Volume 28

Number 21

 l_-

October 18. 1989

Inorganic Chemistry

0 Copyright 1989 by the American Chemical Society

Communications

A Simple Route to the First 1,3-Diaza-2-phosphetine Cations

Although neutral unsaturated four-membered phosphorus heterocycles are attracting increasing interest¹ the corresponding cationic species appear to be rather little known. Up to now, only a few 02-phosphorus species **(I)** have been prepared and fully

characterized.2 Therefore, in connection with our investigations on the reactivity of chlorophosphenium salts³ we are interested in whether a general synthesis of unsaturated cyclic σ^3 -phosphorus cations could be developed.

We wish to report now the preparation of 1,3-diaza-2-phosphetine cations of compounds $3a-f$ -i.e. stabilized cyclic carbenium species-and the X-ray structure determination of one of them, namely the **1,3-bis(trimethylsily1)-4-phenyl-2-(diiso**propylamin0)- 1,3-diaza-2-phosphetine cation of 3a.

Silylated amidines are versatile reagents toward chlorinated phosphorus compounds, leading either to hexacoordinated phosphorus zwitterionic species4 or to di- or tricyclic derivatives, as recently demonstrated.'

The cations of compounds 3a-f are prepared in good yield by treating the chlorophosphenium ions 1 -generated in situ by adding **(trimethylsily1)trifluoromethanesulfonate** to (diiso**propy1amino)dichlorophosphine-with** N,N'-bis- or N,N,N'-tris- (trimethylsilyl) amidines **2** in dichloromethane6 (Scheme **I).**

The constitution of the products 3 is substantiated in particular by the position of the signal and the magnitude of the coupling

- **(1) Sicard, G.; Baceiredo, A,; Bertrand, G.; Majoral, J. P.** *Angew. Chem.* 1984, 96, 450; Angew. Chem., Int. Ed. Engl. 1984, 23, 459. Charrier,
C.; Maigrot, N.; Mathey, F.; Robert, F.; Jeannin, Y. *Organometallics*
1986, 5, 623. Svara, J.; Fluck, E.; Riffel, H. Z. *Naturforsch*. 1985, 40b, **1258. Keller, H.; Maas, G.; Regitz, M.** *Tetrahedron Lett.* **1986,** *17,* **1903. Cowley, A. H.; Hall, S. W.; Nunn, C. M.; Power, J. M.** *Angew. Chem.* **1988,** *100,* **874;** *Angew. Chem., Int. Ed. Engl.* **1988, 27, 838.**
- **(2) (a) Veith, M.; Bertsch, B.; Huch, V.** *Z. Anorg. A&. Chem.* **1988,559, 73. (b) Niecke, E.; Kr6her, R.** *Angew. Chem.* **1976,88, 758;** *Angew Chem., Int. Ed. Engl.* **1976,** *IS,* **692. (c) Cowley, A. H.; Lattman, M.; Wilburn, J. C.** *Inorg. Chem.* **1981,20,9916. Keat, R.; Thompson, D. G.** *J. Chem.* **SOC.,** *Dalton Trans.* **1978, 634. Scherer, 0. J.; Schnabl, G.** *Chem. Ber.* **1976,** *109,* **2996.**
- Mazières, M. R.; Roques, C.; Majoral, J. P.; Sanchez, M.; Wolf, R. **Tetrahedron 1987, 9, 2109. Roques, C.; Mazières, M. R.; Majoral, J. P.; Sanchez, M. Tetrahedron Lett. 1988, 29, 4547. Roques, C.;** P.; Sanchez, M. *Tetrahedron Lett.* 1988, 29, 4547. Roques, C.;
Mazières, M. R.; Majoral, J. P.; Sanchez, M.; Wolf, R. Presented at
the Euchem Conference, PSIBLOCS, Palaiseau, France, Aug 22–26, **1988.**
- **(4) Kalchenko, V. I.; Negrebetskii, V. V.; Roudiy, R. B.; Markowski, L.** N. *Zh. Obshch. Khim.* **1988,58, 1216.**
- *(5)* **Roesky, H. W.; Scholz, U.; Schmidpeter, A,; Karaghiosoff, K.; Shel-drick, W. S.** *Chem. Ber.* **1988, 121, 1681.**

Scheme I

constant for the intracyclic carbon atom in the 13C NMR spectra $(\delta = 173.76 - 179.50$ ppm, $^2J_{CP} = 15.00 - 20.65$ Hz). The following spectroscopic data also suggest structure 3. The **31P** chemical shift (105.9-112.3 ppm) is in good agreement with a λ^3 -phosphorus atom and not with a cationic λ^2 , which would give signals around $+300$ ppm.⁷ Characteristic C=N and P-N vibrational frequencies were found by infrared spectroscopy: 1640-1665 and $890-910$ cm⁻¹, respectively.

3932 *Inorganic Chemistry, Vol. 28, No. 21, 1989* Communications

The structure of **3a** has been clearly established by a singlecrystal X-ray diffraction study8 and is illustrated in Figure **1.** The four-membered ring is planar. Since the two intracyclic carbon-nitrogen bond lengths are equal **(1.35** (l), **1.33 (1) A)** within experimental error and shorter than usual (normal C—N and C—N bonds \sim 1.50 and 1.25 Å, respectively), it is clear that the unsaturation is delocalized along the N-C-N fragment. The result of the delocalization is the opening of the N-C-N angle **(106.8')** and therefore the pinching of the ring around phosphorus: to our knowledge, the intracyclic N-P-N angle (73.2°) is the smallest one reported for a four-membered phosphorus heterocycle.

Procedure for **3n:** A mixture of **(diisopropy1amino)dichlorophosphine** (0.487 **g,** 2.41 mmol) and **(trimethylsilyl)trifluoromethanesulfonate** (0.536 **g,** 2.41 mmol) in dichloromethane (15 mL) was treated via syringe with a dichloromethane solution of bis(si1yl) amidine **2a** at -70 "C. After 1 h the resulting yellow solution was concentrated, and crystals of **3a** were obtained at -20 "C. Recrystallization from dichloromethane afforded pure 3a as yellow crystals sensitive to hydrolysis:
yield 92%; mp 88–90 °C. 3a: overall yield 92%; ³¹P NMR (CD₂Cl₂) 6.63 Hz, 6 H, Me_2C), 1.42 (d, $\frac{3J_{HH}}{J_{HH}}$ = 6.79 Hz, 6 H, Me_2C), 3.65 (m, 2 H, $CHMe_2$), 7.6 (m, 5 H, Ph); ¹³C NMR (CD₂Cl₂) δ 0.37 (s, Me_3Si), 21.78 (s, CH Me_2), 27.18 (d, $\frac{3J_{CP}}{J_{CP}}$ = 12.76 Hz, CH= 2.55 Hz, 2 C) 129.8 (s, 2 C) and 133.6 (s, 1 C) (C₆H₄), 179.5 (d, ${}^{2}J_{CP}$ = 15.6 Hz, C=N); ²⁹Si NMR (CD₂Cl₂) δ 14.8 (b s); ¹⁹F NMR (CD₂Cl₂) δ -0.2 (s, CF₃SO₃⁻); IR (CD₂Cl₂) 1656 cm⁻¹ 44.07; H, 6.84; N, 7.67. **3b**: 95% overall yield; ³¹P NMR (C_6D_6) δ δ 111.0; ¹H NMR (CD₂Cl₂) δ 0.17 (s, 18 H, Me₃Si), 1.23 (d, ³J_{HH} = *'JCF* = 321 Hz, **CF,SO3),** 129.36 (d, **Jcp** = 2.99, 1 C), 127.98 (d, **'Jcp** 112.3; ¹H NMR (CDCl₃) δ 0.06 (s, 18 H, Me₃Si), 1.12 (d, ³J_{HH} = 6.70 Hz, 6 H, Me_2 C), 1.31 **(d, ³J_{HH}** = 6.7 Hz, 6 H, Me_2 C), 2.28 **(s, 3 H**, $Me-C_6H_4$), 3.50 (m, ³J_{HH} = 6.7 Hz, 2 H, CHMe₂), 7.3 (m, 4 H, C₆H₄);
¹³C NMR (C₆H₆) δ 0.03 (s, *Me₃Si*), 21.28 (s, *Me₂CH)*, 21.54 (s, *Me-C₆H₄)*, 26.70 (d, ³J_{CP} = 12.8 Hz, *Me₂CH)*, 46.74 15.09 Hz, C=N); ²⁹Si NMR (CD₂Cl₂) δ 14.86 (b s); ¹⁹F NMR (C-D₂Cl₂) δ -0.19 (s, CF₃SO₃); IR (CD₂Cl₂) 1650 cm⁻¹ (vC==N). Anal. $\text{Hz, CF}_3\text{SO}_3$), 125.7 (s), 129.8 (s), 143.6 (s) $(C_6\text{H}_4)$, 179.27 (d, $^2J_{CP}$ = 15.09 Hz, C=N); ²⁹Si NMR (CD₂Cl₂) δ 14.86 (b s); ¹⁹F NMR (C-D₂Cl₂) δ -0.19 (s, CF₃SO₁); IR (CD₂Cl₂) 1650 cm⁻¹ (ν C=N). Anal. C, Calcd for C₂₁H₃₉F₃N₃O₁PSS1₂: C, 45.22; H, 7.05; N, Hz, 3 H, MeCH₂N), 1.26 (t, ³J_{HH} = 7.1 Hz, 3 H, MeCH₃CN), 3.10
(dq, ³J_{HP} = 3.7 Hz, ³J_{HH} = 7.1 Hz, 2 H, CH₂), 3.43 (dq, ³J_{HP} = 15.7
Hz, ³J_{HH} = 7.1 Hz, 2 H, CH₂), 7.60 (m, 5 H, C₆H₃); ¹³C NM 6.39; N, 8.07. **3d**: 85% overall yield; ³¹P NMR (C₆H₆) δ 105.9; ¹H NMR (CDCl₃) 0.15 (s, 9 H, *Me₃*Si), 1.20 (d, ³J_{HH} = 6.5 Hz, 6 H, 3.60 (m, 2 H, Me₂CH), 7.65 (m, 5 H, C₆H₅); ¹³C NMR (CDCl₃) δ 0.27 (d, ³J_{CP} = 2 Hz, Me₃Si), 20.89 (s, Me₂CH), 21.63 (s, Me₂CH), 26.40 (d, ${}^{3}J_{CP}$ = 12.49 Hz, Me₂CH), 26.70 (d, ${}^{3}J_{CP}$ = 12.30 Hz, Me₂CH), 30.14 (d, 3 *J_{CP}* = 3.63 Hz, *Me*₃C), 46.99 (d, 2 *J_{CP}* = 31.43 Hz, Me₂CH), 47.94 (d, ${}^{2}J_{CP}$ = 9.87 Hz, Me₂CH), 58.49 (d, ${}^{2}J_{CP}$ = 1.818 Me₃C), 120.73 (q, ${}^{2}J_{CF}$ = 320.7 Hz, CF₃SO₃), 174.47 (d, ⁱJ_{CP} = 15.31 Hz, $Me₂CH$), 1.30 (s, 9 H, *t*-Bu), 1.35 (d, ³ $J_{HH} = 6.5$ Hz, 6 H, $Me₂CH$), Found: C, 47.97; H, 7.26; N, 7.89. 3e: 86% overall yield; ³¹P NMR (CDCl₃) δ 107.95; ¹H NMR (CD₂Cl₂) δ 0.06 (s, 18 H, Me₃Si), 1.34 (m, 12 H, Me\$), 1.54 **(s,** 6 H, (CH2)3), 2.26 (s, 3 H, MeC6H4), 7.20 (m, 4 H, C6H4); *"C* NMR **(CDC13)** 6 0.26 **(s,** Me3Si), 16.24 **(s,** 1z, MeC<), 40.20 (d, CH₂CH₂CH₂, ³J_{CP} = 3.05 Hz), 61.66 (d, 33.21 Hz, Me₂C), 63.51 (d, ³J_{CP} = 11.32 Hz, Me₂C), 120.54 CH₂CH₂CH₂), 21.56 (s, *MeC₆H₄), 29.69 (s, <i>MeC*<), 34.05 (d, ³_{CH} = 26.50 Hz, *MeC*<), 40.20 (d, CH₂CH₂, ³_{JCP} = 3.05 Hz), 61.66 (d, $(q_1^{11}J_{CF} = 320.74 \text{ Hz}, CF_3SO_3), 125.81 \text{ (s)}, 128.82 \text{ (s)}, 129.93 \text{ (s)},$ (CD,CI,) **6** 14.65 **(b s);** I9F NMR (CD2CIz) 6 -0.05 **(s,** CFySO,); IR **'Jcp** 144.30 **(s)** (C,H4), 173.76 (d, *31* **JcP** = 20.65 Hz, C=N); 29Si NMR (CD₂Cl₂) 1660 cm⁻¹ (ν_{C-N}). Anal. Calcd for C₂₄H₄₃F₃N₃O₃PSSi₂: C, 48.22; H, 7.25; N, 7.03. Found: C, 47.97; H, 7.19; N, 7.09. 3f: 70% overall yield; ³¹P NMR (C₆D₆) δ 114.1; ¹H NMR (CDCl₃) 6.5 Hz, 12 H, Me_2 C), 3.6 (m, 4 H, Me₂CH), 8.12 (s, 4 H, C₆H₄); ¹³C
NMR (CDCl₃) 8 0.66 (s, Me_2 Si), 21.84 (s, CH*Me₂*), 27.26 (d, ³J_{CP} =
13 Hz, CHMe₂), 47.61 (d, ²J_{CP} = 39.6 Hz, CHMe₂), 48.11 (b overall yield; ³¹P NMR (C_6D_6) δ 114.1; ¹H NMR (CDCl₃) δ 0.19 (s, 36 H, Me₃Si), 1.24 (d, ³J_{HH} = 130.56 (b s), 133.32 (d, ³J_{CP} = 3.2 Hz) (C₆H₄), 177.15 (d, ²J_{CP} = 16.1
Hz, C=N); ¹⁹F NMR (CD₂Cl₂) δ -0.1 (s, CF₃SO₃); IR (CD₂Cl₂) 1655
cm⁻¹ (ν C=N). Anal. Calcd for C₃₄H₆₈F₆N₆P₂S

Figure **1.** Crystal structure of **3a.** Selected bond lengths **(A)** and **bond** angles (deg): $P_1 - N_1 = 1.79$ (1), $P_1 - N_2 = 1.788$ (9), $P_1 - N_3 = 1.64$ (2), $C_1-N_1 = 1.33$ (1), $C_1-N_2 = 1.35$ (1); $N_1P_1N_2$ (6) , $C_1N_2P_1$ $N_1C_1N_2 = 106.1$ (9). 73.2 (5), $C_1N_1P_1 = 89.8$ 89.5 (6), $N_1P_1N_3 = 107.1$ (5), $N_2P_1N_3 = 107.3$ (5),

The phosphorus-nitrogen distances also reflect the cationic structure of **3a:** the P-N bonds are lengthened from **1.64 (2)** (exocyclic P-N) to **1.788 (9)** and **1.79 (1) A** (endocyclic P-N) and thus lie at the upper limit of known P-N single-bond lengths.

Preliminary investigations have shown that the reaction of chlorophosphenium salts with silylated amino compounds of general formula $Me₃Si-N-Y$:, in which Y is a donor atom, might be a general way for preparing new cyclic cations. Such an observation is exemplified by the reaction of **la** with the *N,N'* **bis(trimethylsily1)-N-(diphenylphasphino)** amidine **2g:** the cationic cyclic five membered ring **5** is thus obtained as two isomers (δ (δ ¹P) = +67.40, +43.60 ppm, ¹*J_{Pp}* = 354.2 Hz; δ (δ ¹P) = +67.70. +44.00 ppm, ${}^{1}J_{\text{PP}} = 354.2$ Hz). Mild hydrolysis of 5 led to the NH

- (7) See for example: Cowley, A. H.; Kemp, R. A. Chem. Rev. **1985,85,** 367.
- (8) **3a**: monoclinic $P2_1/n$, $a = 10.748$ (5) Å, $b = 18.051$ (9) Å, $c = 15.436$ (6) Å, $\beta = 92.58$ (7)°, $Z = 4$, $\rho_{\text{old}} = 1.207$ g·cm⁻¹, $R = 0.073$, $R_w = 0.079$ [Mo K α , $\lambda = 0.7107$ Å, 4357 unique reflections, 3124 with $I > 3\sigma(I)$, anisotropic temperature factors, hydrogen atoms only positioned and introduced in the calculations, 301 refined parameters, only Lorentz-polarization corrections, **no** absorption corrections because of the small value, 2.75 cm⁻¹, of the absorption coefficient]. This structure was solved by using SDP (structure determination package
- of Enraf-Nonius). (9) Compounds **3d** and 3f were prepared respectively from the new amidine *M* and bis(amidine) **2f."**

Amidine **2g** was prepared by reacting amidine **2a** with chlorodi-phenylphosphine."

derivative **61°** (only one compound detectable because of the fast hydrogen exchange between the two nitrogen atoms) (Scheme 11).

Registry No. la, 122271-86-7; **ZS,** 24261-90-3; **Zb,** 117357-77-4; **Zd,** 122271-81-2; **Zf,** 117357-84-3; **Zg,** 122271-82-3; **3a,** 122271-68-5; **3b,** 122271-78-7; **5** (isomer **I),** 122271-84-5; **5** (isomer 2), 122271-85-6; 6, 122271-80-1; i-Pr₂NPCl₂, 921-26-6; Et₂NPCl₂, 1069-08-5; (2,2,6,6tetramethyl- **1-piperidiny1)phosphonous** dichloride, 64945-24-0; chlorodiphenylphosphine, 1079-66-9; **(trimethylsilyl)trifluoromethanesulfonate,** 122271-70-9; **3c,** 122271-72-1; **3d,** 122271-74-3; **h,** 122271-76-5; 3f, 27607-77-8.

Suppkmentary Material Available: Tables listing bond lengths, bond angles, positional and anisotropic thermal parameters, and derived H

(10) 6: ³¹P NMR (C_eD₆) δ 54.1, 49.9 (J_{PP} = 308.8 Hz); ¹H NMR (CDCl₃) δ 1.30 (d, ${}^{3}J_{\text{HH}}$ = 6.5 Hz, 12 H, Me₂CH), 3.01 (m, 2 H, Me₂CH), 7.61 (m, 15 H, C_eH₃), 10.36 (t, ${}^{2}J_{\text{HP}}$ = ${}^{$ NMR (CDCI₃) *b* 24.20 (s, *Me*₂CH), 47.91 (s, Me₂CH), 120.73 (q, ¹J_{CF} = 3.19.9 Hz, ²J_{CP} = 8.36 Hz, ²J_{CP} $= 8.31$ Hz, $C - \dot{C}_6 H_5$); IR (CDCl₃) 1670 cm⁻¹ (ν C=N).

atom coordinates for **3a** (13 pages); a table of calculated and observed structure factors (15 pages). Ordering information is given on any current masthead page.

(11) Roques, C.; Mazières, M. R.; Majoral, J. P.; Sanchez, M. Unpublished results.

Received January 5, 1989

Ar tides

Contribution from the Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario NIG 2W1, Canada

205, Route de Narbonne 31077 Toulouse Cedex, France

Reduction of Oxygen- and Sulfur-Bonded (Thiocarbamato) pentaamminecobalt (111) Complexes by Chromium(I1)

Robert J. Balahura,* Michael Johnson, and **Tim** Black

Received October 5, 1988

The chromium(I1) reduction of several **S-** and 0-bonded **(thiocarbamato)pentaamminecobalt(III)** complexes has been studied. For (NH_3) , CoSCONHR²⁺ (R = CH₃, C₆H₃, CH₂C₆H₃, 4-CN-C₆H₄) the reductant attacks at the remote oxygen atom, giving the rate constants 6.5 × 10⁴, 3.5 × 10⁴, 4.0 × 10⁴, and 2.2 × 10⁴ N⁻¹ s⁻¹, The O-bonded chromium(III) product formed in the reduction step isomerizes with $k_{obs} = k[H^+]$, where $k = 41 \text{ M}^{-1} \text{ s}^{-1}$ for $R = CH_3$ and $k = 14 \text{ M}^{-1} \text{ s}^{-1}$ for $R = C_6H_5$ and $CH_2C_6H_5$. The O-bonded complexes (NH electron transfer in the S-bonded cobalt(II1) complexes is attributed to a structural trans effect.

Introduction

Redox reactions between Co(II1) complexes containing lowvalent coordinated sulfur and $Cr(II)$ are "unusually" facile.^{1,2} For example, thiolate complexes are reduced 100-1000 times more rapidly than the corresponding alkoxy species. The nature of this rate enhancement is not well-understood, although it has been suggested that it arises from a sulfur-induced structural trans effect **(STE).3** This explanation has been supported by X-ray data, which show a lengthening of the bond trans to the coordinated sulfur atom.³⁻⁵ In an attempt to probe the electron-mediating ability of sulfur, both coordinated and remote, we report here the reduction of several **S-** and 0-bonded thiocarbamato complexes of pentaamminecobalt (III) by $Cr(II)$:

$$
{}^{O}_{||} \qquad \qquad {}^{S}_{||} \qquad \qquad \qquad {}^{S}_{||} \qquad \qquad \qquad \vdots \qquad \qquad \vdots
$$

R= CH3.CH2C6H5. C6H5. 4-CN-CgH5

- (2)
- Lane, R. H.; Sedor, F. A.; Gilroy, M. J.; Eisenhardt, P. F.; Bennett, J.
P.; Ewall, R. X.; Bennett, L. E. *Inorg. Chem.* 1977, *16*, 93.
Elder, R. C.; Florian, L. R.; Lake, R. E.; Yacynych, A. M. *Inorg. Chem.*
1973, *17*,
-
- Weschler, C. J.; Deutsch, E. *Inorg.* Chem. 1976, *15,* 139. Elder, R. C.; Kennard, G. J.; Payne, **M.** D.; Deutsch, E. *Inorg.* Chem. 1978, *17,* 1296.

Experimental Section

Organic starting materials and solvents were of reagent grade and were used without further purification (Eastman Kodak, Aldrich). Purification of complexes was carried out by chromatography on CM-Sephadex C-25 or SP Sephadex in the Na⁺ form (Sigma) in a cold room held at *5* "C.

Stock solutions of lithium perchlorate prepared from the anhydrous material (G. Frederick Smith) were filtered by using a 0.6 μ m Millipore filter. Triplicate portions of this solution were standardized by titration of hydrogen ions released from the strong-acid ion-exchange resin Amberlite IR 120(H). Perchloric acid solutions were prepared from doubly distilled HC104 (G. Frederick Smith) and standarized with NaOH. Chromium(I1) solutions were prepared and analyzed by standard meth**ods.** Water used in this study was from a Millipore ion-exchange system.

UV-visible spectra were obtained with a Beckman Acta (111) spectrophotometer. NMR spectra were recorded with a Varian **HA** 100 or Bruker WH-400 spectrometer. Chemical shifts are given relative to tetramethylsilane (TMS).

Preparation of Complexes. The S-bonded complexes were synthesized by the general procedure described previously.⁶ All analyses were performed by Guelph Chemical Laboratories, Guelph, Ontario, Canada.

 $Pentaammine(N -methylthiocarbamato-S) cobalt(III) Perchlorate.$ Anal. Calcd for $[Co(NH_3)_5SCONH(CH_3)](ClO_4)_2$: C, 5.55; H, 4.42; N, 19.41. Found: C, 5.50; H, 4.38; N, 18.89.

Balahura, R. J.; Lewis, N. A. *Inorg.* Chem. 1917, *16,* **2213.** (a) Lane, R. H.; Bennett, L. E. *J.* Am. Chem. *Soc.* 1970,92,1089. **(b)**

⁽⁶⁾ Balahura, R. J.; Ferguson, G.; Ecott, L.; Siew, P. Y. J. Chem. *Soc., Dalton Trans.* 1982, 147.