Received January 5, 1989

### Articles

Contribution from the Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada

205, Route de Narbonne 31077 Toulouse Cedex, France

### Reduction of Oxygen- and Sulfur-Bonded (Thiocarbamato)pentaamminecobalt(III) Complexes by Chromium(II)

Robert J. Balahura,\* Michael Johnson, and Tim Black

Received October 5, 1988

The chromium(II) reduction of several S- and O-bonded (thiocarbamato)pentaamminecobalt(III) complexes has been studied. For  $(NH_3)_5CoSCONHR^{2+}$  (R = CH<sub>3</sub>, C<sub>6</sub>H<sub>5</sub>, CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>, 4-CN-C<sub>6</sub>H<sub>4</sub>) the reductant attacks at the remote oxygen atom, giving the rate constants  $6.5 \times 10^4$ ,  $3.5 \times 10^4$ ,  $4.0 \times 10^4$ , and  $2.2 \times 10^4 M^{-1} s^{-1}$ , respectively, at T = 25 °C and I = 1.0 M (LiClO<sub>4</sub>). The O-bonded chromium(III) product formed in the reduction step isomerizes with  $k_{obs} = k[H^+]$ , where  $k = 41 \text{ M}^{-1} \text{ s}^{-1}$  for R = CH<sub>3</sub> and  $k = 14 \text{ M}^{-1} \text{ s}^{-1}$  for R = C<sub>6</sub>H<sub>5</sub> and CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>. The O-bonded complexes (NH<sub>3</sub>)<sub>5</sub>CoOCSNHR<sup>2+</sup> (R = CH<sub>3</sub>, CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>) are reduced by attack at the remote S with the rate constants 68 and 55 M<sup>-1</sup> s<sup>-1</sup> at 25 °C and I = 1.0 M (LiClO<sub>4</sub>). The facile electron transfer in the S-bonded cobalt(III) complexes is attributed to a structural trans effect.

#### Introduction

Redox reactions between Co(III) complexes containing lowvalent coordinated sulfur and Cr(II) are "unusually" facile.<sup>1,2</sup> For example, thiolate complexes are reduced 100-1000 times more rapidly than the corresponding alkoxy species. The nature of this rate enhancement is not well-understood, although it has been suggested that it arises from a sulfur-induced structural trans effect (STE).<sup>3</sup> This explanation has been supported by X-ray data, which show a lengthening of the bond trans to the coordinated sulfur atom.<sup>3-5</sup> In an attempt to probe the electron-mediating ability of sulfur, both coordinated and remote, we report here the reduction of several S- and O-bonded thiocarbamato complexes of pentaamminecobalt(III) by Cr(II):

 $R = CH_3, CH_2C_6H_5, C_6H_5, 4 - CN - C_6H_5$ 

- (2) (a) Lane, R. H.; Bedor, F. A.; Gilroy, M. J.; Eisenhardt, P. F.; Bennett, J. P.; Ewall, R. X.; Bennett, L. E. *Inorg. Chem.* 1977, *16*, 93.
   (3) Elder, R. C.; Florian, L. R.; Lake, R. E.; Yacynych, A. M. *Inorg. Chem.* 1973, *17*, 2690.
   (4) Washlas C. J. Danisch, F. Karry, Ch., 1976, 15, 162.

- Weschler, C. J.; Deutsch, E. Inorg. Chem. 1976, 15, 139. Elder, R. C.; Kennard, G. J.; Payne, M. D.; Deutsch, E. Inorg. Chem. 1978, 17, 1296.

#### **Experimental Section**

Organic starting materials and solvents were of reagent grade and were used without further purification (Eastman Kodak, Aldrich). Purification of complexes was carried out by chromatography on CM-Sephadex C-25 or SP Sephadex in the Na<sup>+</sup> form (Sigma) in a cold room held at 5 °C.

Stock solutions of lithium perchlorate prepared from the anhydrous material (G. Frederick Smith) were filtered by using a 0.6  $\mu$ m Millipore filter. Triplicate portions of this solution were standardized by titration of hydrogen ions released from the strong-acid ion-exchange resin Amberlite IR 120(H). Perchloric acid solutions were prepared from doubly distilled HClO<sub>4</sub> (G. Frederick Smith) and standarized with NaOH. Chromium(II) solutions were prepared and analyzed by standard methods. Water used in this study was from a Millipore ion-exchange system.

UV-visible spectra were obtained with a Beckman Acta (III) spectrophotometer. NMR spectra were recorded with a Varian HA 100 or Bruker WH-400 spectrometer. Chemical shifts are given relative to tetramethylsilane (TMS).

Preparation of Complexes. The S-bonded complexes were synthesized by the general procedure described previously.<sup>6</sup> All analyses were performed by Guelph Chemical Laboratories, Guelph, Ontario, Canada.

Pentaammine(N-methylthiocarbamato-S)cobalt(III) Perchlorate. Anal. Calcd for [Co(NH<sub>3</sub>)<sub>5</sub>SCONH(CH<sub>3</sub>)](ClO<sub>4</sub>)<sub>2</sub>: C, 5.55; H, 4.42; N, 19.41. Found: C, 5.50; H, 4.38; N, 18.89.

Balahura, R. J.; Lewis, N. A. Inorg. Chem. 1977, 16, 2213. (a) Lane, R. H.; Bennett, L. E. J. Am. Chem. Soc. 1970, 92, 1089. (b)

<sup>(6)</sup> Balahura, R. J.; Ferguson, G.; Ecott, L.; Siew, P. Y. J. Chem. Soc., Dalton Trans. 1982, 747.