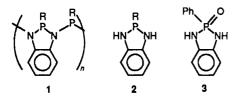
availability of excited states that respectively lead to angular (ligand field) and radial (charge transfer) reorganizations of the electronic density with respect to the ground state can justify, therefore, the observed photochemical properties of the Mo(V)dimers.

Acknowledgment. The research described herein was supported by the Office of Basic Energy Sciences of the Department of Energy.


> Contribution from the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309

Two Polymorphs of the Diazaphosphole Oxide $C_6H_4(NH)_2P(O)Ph$

Joseph M. Barendt, Elizabeth G. Bent, R. Curtis Haltiwanger, Christopher A. Squier, and Arlan D. Norman*

Received May 1, 1989

Our investigations of skeletally stabilized P(III) phosphazane oligomers/polymers $(1)^{1,2}$ have stimulated studies of P(III) and P(V) 1,3-dihydro-1,3,2-diazaphospholes, especially the P-phenyl derivatives 2 (R = Ph) and 3. Pilgram and Korte³ claimed the

preparation of 2 (R = MeC₆H₄) from the $1,2-(NH_2)_2C_6H_4/$ $MeC_6H_4P(OPh)_2$ reaction; however, the characterization was inconclusive. Even the oxide 3 has been only partially characterized.^{4,5} We now wish to report recent studies of these systems and the discovery that 3 can be obtained in two polymorphic crystalline forms.

Experimental Section

Apparatus and Materials. ³¹P and ¹H NMR spectra were recorded with a JEOL FX-90O spectrometer at 36.5 and 90.0 MHz, respectively. ^{31}P and ^{1}H NMR chemical shifts downfield from 85% $H_{3}PO_{4}$ (external) and $(CH_3)_4$ Si (internal) are reported as positive $(+\delta)$. IR spectra (4000-400 cm⁻¹) were obtained with a Beckman 4250 grating spectrometer. Mass spectra were obtained at 70 eV with a VG Analytical 7070 EQ-HF spectrometer. Elemental analyses were performed by Huffman Laboratories Inc., Wheatridge, CO. All manipulations were carried out by using standard glovebag techniques under dry N2.

 $1,2-(NH_2)_2C_6H_4$ (Aldrich) was recrystallized from toluene. Et₃N (Baker) was distilled from CaH₂. Toluene (over Na/Pb alloy) and CH₂Cl₂ (over P₄O₁₀) were distilled before use. PhPCl₂ (Strem Chemicals) was distilled from CaH₂. PhP(O)Cl₂ (Aldrich) was used as obtained. PhP(OPh)₂, prepared as described previously,⁷ after vacuum distillation contained ca. 3% (m/m) PhP(O)(OPh)₂ (by ³¹P NMR).

(1) (a) Bent, E. G.; Barendt, J. M.; Haltiwanger, R. C.; Norman, A. D. Inorganic and Organometallic Polymers; ACS Symposium Series 360; American Chemical Society: Washington, DC, 1988; p 303. (b) Barendt, J. M.; Bent, E. G.; Haltiwanger, R. C.; Norman, A. D. J. Am. Chem. Soc., in press.

- (2) Barendt, J. M.; Haltiwanger, R. C.; Norman, A. D. Inorg. Chem. 1986, 25. 4323.
- Pilgram, K.; Korte, F. Tetrahedron 1963, 19, 137
- (4) Dannley, R. L.; Wagner, P. L. J. Org. Chem. 1961, 26, 3995.
 (5) Gutmann, V.; Hagen, D. E.; Utvary, K. Monatsh. Chem. 1962, 93, 627.
- Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air Sensitive (6)
- Compounds, 2nd ed.; Wiley-Interscience: New York, 1986. Petrov, K. A.; Evdakov, V. P.; Bilevich, K. A.; Kosarev, Yu. S. Zh. Obshch. Khim. 1962, 32, 1974; Chem. Abstr. 1963, 58, 4596b. (7)

Table I. Crystal Data, Data Collection Parameters, and Refinement Details for $\dot{C}_6H_4(NH)_2P(O)Ph$ (3A and 3B)

	3A	3B
formula	C ₁₂ H ₁₁ N ₂ OP	C ₁₂ H ₁₁ N ₂ OP
fw	230.20	230.20
space group	Pnma	Cmca
a, Å	17.816 (4)	7.679 (2)
b, Å	7.578 (2)	17.127 (3)
c, Å	8.709 (2)	17.210 (4)
V, Å ³	1175.9 (4)	2263.3 (8)
Z	4	8
λ, Å	1.54178 (Cu Kα)	0.71069 (Mo Kα)
$d_{\rm calc}, {\rm g \ cm^{-3}}$	1.30	1.35
F(000)	480	960
temp, °C	22-24	22-24
μ , cm ⁻¹	19.1	2.15
R	0.036	0.039
R _w	0.051	0.055

Table II. Positional (×10⁴) and Equivalent Isotropic Displacement Parameters (Å² × 10³) for C₆H₄(NH)₂P(O)Ph (3A)

atom	x	y	Z	U^a
P (1)	4586 (1)	2500	9233 (1)	39 (1)
O (1)	5342 (1)	2500	9951 (2)	47 (1)
N(1)	4002 (1)	4075 (3)	9772 (2)	45 (1)
$\mathbf{C}(1)$	4675 (2)	2500	7202 (3)	48 (1)
C(2)	5373 (2)	2500	6524 (4)	77 (22)
C(3)	5428 (3)	2500	4928 (6)	107 (2)
C(4)	4794 (4)	2500	4049 (5)	107 (2)
C(5)	4116 (3)	2500	4706 (5)	101 (2)
C(6)	4043 (2)	2500	6283 (4)	71 (Ì)
C(7)	3398 (1)	3416 (3)	10638 (2)	45 (l)
Č(8)	2855 (1)	4353 (4)	11413 (3)	60 (1)
C(9)	2305 (1)	3401 (4)	12203 (3)	72 (l)
• • •	• • •	• • •	. ,	• • •

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

Table III. Positional (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for $C_6H_4(NH)_2P(O)Ph$ (**3B**)

atom	x	у	Z	Ua
P (1)	0	2078 (1)	2042 (1)	41 (7)
O (1)	0	2338 (3)	2865 (3)	50 (2)
N(1)	1550 (5)	2428 (2)	1472 (2)	46 (2)
C(1)	0	1037 (5)	2000 (5)	45 (3)
C(2)	0	620 (6)	2687 (6)	71 (4)
C(3)	0	-200 (7)	2648 (9)	97 (6)
C(4)	0	-578 (7)	1958 (9)	97 (5)
C(5)	0	-168 (7)	1280 (9)	90 (5)
C(6)	0	641 (5)	1294 (5)	63 (4)
C(7)	908 (6)	2943 (3)	913 (3)	40 (2)
C(8)	1820 (8)	3408 (4)	399 (3)	53 (2)
C(9)	894 (8)	3887 (4)	-97 (4)	63 (2)

^aSee footnote a, Table II.

 $[C_6H_4N_2(PPh)_2]_2$ was obtained as described elsewhere.¹

 $C_6H_4(NH)_2P(O)Ph$ (3). Polymorph 3A. 1,2- $(NH_2)_2C_6H_4$ (17 mmol) and PhP(OPh)₂ (17 mmol) were heated in vacuo at 120 °C. After 18 h, ³¹P NMR spectral resonances occur at δ 157.8 (PhP(OPh)₂), 110.5 (4), 26.5 (3), and 12.8 (PhP(O)(OPh)₂) (mol % 69:16:10:5). Upon further heating, the resonance at δ 110.5 (4) decreased in intensity. Cooling to 25 °C precipitates 3 from the reaction mixture as 3A (yield 1.4 g, 33% yield). Attempts to isolate 4 failed.

PhP(O)Cl₂ and 1,2-(NH₂)₂C₆H₄ were allowed to react in PhBr as described previously.⁴ Recrystallization of the product from CHCl₃ gave 3A (mp 278-279 °C; >85% yield, lit.4 yield 100%). ³¹P{¹H} NMR $((CD_3)_2SO)$: δ 25.5 (s). ¹H NMR: δ 9.09 (s). IR (KBr, cm⁻¹): 3182 (s, N-H), 1260 (s, P=O).⁵ MS: m/e 320 (M⁺, C₁₂H₁₁N₂OP⁺). Anal. Calcd for C₁₂H₁₁N₂OP: C, 62.60; H, 4.82; N, 12.17; P, 13.46. Found: C, 62.50; H, 4.94. 3 is only slightly soluble in toluene and CH_2Cl_2 and soluble in Me₂SO

Polymorph 3B. Crystallization of $[C_6H_4N_2(PPh)_2]_2$, prepared from the $1,2-(NH_2)_2C_6H_4/PhPCl_2$ reaction in toluene,¹ from the toluene reaction solution yields trace quantities of 3 (<1% yield) as 3B (mp 280-281 °C).

X-ray Analyses. Crystals of 3A and 3B were mounted on glass fibers and coated with epoxy resin. Cell parameters were determined on the

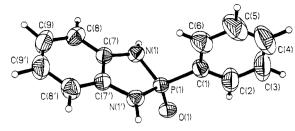


Figure 1. Structure of 3A showing the numbering system used for both polymorphs. Thermal ellipsoids are shown at the 50% probability level. The structures of 3A and 3B are superimposable with an average deviation of 0.027 Å (maximum 0.056 Å for C(4); minimum 0.006 Å for C(7)).

basis of the least-squares refinement of the setting angles of 25 (3A) and 15 (3B) centered reflections. Crystal data are summarized in Table I. 3A was solved by using direct methods.⁸ For 3B, the phosphorus position, determined by Patterson techniques, was used as a known fragment in the program DIRDIF.⁹ Full-matrix least-squares refinement procedures were used for 3A and for 3B.¹⁰ For 3A, hydrogen atoms, with the exception of the amine hydrogen, H(1), were included in idealized positions riding on the atoms to which they are attached. For 3B, hydrogen atoms were included in observed positions, riding as above.

Results and Discussion

The diazaphosphole oxide 3 forms in high yield (>85%) from the reaction of $1,2-(NH_2)_2C_6H_4$ with PhP(O)PCl₂,⁵ in moderate yield (33%) from the reaction of $1,2-(NH_2)_2C_6H_4$ with PhP(OPh)₂, and in minute quantity from the trace H₂O hydrolysis of the cyclotetraphosphazane $[C_6H_4N_2(PhP)_2]_2$ or its reaction mixture. The $[C_6H_4N_2(PhP)_2]_2$ hydrolysis reaction is serendipitous, and we have not yet determined the conditions necessary to make it synthetically viable.

The $1,2-(NH_2)_2C_6H_4/PhP(OPh)_2$ reaction is likely complex. The ³¹P NMR spectral data indicate that the P(III) diazaphosphole 2 (R = Ph) might form as an intermediate since a transient singlet resonance at δ 110 (4) in the region characteristic of diazaphospholes is seen.¹¹ However, we have been unable to isolate this product. Although traces of PhP(O)(OPh), are invariably present in the PhP(OPh)₂ (<5%), more 3 is formed than can be accounted for by the $1,2-(NH_2)_2C_6H_4/PhP(O)(OPh)_2$ reaction. It is possible that 3 forms as

$$1,2-(NH_2)_2C_6H_4 + PhP(OPh)_2 \rightarrow PhOH + PhH + C_6H_4(NH)_2P(O)Ph (1)$$

a process in which stepwise oxidative addition¹² of a $C_6H_4(NH_2)_2$ N-H bond to PhP(OPh)₂, elimination of phenol,¹³ and finally elimination of benzene occurs. That 3 forms in the PhP- $(OPh)_2/(NH_2)_2C_6H_4$ reaction is interesting, since the analogous $MeC_6H_4P(OPh)_2/(NH_2)_2C_6H_4$ reaction of Pilgram and Korte³ was reported to give the P(III) product $C_6H_4(NH)_2PC_6H_4Me$. However, since their characterization was limited to elemental analytical data (found³ wt % of C, H, N, and P 61.86, 5.86, 11.34, and 12.38, respectively), which upon recalculation better fit the oxide $C_6H_4(NH)_2P(O)C_6H_4Me$ (calculated wt % 63.93, 5.36,

- (8) Sheldrick, G. M. "SHELXTL, Version 5.1"; Nicolet Analytical In-struments: Madison, WI, 1985.
- Beurskens, P. T.; Bosman, W. P.; Doesburg, H. M.; Van den Hark, T. E. M.; Prick, P. A. J.; Noordik, J. H.; Beurskens, G.; Gould, R. O.; (9) Parthasarathi, V. In Conformation in Biology; Srinivasan, R., Sarma, R. H., Eds.; Adenine Press: New York, 1982; p 389. (10) Sheldrick, G. M. "SHELX-76, A Program for Crystal Structure
- Determination"; University Chemical Laboratory: Cambridge, England, 1976
- (11) (a) Malavaud, C.; Boisdon, M. J.; Charbonnel, Y.; Barrans, J. Tetra-hedron Lett. 1979, 20, 447. (b) Malavaud, C.; N'Gando M'Pondo, T.; Lopez, L; Barrans, J.; Legros, J.-P. Can. J. Chem. 1984, 62, 43. (c) Zeiss, W.; Henjes, H. Chem. Ber. 1978, 111, 1655. (a) Richman, J. E.; Atkins, J. E. Tetrahedron Lett. 1978, 45, 4333. (b) Mordenti, L.; Rouston, T. J.; Reiss, J. G. Organometallics 1983, 2, 843.
- (12)(c) Storzer, W.; Röschenthaler; G.-V.; Schmutzler, R.; Sheldrick, W. S. Chem. Ber. 1981, 114, 3609.
- (13)Boisdon, M. T.; Malavaud, C.; Mathis, R.; Barrans, J. Tetrahedron Lett. 1977, 39, 3501.

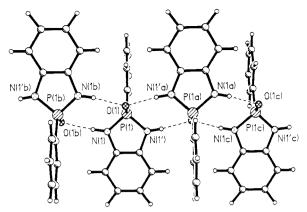


Figure 2. Segment of 3A packing in the lattice, showing the intermolecular H-bonding. Symmetry positions are denoted as follows: (prime) $x, \frac{1}{2} - y, z;$ (a) 1 - x, -y, 2 - z; (b) 1 - x, 1 - y, 2 - z; (c) x, y - 1, z.

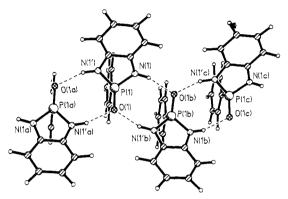


Figure 3. Segment of 3B packing in the lattice, showing the intermolecular H-bonding. Symmetry positions are denoted as follows: (prime) x, y, z; (a) $-\frac{1}{2} - x$, y, $\frac{1}{2} - z$; (b) $\frac{1}{2} + x$, y, $\frac{1}{2} - z$; (c) 1 + x, y, z.

Table IV. Selected Bond Distances (Å) and Angles (deg) for $C_6H_4(NH)_2P(O)Ph$ (3A and 3B)

	3A	3B	
	(a) Distances		
P(1) - N(1)	1.651 (2)	1.655 (4)	
P(1) - O(1)	1.486 (2)	1.485 (5)	
P(1)-C(1)	1.778 (3)	1.784 (8)	
N(1) - C(7)	1.406 (2)	1.396 (7)	
C(1) - C(2)	1.376 (4)	1.381 (12)	
C(6) - C(1)	1.382 (4)	1.392 (12)	
C(7) - C(7)'	1.388 (5)	1.395 (10)	
C(7) - C(8)	1.377 (3)	1.382 (7)	
C(8) - C(9)	1.398 (3)	1.380 (8)	
C(9) - C(9)	1.366 (6)	1.373 (12)	
	(b) Angles		
C(1)-P(1)-O(1)	109.7 (1)	109.8 (4)	
O(1) - P(1) - N(1)	116.9 (1)	117.1 (2)	
N(1) - P(1) - N(1)	92.6 (1)	92.0 (3)	
C(1) - P(1) - N(1)	109.8 (1)	109.8 (3)	
P(1)N(1)-C(7)	112.2 (1)	112.5 (3)	
P(1) - C(1) - C(2)	120.6 (2)	118.8 (7)	
C(6) - C(1) - C(2)	119.2 (3)	119.7 (8)	
P(1)-C(1)-C(6)	120.2 (2)	121.5 (7)	
N(1)-C(7)-C(7)'	10.8 (1)	110.7 (4)	
C(7)'-C(7)-C(8)	121.2 (2)	120.4 (5)	
N(1)-C(7)-C(8)	128.1 (2)	128.9 (4)	
C(7) - C(8) - C(9)	117.8 (2)	118.5 (5)	
C(8)-C(9)-C(9)'	121.1 (2)	121.0 (6)	

11.50, and 12.69, respectively), we conclude that they might in fact have isolated the P(V) oxide instead of the P(III) product.

Compound 3, from the PhP(OPh)₂/(NH₂)₂C₆H₄ reaction mixture or CHCl₃ solvent,^{4,5} crystallizes as polymorph 3A, whereas the compound obtained from the $[C_6H_4N_2(PhP)_2]_2$ reaction mixture is a second polymorph, 3B. Both have been structurally characterized by single-crystal X-ray studies. 3A and 3B crystallize in orthorhombic Pnma and Cmca space groups with four and eight atoms per unit cell, respectively. The structure of 3A and **3B** is shown in Figure 1. The packings of the two polymorphs in their lattices are shown in Figures 2 and 3. 3A or 3B contains a planar C_6N_2 unit; however, the PhP phosphorus is displaced slightly out of the plane. The C_6N_2/N_2P interplane angle in 3A and 3B is 11°. In each case the plane of the phenyl group on phosphorus is perpendicular to the C_6N_2 plane. Bond distances and bond angles (Table IV) between 3A and 3B vary only slightly and are within the ranges of bond angles observed in other P(V)phosphorus-nitrogen compounds.^{14,15} In both cases, each molecule is H-bonded from the P=O oxygen to the N-H bond units on each of two adjacent $C_6H_4(NH)_2P(O)Ph$ molecules in the lattice. Each oxygen is hydrogen-bonded to two N-H units, and each N-H unit is H-bonded to one P=O group.

3A and 3B do not differ significantly in basic molecular parameters or lattice H-bonding but rather in the detail of how complete molecules are oriented relative to one another in the lattice. In **3B** the molecules are arranged such that the phenyl groups of each $C_6H_4(NH)_2P(O)C_6H_5$ are pointing in the same direction, creating a two-dimensional planar structure with planar, stacked phenyl groups. In contrast, 3A has molecules alternatively rotated such that the phenyl groups alternate from one side to the other of each layer. Again the phenyl groups stack in a parallel fashion; however, they are between molecules in alternate layers. The parallel phenyl rings in 3A and 3B are separated by 3.80 and 3.82 Å, respectively. 3A and 3B are not common types of conformational polymorphs^{16,17} but rather are a rarer form where lattice differences occur as a result of complete molecular rotations in the lattice.

Organic and organometallic solids that contain parallel-stacked planar π electron-rich rings are of interest for their electrical,¹⁸ electrooptic,^{19,20} and magnetic properties.²⁰ In these, layered packing can occur in a fortuitous way or as a result of features contained by the molecules that aid in the development of layered stacking, e.g. metal atom of H-bonding links between packing units. Polymorphs 3A and 3B appear to be ordered by intermolecular H-bonding interactions. It is likely that a variety of planar aromatic groups can be attached to the phosphorus atom of the 1,3-dihydro-1,3,2-diazaphosphole unit to form new stacked arene ring systems. In addition, substitution of one ortho or meta H on the C_6H_4 phenylene ring would produce asymmetric diazaphospholes, which could pack in acentric space groups.²⁰ Studies to obtain such materials are in progress currently.

Acknowledgment. Support for this work by the National Science Foundation (Grant CHE-8312856), the Colorado Advanced Materials Institute, and a fellowship for E.G.B. from the Dow Chemical Foundation is gratefully acknowledged.

Registry No. 3, 7597-43-5; 1,2-(NH₂)₂C₆H₄, 95-54-5; PhP(OPh)₂, 13410-61-2.

Supplementary Material Available: Listings of all crystal data, collection parameters, and refinement details, hydrogen atom coordinates, thermal parameters, bond distances and angles, and least-squares planes and deviations from planes (9 pages); listings of structure factors (6 pages). Ordering information is given on any current masthead page.

- (a) Shaw, R. A. Phosphorus Sulfur 1978, 4, 101. (b) Corbridge, D. (14)E. C. The Structural Chemistry of Phosphorus; Elsevier: Amsterdam, 1974
- (15) (a) Thompson, M. L.; Tarassoli, A. T.; Haltiwanger, R. C.; Norman, (a) Holmpson, M. L.; Farasson, A. F., Hardwanger, K. C.; Forman, A. D. *Inorg. Chem.* **1987**, *26*, 654. (b) Chen, H. J.; Haltiwanger, R. C.; Hill, T. G.; Thompson, M. L.; Coons, D. E.; Norman, A. D. *Inorg. Chem.* **1986**, *24*, 2725
- Chem. 1985, 24, 2725.
 Thompson, M. L.; Haltiwanger, R. C.; Tarassoli, A.; Coons, D. E.; Norman, A. D. Inorg. Chem. 1982, 21, 1287.
 Bernstein, J.; Hagler, A. T. J. Am. Chem. Soc. 1978, 100, 673.
- Green, R. L.; Street, G. B. Science (Washington, D.C.) 1984, 226, 651.
- (a) Williams, D. J. Angew. Chem., Int. Ed. Engl. 1984, 23, 690. (b) Panunto, T. W.; Urbánczyk-Lipkowska, Z.; Johnson, R.; Etter, M. C. (19)J. Am. Chem. Soc. 1987, 109, 7786.
- Nonlinear Optical Properties of Organic Molecules and Crystals; Chemla, D. S., Zips, J. Eds.; Academic Press: New York, 1987; Vol. (20)1 and 2.

Contribution from the Discipline of Coordination Chemistry and Homogeneous Catalysis, Central Salt and Marine Chemicals Research Institute, Bhavnagar-364 002, India

A Stable µ-Peroxo Complex of Rhodium(II) Intercalated in the Interlamellar Spaces of Montmorillonite. Solid-State ²⁷Al, ²⁹Si, and ³¹P NMR and EPR Investigation

M. M. Taqui Khan,* M. R. H. Siddiqui, and S. A. Samad

Received December 21, 1988

The first dioxygen complex of a formal Rh(III) coordinated to O_2^{2-} was reported^{1,2} by the oxidative addition of O_2 on the Rh(I) complex RhCl(PPh₃)₃. Several diamagnetic cationic complexes of Rh(III) with chelated phosphines and arsines and a 1:1 stoichiometry of Rh(III): $O_2^{2^-}$ were later reported.³⁻⁷ Though the paramagnetic dioxygen complexes of cobalt(III) are numerous and well established,^{8,9} the corresponding paramagnetic complexes of Rh(III) are comparatively rarer¹⁰⁻¹² and can be formally considered as the complexes of Rh(III) with the superoxide ion O_2^- . The rhodium porphyrin complexes (P)Rh(O₂) (P = tetraphenylporphyrinate, octaethylporphyrinate) are also paramagnetic¹³⁻¹⁵ with a formal coordination of O_2^- to Rh(III). Paramagnetic Rh(III) superoxo complexes were also obtained¹⁶ by the oxygenation of Rh(II) complexes. There is, however, only one report¹⁷ of a Rh(II) superoxo complex obtained as a paramagnetic species in the oxygenation of $[Rh(dppe)_2]BF_4$ (dppe = 1,2-bis-(diphenylphosphino)ethane).

We describe in the present note the formation of the novel μ -peroxo Rh(II) complex by the oxygenation of cationic [Rh-(PPh₃)₃]⁺ species trapped in the hydration layer of montmorillonite. The unusual geometry imparted to the rhodium centers by intercalation makes viable the formation of the μ -peroxo Rh(II) species. The complex has been characterized by IR, EPR, ESCA, X-ray, and solid-state ²⁷Al, ²⁹Si, and ³¹P NMR spectroscopy. Oxygenation of Wilkinson's complex outside the lattice gives the well-defined RhCl(O₂)(PPh₃)₃ and the dimeric [RhCl(PPh₃)₂O₂]₂ complexes.

Experimental Section

Rhodium trichloride was purchased from Johnson Matthey, and triphenylphosphine and montmorillonite clay were obtained from Fluka A. G. A nominal chemical composition of montmorillonite used in present investigation (weight percent) is as follows: SiO₂, 70%; Al₂O₃, 15%; Fe₂O₃, 1.5%; CaO, 2.5%; MgO, 3.0%; Na₂O, 0.5%; K₂O, 1.5% (loss on ignition 6%). All organic solvents used were obtained from BDH and were purified by known methods prior to use. Argon gas was used for maintenance of an inert atmosphere and was used without purification. IR and far-IR spectra were recorded as KBr disks and as Nujol mulls dispersed in polyethylene films, respectively, on a Nicolet 200 SXV

- (1)Baird, M. C.; Lawson, D. N.; Mague, J. T.; Osborn, J. A.; Wilkinson,
- G. J. Chem. Soc., Chem. Commun. 1966, 129. Bennet, M. J.; Donaldson, P. B. J. Am. Chem. Soc. 1971, 93, 3307. (3) Valentine, J.; Valentine, D., Jr.; Collmann, J. P. Inorg. Chem. 1971, 10,
- 219. Taqui Khan, M. M.; Martell, A. E. Inorg. Chem. 1974, 13, 2961.
- Booth, B. L.; McAulliffe, C. A.; Stanley, G. L. J. Organomet. Chem. (5) 1982, 226, 191.
- (6) Haines, L. M.; Singleton, E. J. Organomet. Chem. 1971, 30, C81.
- Haines, L. M. Inorg, Chem. 1971, 10, 1685. Jones, R. D.; SummerVille, D. A.; Basolo, F. Chem. Rev. 1979, 79, 139. (8)
- Niederhoffer, E. C.; Timmons, J. H.; Martell, A. E. Chem. Rev. 1984, (9) 84. 137.
- Caldararu, H.; DeArmond, K.; Hanck, K. Inorg. Chem. 1978, 17, 2030. (10)
- Wayland, B. B.; Newman, A. R. J. Am. Chem. Soc. 1979, 101, 6472. (11)
- (12) Barrie Ranynor, J.; Gillard, R. D.; Pedrosa de Jesus, J. D. J. Chem. Soc., Dalton Trans. 1982, 1165.
- James, B. R.; Stynes, D. V. J. Am. Chem. Soc. 1972, 94, 6225. (13)
- (14) Wayland, B. B.; Newman, A. R. J. Am. Chem. Soc. 1979, 101, 6472; Inorg. Chem. 1981, 20, 3093. (15)
- Anderson, J. E.; Yao, C. L.; Kadish, K. M. Inorg. Chem. 1986, 25, 3224. Baranovskii, I. B.; Zhilyaev, A. N.; Dikvareva, L. M.; Rotov, A. V. Russ. J. Inorg. Chem. (Engl. Transl.) 1986, 31, 1661.
 Morvillo, A.; Bressan, M. Inorg. Chim. Acta 1986, 121, 219.