

Figure 2. Proposed mechanism for the photochemical reduction of 1,2dichloroethane by $Mo_2(O_2P(OC_6H_5)_2)_4$.

mixed-valence complex within the solvent cage, then the fully oxidized $Mo^{III_2} Cl_2$ complex is produced. The energetics of the dimolybdenum(II,II)/dimolybdenum(II,III) and dimolybdenum(II,III)/dimolybdenum(II,III) and dimolybdenum(II,III)/dimolybdenum(III,III) couples are such that comproportionation of $Mo^{III_2}Cl_2$ and unreacted dimolybdenum(II) diphenyl phosphate will yield the mixed-valence species. Thus, the stoichiometry of the photoreaction is independent of whether the radical reacts within or external to the solvent cage of the primary photoproducts.

Multielectron photochemistry has been observed from the lowest

energy excited state of M^{4} -M complexes. The dimolybdenum(II) diphenyl phosphate complex effectively promotes the two-electron reduction of halocarbon substrates upon excitation into the $\delta\delta^*$ excited state with the absorption of a single visible photon. Re-

action from low-energy excited states of $M^{-4}M$ complexes has not been heretofore achieved, and hence the photoreduction of alkyl halides by $Mo_2(O_2P(OC_6H_5)_2)_4$ from its $\delta\delta^*$ excited state

is a unique reaction pathway of $M^{4}M$ complexes. The overall multielectron photochemistry is achieved by coupling the oneelectron-oxidation-reduction chemistry of independent metalmetal cores. Efforts are currently underway to effect the mul-

tielectron transformation at a discrete electronically excited $M^{4}_{-}M$ center.

Acknowledgment. We express our gratitude to Dr. Jay Winkler for providing us with access to the picosecond laser facilities at Brookhaven National Laboratory. Financial support of this work was provided by the National Science Foundation (Grant CHE-8705871). D.G.N. also gratefully acknowledges a Presidential Young Investigator Award administered by the National Science Foundation.

Registry No. DCE, 107-06-2; $Mo_2(O_2P(OC_6H_5)_2)_4$, 118494-24-9; $Mo_2(O_2P(OC_6H_5)_2)_4Cl$, 122967-43-5; CH_2 —CH₂, 74-85-1; $(NH_4)_5$ -Mo₂Cl₉, 61583-95-7; $(C_6H_5O)_2PO_2^-$, 48168-03-2.

Department of Chemistry	I-Jy Chang
Michigan State University	Daniel G. Nocera*
East Lansing, Michigan 48824	

Received June 19, 1989

Facile Regioselective Ligand Substitution for the In-Plane Bridging Acetates in Octakis(μ -acetato-O, O')tetraplatinum(II)

Platinum(II) with d^8 electronic configuration has strong tendency to take a square-planar structure. Octakis(μ acetato)tetraplatinum(II) (1), which was reported over a decade ago,^{1,2} is unique in that each platinum(II) ion has an octahedral

Figure 1. Structure of $Pt_4(\mu$ -CCl₃COO)_4(μ -CH₃COO)_4 showing the 50% probability thermal ellipsoids. Selected interatomic distances (Å) and angles (deg) are as follows: Pt-Pt = 2.49 (1); Pt-O(CH₃COO) = 2.01 (3), 2.00 (3); Pt-O(CCl₃COO) = 2.14 (5), 2.20 (4); Pt-Pt-Pt = 89.6 (1); Pt-Pt-O(CCl₃COO) = 85 (1), 84 (1); Pt-Pt-O(CH₃COO) = 82 (2), 84 (1), 94 (1), 97 (1).

geometry and metal-metal direct bonds (metal-metal distance of 2.50 Å) exist. A complex with such unusual structural characteristics certainly deserves further investigations such as its electronic structure, route of formation, and various other properties, in view of recent extensive progress in studies of the chemistry of cluster complexes.

While investigating reactivity of this cluster in solution, we found that only one of the two chemically different acetate groups is easily replaced by free carboxylate ions in solution. This paper reports the crystal structure of the new complex prepared by this facile regioselective substitution and kinetics of the acetate-exchange reaction as well as the theoretical studies on this unusual reactivity.

The substitution reaction is unexpectedly fast for the bridging carboxylates and is completed within a minute.³ The new complex, $Pt_4(\mu-CH_3COO)_4(\mu-CCl_3COO)_4$ (2), was precipitated immediately from the solution of 1 in CHCl₃ by adding CCl₃COOH.⁴ Figure 1 shows the ORTEP drawing of the new complex 2,^{5,6} which clearly shows that the in-plane acetates are replaced. Except for the difference in the in-plane ligands, the main structural features are very similar to those of the parent complex 1. The Pt-Pt distance (2.49 Å) in 2 is similar to that in 1. Somewhat longer in-plane Pt-O(CCl₃COO) distances than out-of-plane Pt-O(C-H₃COO) distances are observed.

Kinetics of reaction 1 in CDCl₃ for the in-plane acetate exchange was studied by the ¹H NMR saturation transfer method.⁷ Pt₄(CH₃COO)₈ + *CH₃COOH \rightarrow

 $Pt_4(CH_3COO)_4(*CH_3COO)_4 + CH_3COOH (1)$

- Carrondo, M. A. A. F. de C. T.; Skapski, A. C. J. Chem. Soc., Chem. Commun. 1976, 410-411.
 Carrondo, M. A. A. F. de C. T.; Skapski, A. C. Acta Crystallogr., Sect.
- (2) Carrondo, M. A. A. F. de C. T.; Skapski, A. C. Acta Crystallogr., Sect. B.: Struct. Crystallogr. Cryst. Chem. 1978, B34, 1857-1862; 1978, B34, 3576-3581.
- (3) An example of the fast bridging carboxylate exchange: Teramoto, K.; Sasaki, Y.; Migita, K.; Iwaizumi, M.; Saito, K. Bull. Chem. Soc. Jpn. 1979, 52, 446-452.
- (4) Other carboxylic acids such as C₆H₅COOH and CF₃COOH also give similar complexes, e.g. Pt₄(μ-CH₃COO)₄(μ-RCOO)₄, on reacting with 1.
- (5) The complex 2 was recrystallized from CH₂Cl₂. Anal. Calcd for Pt₄(μ-CH₃COO)₄(μ-CCl₃COO)₄·2CH₂Cl₂: C, 11.78; H, 0.89; Cl, 30.90. Found: C, 11.67; H, 0.90; Cl, 29.68.
 (6) X-ray analysis: The compound Pt₄(μ-CH₃COO)₄(μ-CCl₃COO)₄.
- (6) X-ray analysis: The compound Pt₄(μ-CH₃COO)₄(μ-CCl₃COO)₄· 2CH₂Cl₂ crystallizes in the tetragonal space group I²2d, with a = 13.909 (2) Å, c = 23.372 (4) Å, V = 4522 (1) Å³, and Z = 4. With the use of 626 unique reflections (F₀ > 3σ(F₀)) collected at room temperature with Mo Kα (λ = 0.709 26 Å) radiation up to 2θ = 50° on a Rigaku AFC-5R diffractometer, the structure was solved by the heavy-atom method and refined by block-diagonal least-squares techniques with anisotropic temperature factors for non-hydrogen atoms. The current R value is 0.053. Atomic positional and thermal parameters are provided as supplementary material.
 (7) (a) Forsen, S.; Hoffman, R. A. J. Chem. Phys. 1963, 39, 2892-2901.
- (7) (a) Forsen, S.; Hoffman, R. A. J. Chem. Phys. 1963, 39, 2892-2901.
 (b) Recent application of this method: Cho, H.; Iwashita, T.; Ueda, M.; Mizuno, A.; Mizukawa, K.; Hamaguchi, M. J. Am. Chem. Soc. 1988, 110, 4832-4834 and references cited therein.

Figure 2. MO interaction diagram for Pt₄(HCOO)₈ (3) and its quaterly fragment.¹² MO's shown in thick lines are those involving Pt $6d\sigma$ orbitals.

Exchange rate is linearly dependent on the complex concentration and rate law 2 is derived.⁸ At 25 °C, k_0 and k_1 are 0.36

rate =
$$4(k_0 + k_1[CH_3COOH])[complex]$$
 (2)

s⁻¹ and 4.4 M⁻¹ s⁻¹, respectively, per each reaction site. Substitution of CD₃COO⁻ for the out-of-plane acetates was not at all observed after a month at 25 °C for the solution of 1 in CDCl₃ containing CD₃COOD.

EHMO calculations⁹ have been carried out for a model compound, $Pt_4(HCOO)_8$ (3), and its fragments,^{10,11} where the Pt-O distances are assumed to be 2.01 (out-of-plane) and 2.16 Å (inplane) as observed for 1.² The MO study reasonably justifies the presence of the Pt-Pt bond and the regioselective substitution reaction.

The MO interaction diagram in Figure 2 shows levels near HOMO-LUMO, which are all associated with Pt 6d orbitals. The MO's shown in thick lines are those derived from $d\sigma$ orbitals $("d_{x^2-y^2}" and "d_{z^2}")^{12}$ of each quaterly fragment. These MO's are associated with the metal-ligand bonds, and therefore their character should relate to the regioselective lability. Four low-lying MO's of these are occupied by eight $d\sigma$ electrons and result in the Pt-Pt single bonds.¹³ With regard to metal-ligand interactions, all four orbitals are of antibonding type, and therefore

- (8) NMR spectra were recorded on a JEOL JNM GSX-270 FT-NMR spectrometer. The reaction process can be observed by two independent approaches, by irradiating either the methyl signal of the coordinated acetates (in plane) at 2.45 ppm or that of the free acetic acid at 2.02 ppm. Two rate constants at a given reaction condition are in reasonable agreement to each other (maximum difference, 9%).
- (9) Calculations were performed with the program FORTICONS: Howell, J.; Rossi, A.; Wallace, D.; Haraki, K.; Hoffmann, R. QCPE 1977, No. 344. (10) Orbital energies of the fragment MO's were estimated from the calcu-
- (11) For discussions on fragment MO's, see: Elian, M.; Hoffman, R. Inorg. Chem. 1975, 14, 1058-1076. The quarterly fragment MO's of our complex are similar to those of MCl₄ rather than those of M(CO)₄. It should be noted that the coordination axes are taken in a different way from those in the above literature.
- (12) The " $d_{x^2-y^2}$ " and " d_{z^2} " orbitals actually contain some contributions of s and p orbitals, but for simplicity are designated as such
- (13)These four MO's are of bonding type with respect to Pt-Pt interaction, giving four Pt-Pt single bonds to stabilize the Pt4 core, although the strong interaction takes place only in the b₂ orbital.

the occupation of these MO's should weaken the metal-ligand bonds. The lower three orbitals are predominantly of $d_{x^2-y^2}$ character and are antibonding for in-plane ligands, and only the highest one is of d_{z^2} character and antibonding for out-of-plane ligands. The out-of-plane ligands are therefore more tightly bound to each metal ion than the in-plane ligands. The overlap population for the out-of-plane Pt-O bond in 3 was found to be larger than that for the in-plane Pt-O bond.14

These MO results indicating that the out-of-plane Pt-O bond is stronger than the in-plane bond are consistent with the observed regioselective ligand substitution as well as with the observed Pt-O distances.1,2

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research (No. 63612503) on the Priority Area of Dynamic Interactions and Electronic Processes of Macromolecular Complexes and a Grant-in-Aid for Scientific Research (No. 01430009) from the Ministry of Education, Science and Culture, Japan. We are grateful to Dr. M. Ebihara of the Institute for Molecular Science for the X-ray analysis.

Registry No. 1, 60383-57-5; 2.2CH2Cl2, 123358-56-5; 3, 123380-75-6; Pt, 7440-06-4.

Supplementary Material Available: Tables of atomic positional and thermal parameters and interatomic distances and bond angles for Pt₄-(µ-CH₃COO)₄(µ-CCl₃COO)₄·2CH₂Cl₂ (2 pages); a table of observed and calculated structure factors (3 pages). Ordering information is given on any current masthead page.

This was the case even when the in- and out-of-plane Pt-O distances (14)were assumed to be equal (2.01 or 2.16 Å).

Department of Chemistry Faculty of Science	Tadashi Yamaguchi Yoichi Sasaki*
Tohoku University	Akira Nagasawa
Aramaki, Aoba-ku, Sendai 980, Japan	Tasuku Ito*
Department of Theoretical Studies	Nobuaki Koga
Institute for Molecular Science	Keiji Morokuma
Okazaki National Research Institutes	•
Okazaki 444, Japan	

Received September 7, 1989

Redox Regulation in Ruthenium(II) Complexes of 2,6-Bis(N-pyrazolyl)pyridine Ligands: Synthetically Versatile Analogues of 2,2':6',2"-Terpyridine

The redox reactions of ruthenium(II) complexes containing 2,2':6',2''-terpyridine (1) have been extensively investigated.¹⁻¹⁰

- Constable, E. C. Adv. Inorg. Chem. Radiochem. 1986, 30, 69. (a) Llobet, A.; Doppelt, P.; Meyer, T. J. Inorg. Chem. 1988, 27, 514. (b) Takeuchi, K. J.; Thompson, M. S.; Pipes, D. W.; Meyer, T. J. Inorg. (2)Chem. 1984, 23, 1845
- (3) Kirchnoff, J. R.; McMillin, D. R.; Marnot, P. A.; Sauvage, J.-P. J. Am.
- (a) Sullivan, B. P.; Calvert, J. M.; Meyer, T. J. Inorg. Chem. 1980, 19, 1404.
 (b) Young, R. C.; Nagle, J. K.; Meyer, T. J.; Whitten, D. G. J. Am. Chem. Soc. 1978, 100, 4773.
 (c) Braddock, J. N.; Meyer, T. J. I. Am. Chem. Soc. 1973, 95, 3158.
- (5) Lin, S. T.; Bottcher, W.; Chou, M.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1976, 98, 6536.
- (a) Calvert, J. M.; Schmehl, R. H.; Sullivan, B. P.; Facci, J. S.; Meyer, T. J.; Murray, R. W. Inorg. Chem. 1983, 22, 2151. (b) Calvert, J. M.; Meyer, T. J. Inorg. Chem. 1981, 20, 27
- Adcock, P. A.; Keene, F. R.; Smyth, R. S.; Snow, M. R. Inorg. Chem. 1984. 23. 2336
- (8) Stone, M. L.; Crosby, G. A. Chem. Phys. Lett. 1981, 79, 169.