Volume 28

Number 23

November 15, 1989

Inorganic Chemistry

⁰Copyright 1989 by the American Chemical Society ^I

Communications

Stepwise Synthesis and Structural Characterization of the $[(MoFe_3S_4Cl_2(Cl_4cat)]_2(\mu_2-S)_2]^{6-}$ and **([MoFejS4C12(C14cat)],(pz-S) (p2-OH)j5 Doubly Bridged** Double Cubanes Obtained by the Coupling of [MoFe₃S₄] **Clusters**

Recent advances in $Fe/Mo/S$ chemistry,¹ inspired by the structural $(Mo²$ and $Fe³$ EXAFS analyses) and spectroscopic characteristics4 of the multimetallic center in nitrogenase, have made available numerous new heterometallic clusters including¹ $[MoFe_4S_4(SEt)_3(cat)_3]$ ³⁻,⁵ $[MoFe_3S_4(SR)_3(R_2cat)L]$ ²⁻ $(M = Mo, L = Cl, Br, n = 3, 4$;^{7a} $M = Mo, L = ArO^{-}, n = 3$;^{7b} $M = W$, $L = ArO^{-}$, $n = 3^{7c}$), $[MoOFe_5S_6(CO)_{12}]^{2-}$,⁸ and [MoFe₆S₆(CO)₁₆]²⁻⁹ In this communication we report on the stepwise syntheses of the first examples of doubly bridged $(\mu_2 - S^2)$ and μ_2 -OH⁻) double MoFe₃S₄ cubane clusters and on the structure and properties of the $\left\{ \left[MoFe₃S₄Cl₂(Cl₄cat)\right]_{2}(\mu_{2}-S)_{2}\right\}$ ⁶⁻ and $\{[\text{MoFe}_3\text{S}_4\text{Cl}_2(\text{Cl}_4\text{cat})_2](\mu_2\text{-S})(\mu_2\text{-OH})\}^{5-}$ anions. The latter demonstrate the feasibility of coupling of cubane clusters by μ_2 -S²⁻ bridges in a planned fashion. Such cluster coupling reactions are expected to be useful in the synthesis of specific, "mixed", double-cubane clusters appropriate as models for the Fe/Mo/S center in nitrogenase. $[M_2Fe_6S_8(SR)_{6}(R_2cat)_2]^{\text{4-}} (M = Mo, W), ^6 [Fe_6S_6L_6(M(CO)_3)_2]$

The reaction of $Na₂S$ with $(Et₄N)₂(Fe₄S₄Cl₄)$ in $CH₃CN$ in a 1:2 molar ratio affords in modest yield a crystalline material with electronic and Mössbauer spectra very similar to those of $(Et_4N)_2(Fe_4S_4Cl_4)$ but with a different X-ray powder pattern, electrochemistry, and far-IR spectrum. The analytical data and a partial structure determination¹⁰ show that this compound is

- Holm, R. H.; Simhon, E. D. In *Molybdenum Enzymes;* Spiro, T., Ed.; Wiley Interscience: New **York, 1985;** pp **1-87.**
- Conradson, **S. D.;** Burgess, B. K.; Newton, W. E.; Mortenson, L. E.; Hodgson, K. 0. *J. Am. Chem. SOC.* **1987, 109, 7507** and references therein.
- (3) (a) Antonio, M. R.; Teo, B. K.; Orme-Johnson, W. H.; Nelson, M. J.;
Groh, S. E.; Lindahl, P. A.; Kauzlarich, S. M.; Averill, B. A. J. Am.
Chem. Soc. 1982, 104, 4703. (b) Arber, J. M.; Flood, A. C.; Garner, C. D.; Hasnain, **S.** *S.;* Smith, B. E. *J. Phys. (Les Ulis, Fr.)* **1986, 47, C8-1159.**
- Orme-Johnson, W. H. *Annu.* Rev. *Biophys. Biophys. Chem.* **1985,14, 419-459** and references therein.
- Wolff, T. E.; Berg, J. M.; Holm, R. H. *Inorg. Chem.* **1981, 20, 174.**
- (a) Armstrong, **W.** H.; Holm, R. H. *J. Am. Chem. SOC.* **1981,** *103,* **6246. (b)** Armstrong, **W.** H.; Mascharak, P. K.; Holm, R. H. J. *Am. Chem.* **SOC. 1982, 104, 4373.**
- (7) (a) Coucouvanis, D.; Salifoglou, A,; Kanatzidis, M. G.; Dunham, W. R.; Simopoulos, A.; Kostikas, A. *Inorg. Chem.* 1988, 27, 4066–4077 and references therein. (b) Coucouvanis, D.; Kanatzidis, M. G. J. Am. Chem. Soc. 1985, 107, 5005. (c) Salifoglou, A.; Kanatzidis, M. G.; Coucouvanis, D. J
- Bose, K. *S.;* Lamberty, P. E.; Kovacs, J. E.; Sinn, E.; Averill, B. A. *Polyhedron* **1986,** *5,* **393.**
- (9) Eldredge, P. A.; Bryan, R. F.; Sinn, E.; Averill, B. A. *J. Am. Chem. Soc.* **1988,110,5573.**

the $(Et_4N)_4[(Fe_4S_4Cl_3)_2S]$ salt that contains the singly bridged double-cubane anion.¹¹ Further exploration of the scope of the μ_2 -sulfide coupling reaction led us to the synthesis of the new $Fe/Mo/S$ clusters described herein. The reaction of (Et_4N) , S with (Et_4N) ₂[MoFe₃S₄Cl₃(Cl₄cat)(CH₃CN)], in a 1:1 molar ratio, in CH₃CN solution, gives in good yield $(Et_4N)_{6}$ {[MoFe₃S₄Cl₂- $(Cl₄cat)₁₂(S)₂$ ¹² (I) that is obtained as I-DMF single crystals, after recrystallization from a DMF/di ethyl ether mixture.¹²

The reaction of Na₂S, $(Et_4N)_2(Fe_4S_4Cl_4)$, and $(Et_4N)_2$ -
[MoFe₃S₄Cl₃(Cl₄cat)(CH₃CN)], in a 1:1:1 molar ratio in CH₃CN, affords a microcrystalline solid with an EPR spectrum different from that of $[MoFe₃S₄Cl₃(Cl₄cat)(CH₃CN)]²$ but indicative of a $S = \frac{3}{2}$ ground state. Analytical data for this material¹³ are consistent with the ${[Fe_4S_4Cl_2](\mu_2-S)_2[MoFe_3S_4(Cl)_2(Cl_4cat)]}^{5-}$ formulation (11). Attempts to obtain single crystals of 11, from a CH,CN/benzene mixture, gave, after prolonged (ca. 1 week) standing, an oily substance and a small amount of single crystals. A structure determination showed the latter to be $(Et_4N)_{6}$ a disproportionation product of 11) and to contain an anion identical with that in I. The reaction of $(Et_4N)_2[MoFe₃S₄Cl₃ (Cl₄cat)(CH₃CN)$],¹ in CH₃CN solution with 0.5 equiv of Et₄NOH, followed by 0.5 equiv of $Li₂S$, gives in good yield the $\{[MoFe₃S₄Cl₂(Cl₄cat)₂](S)(OH)\}^{5-}$ cluster that can be isolated as a microcrystalline Et_4N salt¹⁴ (IV). The presence of the OH⁻ {[MoFe₃S₄Cl₂(Cl₄cat)]₂(S)₂}-2CH₃CN¹/₂C₆H₆ (III) (apparently

- (10) Physical data for $(E_{4}N)_{4}[(Fe_{4}S_{4}Cl_{3})_{2}S] \cdot C_{6}H_{6}$ are as follows. Anal. Calcd for $Fe_{8}Cl_{6}S_{9}N_{4}C_{38}H_{66}$ (MW 1547): Fe, 29.0; Cl, 13.76; S, 18.62; N, 3.62; C, 29.47; H, 5.56. Found: Fe, 27.3; Cl, 14.4; S, 19.3; N, 3.5; C, 29.6; H, 5.4. Cyclic voltammetry (CH₃CN vs SCE): $E_{1/2} = -0.79$
V (qrev); $E_{1/2} = -1.07$ V (qrev). Mössbauer spectrum: a broad line
quadrupole d
- have been deposited as supplementary material.

(11) The synthesis of a possibly similar $[(Fe_4S_4L-S_3)_2S]$ cluster $(L-S_3 = a$

sterically encumbered, tridentate, benzenethiolate ligand) has been re-

ported very recently: S *Am. Chem. SOC.* **1989, 111, 1670.**
- Mo, **8.22;** Fe, **14.40; S, 13.71;** CI, **18.26;** N, **4.20;** C, **32.40;** H, **5.44.** Found: Mo, **7.88;** Fe, **14.89; S, 14.13;** CI, **18.10;** N, **4.70;** C, **31.41;** H, 5.3. Cyclic voltammetry (CH₃CN vs SCE): $E_{1/2} = -0.20 \text{ V (rev)}$; $E_{1/2} = -1.32 \text{ V (qrev)}$; $E_4 = +0.13 \text{ V (irr)}$. Mössbauer spectrum: an excellent fit was achieved by assuming two doublets in a 2:1 intensity, ratio; major dou (12) **Anal. for I-DMF.** Calcd for $Mo_{2}Fe_{6}S_{10}Cl_{12}O_{5}N_{7}C_{63}H_{127}$ (MW 2333):
- (13) Anal. for II. Calcd for MoFe₇Cl₈S₁₀N₅O₂C₄₆H₁₀₀ (MW 1846): Mo, 5.20; Fe, 21.23; Cl, 15.38; S, 17.33; N, 3.80; C, 29.90; H, 5.42. Found: Mo, 5.37; Fe, 20.48; Cl, 15.72; S, 16.38; N, 2.93; C, 28.97; H, 4.7 complete characterization of this compound will be reported shortly.
- (14) Anal. for IV-CH₃CN. Calcd for Mo₂Fe₆S₉Cl₁₂O₃N₆C₃₄H₁₀₄ (MW) 2156): Mo, 8.91; Fe, 15.52; S, 13.36; Cl, 19.76. Found: Mo, 8.45; Fe, 15.06; S, 12.43; Cl, 20.1. Cyclic voltammetry (CH₂Cl₂ vs SCE): $E_{1/2}$
= -1.20 V (qrev); $E_{1/2}$ = -0.05 V (qrev); $E_{1/2}$ = +0.15 V (qrev).
Mössbauer spectrum: an excellent fit was achieved by assuming two
doublet silent at temperatures **>24** K.

Figure 1. Structures of the $\{[MoFe_3S_4Cl_2(Cl_4cat)\}_2(S)\}_0^{16}$ (III) and $\{[MoFe_3S_4Cl_2(Cl_4cat)\}_2(S)(OH)\}_0^{5}$ (IV) anions. Selected structural parameters (distances, A; angles, deg) are as follows. For III: Mo-Mo, 4.926 (8); Mo-Fe, 2.75 (2); Fe-Fe(intracube), 2.73 (2); Fe-Fe(intercube), 3.33 (2); MwS(intracube), **2.35 (2);** Mo-S(9), **2.60 (2). 2.69 (2);** FrS(intracube), **2.28 (2);** Fe-S(IO), **2.23 (2). 2.11 (2);** Mo-O(catechol), **2.04 (4);** MwS- (9)-Mo, **137.2 (7);** FeS(IO)-Fe, **98.7 (8);** S(IO)-FeS, a, **115.8 (8);** S-FeS(IO), b, **111.0 (8).** For **IV MwMo, 4.248 (5);** MeFe, **2.75 (I);** FeFe(lntracube), **2.13 (3);** FeFe(intercube), **3.35 (I);** MwS(intracube), **2.36** *(2);* FeS(intracube), **2.28 (2);** FeS(IO), **2.24 (2). 2.20 (2); Mo-O(9), 2.15 (3). 2.17 (3);** MwO(ca1echol). **2.10 (4);** Mw0(9)-Mo, **158 (2);** FeS(I0)-Fe, **91.8 (8);** S(IO)-Fe-S, a, **112.3 (7);** S-Fe-S(IO), b, **118.4 (5).**

ligand in **IV** is suggested by a sharp C-H vibration in the infrared spectrum at 3490 cm⁻¹ and is verified by isotopic substitutions $(^{2}H, ^{18}O)$

The $[M_2Fe_6S_8(SR)_6(R_2cat)_2]^4$ anions (M = Mo, W) are other double-bridged double cubanes known,⁶ and contain centrosymmetric cores with two heterometallic $M-\mu-SR-Fe$ bridges. In donor solvents (Sol) these anions solvolyze to the $[MoFe₃S₄$ - $(SR)_{3}(R_{2}cat)(Sol)|^{2}$ single cubanes.⁶ In contrast, I, III, and IV appear stable in donor solvents, presumably due to a greater stability of the $S²$ bridge. A crystal structure determination¹⁵ of III shows the hexaanion (Figure 1) as a bis(μ_2 -sulfido) doubly bridged double cubane with two homometallic $M-\mu_2-S-M$ bridges $(M = Mo, Fe)$. The pentaanion in IV has a similar structure¹⁵ (Figure 1), with a $Mo-\mu_2-OH-Mo$ bridge in place of the Mo- μ_2 -S-Mo in III. Both anions show nearly exact, noncrystallographically required C_{2v} symmetry. Among the outstanding structural features in **I11** and **IV** are included short Fe-S bonds in the Fe- μ_2 -S-Fe bridge and oblique Mo- μ_2 -E-Mo angles of 137.2 (7)^o $(E = S^2$) and 158 (2)^o $(E = OH⁻)$. The structures of **Ill** and **IV** (Figure **I)** show a remarkable steric flexibility in accepting widely different Mo-Mo distances. This is accomplished by a pivoting of the two cubane subunits around each of the two Fe atoms within the Fe- μ_2 -S-Fe bridges. A decrease in the Mo-Mo distance, from **4.926** (8) *8,* in **Ill** to **4.248 (5)** *8,* in **IV,** is dictated by the short Mo-0 bonds in the latter and accommodated by an opening of the external μ_2 -S-Fe- μ_3 -S angle (b, Figure 1) from 111.0 (8) to 118.4 (7)^o and a closing of the internal μ_2 -S-Fe- μ_3 -S angles (a, Figure 1) from 115.8 (8) to 112.3 (7)^o. The Fe- μ_2 -S-Fe angles and the Fe-Fe distances within the intercubane bridges remain relatively unaffected at 98.7 (8)^o and **3.33 (1)** Å in **111** and **97.8 (8)^o** and **3.35 (2)** Å in **IV.** The rather long M_0 - μ_2 -S bonds in **III**, (2.60 (2) and 2.69 (2) Å) which may be suggestive of possible ease of solvolytic bridge rupture, or of $S²$ replacement by other ligands, are similar to the Mo- μ_2 -SR bonds in the $[Mo_2Fe_6S_8(SEt)_6(Pr_2cat)_2]^4$ ⁻ cluster⁶ (2.689 (2) Å). The oblique $Mo-\mu_2-S(OH)-Mo$ angles in **III** and **IV** arise as a result of intercluster S-S repulsions, involving **S(2), S(5), S(4),** and **S(8),** that can be minimized with the longest possible Mo-Mo

distances. Clearly, the core structures in **111** and **IV** are highly strained and should be reactive. We already have demonstrated that the reaction of IV with $(R_3Si)_2S$, in CH₃CN solution, readily gives I. Similar reactions of IV with $(R_3Si)X (X = CN, N_3)$ occur readily, and the crystalline products (analogues of **IV)** are currently under investigation.

The results of this study demonstrate unequivocally the fea*sibility* of *rationally assembling MoFe,S, and Fe4S4 units into p2-Sz--bridged double-cubane clusters.* The latter contain a relatively structurally invariant $Fe-\mu_2-S-Fe$ bridge and suggest yet another structural analogue for the Fe/Mo/S site in nitrogenase. Indeed, a realistic model for the Fe/Mo/S center in nitrogenase could be a composite cluster that contains the known $Fe_4S_4^{16}$ and MoFe₃S₄¹ structural subunits coupled in a Fe- μ_2 -S-Fe, singly bridged, double cubane:

The attractive features of the single $MoFe₃S₄$ cubanes as a partial model for the nitrogenase center have been discussed previously.¹ The coupling of a Fe₄S₄ cubane to a MFe₃S₄ cluster $(M = Mo¹, V¹⁷)$ will result in a new cluster that retains the undisputedly attractive structural features of the $MFe₃S₄$ clusters and in addition will (a) possess an acceptable Fe/M/S stoichiometry of **719,** (b) contain a site for the bimetallic activation of molecular nitrogen as proposed previously,¹⁸ (c) contain at least four distinct iron sites, and (d) have a flexible (M) site capable

⁽¹⁶⁾ Wong, G. B.; Bobrik, M. A.; Holm, R. H. *Inorg. Chem.* **1978**, 17, 578. **(17)** (a) Kovacs, J. A.; Holm, R. H. *J. Am. Chem. Soc.* **1986**, 108, 340. (b)

^{(17) (}a) Kovsn. J. A.. Holm. **K.** H J. *Am Chm* **Sw. 1986.** *IOX.* **340.** (bj **Koudcs. J A. Ilolrn. R. H.** *Imm. Chem.* **1987.** *26, 702* **IcI** .. **Kovacs. J. A,;** Holm. **R.** H. *inor9. Ch&* **1987.26~713.**

⁽IS) Crystal and refinement data for **Ill** and **IV** have **bccn** dcpositcd **as** supplementary material.

⁽¹⁸⁾ Hardy, **R.** W. F.; Burns, R. C.; Parshall, G. W. In Inorganic *Bioehemisfry;* Eichharn, G. L., Ed.; Elsevier: Amsterdam, **1973;** pp **745-793.**

of accommodating Mo, V (or Fe). Feature c is compatible with ENDOR results¹⁹ obtained for the Fe/Mo/S center in nitrogenase, and feature d is significant in view of the recent recognition of active nitrogenases where Mo is replaced by either vanadium (in an apparently similar $Fe/V/S$ core structure²⁰) or even iron.²¹

Acknowledgment. The support of this work by Grant GM-26671 from the National Institutes of Health is gratefully acknowledged. D.C. acknowledges useful discussions with Prof. **W.** H. Orme-Johnson.

Supplementary Material Available: A discussion presenting crystal and structural data for I, **111,** and IV and Tables **S1-1-4** and **S2-1-4,** listing positional and thermal parameters and bond distances and angles for the Et4N+ salts of **I1** and **111 (18** pages); Tables SI-5 and **S2-5,** listing structure factors for the Et4N+ salts of **I1** and **I11 (19** pages). Ordering information is given **on** any current masthead page.

- **(20)** (a) Eady, **R.;** Rotaon, R.; Postgate, J. *New Sci.* **1987,18,59.** (b) Hales, B. J.; Case, E. E.; Morningstar, J. E.; Djeda, M. F.; Mauterer, L. A. *Biochemistry* **1987, 25, 7251.** (c) George, **G.** N.; Coyle, C. L.; Hales, B. J.; Cramer, *S.* P. *J. Am. Chem. SOC.* **1988,** *110,* **4057.**
- **(21)** Hales, B. J. Personal communication.

Department of Chemistry **The** University **of** Michigan Ann Arbor, Michigan **48109** **D. Coucouvanis* P. R. Challen Sang-Man Koo W. M. Davis W. Butler W. R. Dunham**

Received May 15, I989

A Novel Ferromagnetic Inorganic-Organic Host-Guest System. Synthesis of Crystalline Small Magnetite Particles Complexed with Bis(pyridoxy1idenebydrazino)phthalazine (DPDHP) at Ambient Temperature and Neutral pH

The naturally occurring "magnetic stone"-magnetite (Fe304)-was produced **on** earth some thousands of millions of years ago. Synthetically it is produced by the high-temperature oxidation of iron¹ or from mixed iron salts (Fe(II) and Fe(III)) in water and $OH^ (pH > 13)$.² Polymer-anchored magnetite is produced from iron salts in water, O_2 , OH⁻, and polymeric lignosulfonate at elevated temperatures (90-140 **"C)** and pH (>12).3 Magnetic bacteria and other biological systems, in contrast, can produce small magnetite particles at ambient temperature and pressure and neutral pH with defined crystallochemical characteristics by an unknown process.⁴

We wish to report the formation and characterization of novel types of host-guest molecules of general structures **3** and **4,** containing in crystalline forms small particles of magnetite sequestered by the title compound DPDHP⁵ $(L_A, 1)$, by allowing

- (1) Brett, M. E.; Graham, M. J. *J. Magn. Magn. Mater.* **1986,** *60,* **175.** (2) (a) Elmore, W. C. Phys. Rev. 1938, 54, 309. (b) David, I.; Welch, J. E. Trans. Faraday Soc. 1958, 52, 1642. (c) McNab, I. K.; Fox, B. A.; Boyle, Y. F. J. Appl. Phys. 1968, 39, 5703. (d) Brett, M. E.; Graham, M. J. J. M
- **(3)** Hassett, **K. L.;** Stecher, L. C.; Hendrickson, D. N. *Inorg. Chem.* **1980, 19, 416.**
- (4) (a) Review: Blakemore, R. P. Annu. Rev. Microbiol. 1982, 36, 217. (b)
Mann, S.; Frankel, R. B.; Blakemore, R. P. Nature (London) 1984, 310,
405. (c) Paoletti, L. C.; Blakemore, R. P. J. Bacteriol. 1986, 167, 73.
- *(5)* DPDHP was shown6 **to** inhibit pyridoxal-dependent enzymes such **as** (i) glutamic acid decarboxylase, which generates y-aminobutyric acid (GABA), (ii) DOPA decarboxylase, and (iii) glutamate-pyruvate transaminase.

ferrous sulfate to react with **1** at ambient temperature and pressure and neutral pH. The organic component **(1** and/or **2)** contains three azine (N-N) groups linked to two pyridoxylidene residues, thus forming a compartmental open-chain macrocycle with N_4O_2 sites for metal coordination^{7,8} (see Schemes I and II).

Aqueous solutions of DPDHP hydrochloride9 **(1;** 0.61 g, 1 mmol, in 150 **mL** of H20) and F&O4.7H20 (1.12 g, **4** mmol, in 50 mL of H_2O) were first neutralized (pH 6.0)¹³ separately by

- **(7)** The tetraaza analogue **dipyridoxylidene-o-phthaldehyde** dihydrazone (LB), appearing in **4, 5, 6,** and **8,** is assumed to act as a tetradentate sequestrant.
- (8) Compare: (a) Andrew, J. E.; Blake, A. B. J. Chem. Soc. A 1969, 1412.
(b) Ball, P. W.; Blake, J. E. J. Chem. Soc. A 1969, 1415.
(9) Commerical pyridoxal hydrochloride (0.4 g, 2 mmol) and di-
- hydrazinophthalazine hydrochloride (0.26 g, 1 mmol) were dissolved
respectively in 10 and 30 mL of 1:1 H₂O-MeOH and then mixed and
stirred for 3 h at room temperature. MeOH (30 mL) was added and a red-orange precipitate (0.66 g) of DPDHP collected. Recrystallization
from EtOH afforded red crystals, mp 250 °C. Anal. Calcd for
 $C_{24}H_{24}N_8O_4$ -3HCl-2H₂O: C, 45.48; H, 4.89; N, 17.67. Found: C,
45.73; H, 4.67 $^{1}/_{2}$ HCl without a noticeable change in color but its melting point increases to 275 °C. Anal. Calcd for $C_{24}H_{24}N_{8}O_{4} \cdot 2H_{2}O$: C, 46.81; H, 4.96; N, 18.20; Cl, 14.42. Found: C, 46.67; H, 4.82; N, 17.46; Cl, CH=N), **8.39, 8.01** (9, **2** H, pyridinic), **7.97, 7.96, 7.94,** and **7.93 (4** H, aromatic), 4.69 (d, 4 H, CH₂O), 3.60–3.34 (m, 6 H, OH and NH),
2.52, 2.51, and 2.49 (s, 6 H, CH₃). UV (EtOH): λ_{max} 417, 391, 385,
305, 274, and 218 nm.^{10,11} **14.50.** 'H NMR **(300** MHz, DMSO-d,, **25** "C): *8* **8.87 (s, 2** H,
- (10) UV (EtOH) λ_{max} bands at 390 and 280 nm, for the unprotonated free base of DPDHP (L_A), are reported in: Oehme, P. In *Pyridoxal Cata-lysis: Enzymes and Model Systems*; Snell, E. E., Braunstein, A. E., Severin, E. **S.,** Torchinsky, **Yu.** M., **Eds.;** New York, **1968;** pp **677-692.**
- **(1 1)** The observed spectrum is assumed to **be** composed of three subspectra **(Am):** (i) **417, 385, 274** nm; (ii) **391, 274** nm; (iii) **305, 218** nm1.I2
- **(12)** Compare: (a) Heinert, D.; Martell, A. E. J. *Am. Chem. Soc.* **1963,85, 188.** (b) Matsushima, **Y.;** Martell, A. E. *J. Am. Chem. Soc.* **1967,89,** 188. (b) Matsushima, Y.; Martell, A. E. J. Am. Chem. Soc. **1967**, 89, 1322, 1331. Also: Sala, L. F.; Martell, A. E.; Motekaitis, R. J.; Abbott, E. H. *Inorg. Chim. Acta* **1987,** *135,* **123.**

⁽¹⁹⁾ Hoffman, B. M.; Venters, R. A.; Roberts, J. E.; Nelson, M.; Orme-Johnson, W. H. *J. Am. Chem. SOC.* **1982, 104,4711.**

⁽⁶⁾ (a) Ackennann, E.; Oehme, P.; Rex, H.; Large, P. *Acra Biol. Med. Ger.* **1964,12,322.** (b) Oehme, P.; Rex, H.; Ackennann, E. *Acta Biol. Med. Ger.* **1964, 12, 284.** (c) Oehme, P.; Niedrich, H.; Jung, F.; Rudel, M. *Acta Biol. Med. Ger.* **1969, 22, 345, 359.**