Synthesis of Unsymmetrical Bidentate and Tridentate Phosphines by [4 + 2] Diels-Alder Cycloadditions and Michael Additions of (Phosphole)- and (Vinylphosphine)molybdenum **Carbonyl Complexes**

Salina Affandi,^{1a} John H. Nelson,^{*,1a} and Jean Fischer^{1b}

Received April 20, 1989

The reaction of divinylphenylphosphine with (1-phenyl-3,4-dimethylphosphole)pentacarbonylmolybdenum(0) (1) yields two diastereomers of syn-exo-[2-(phenylvinylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-5-ene]tetracarbonylmolybdenum(0) (2a,b) by an intramolecular [4 + 2] Diels-Alder cycloaddition. These two diastereomers were separated by a combination of column chromatography on silica gel and fractional crystallization. The major diastereomer (2a) undergoes Michael additions with Ph2PH and Ph2AsH to produce Mo(CO)4 complexes of the new unsymmetrical asymmetric ligands 2-((2-(diphenylphosphino)ethyl)phenylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-5-ene (3) and 2-((2-(diphenylarsino)ethyl)phenylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-5-ene (4), respectively. In 3 and 4 the ligands are bidentate with dangling phosphino and arsino donor arms. Heating 3 and 4 liberates CO and converts them into their fac-LMo(CO)₃ counterparts (5 and 6). Similar Diels-Alder cycloadditions occur with 1 and vinyldiphenylphosphine and vinyldiethylphosphine and with the (vinylphosphine)molybdenum pentacarbonyl complexes and 1-phenyl-3,4-dimethylphosphole. New complexes have been characterized by elemental analyses, physical properties, ¹H, ¹H(³¹P), ¹³C(¹H), ³¹P(¹H), ¹H/¹³C HETCOR, COSY, and 2-DJ nuclear magnetic resonance spectroscopy and infrared spectroscopy. Compounds 2b and 5 have been characterized by X-ray crystallography. Crystal data for **2b**: monoclinic, C2/c, a = 18.277 (5) Å, b = 10.006 (3) Å, c = 27.650 (8) Å, $\beta = 91.99$ (2)°, V = 5053.6 Å³, Z = 8, R = 0.033 for 2596 independent observed ($I > 3\sigma(I)$) reflections. The donor abilities of the two phosphorus donors are quite different; Mo-P = 2.449 (1) and 2.513 (2) Å, and the C-P-C angle for the bridging phosphorus is small (80.1 (2)°). The chelate ring is rigid, and the molecule contains five asymmetric centers. Crystal data for 5: monoclinic, $P_{2_1/c}$, a = 18.286 (5) Å, b = 11.379 (3) Å, c = 16.109 (4) Å, $\beta = 91.99$ (2), V = 3329.1 Å³, Z = 4, R = 0.030for 3061 independent observed ($I > 3\sigma(I)$) reflections. The donor abilities of the three phosphorus donors are slightly different; Mo-P = 2.486 (1), 2.470 (1), and 2.481 (1) Å, and the C-P-C angle for the bridging phosphorus is small (79.7 (2)°). The molecule contains two fused five-membered chelate rings and five asymmetric centers.

Introduction

We have recently reported that palladium,^{2,3} platinum,^{2,3} ruthenium,^{4,5} and nickel⁶ phosphole complexes undergo facile intramolecular [4 + 2] Diels-Alder cycloadditions with vinyl donor ligands. The nature of the vinyl donor that will participate is highly metal dependent. In each case these reactions were very diastereoselective, and for each of these metals the same diastereomers predominate. In order to gain a better understanding of those factors that influence the diastereoselectivity and to explore further the scope and limitations of these reactions, we have studied reactions of (1-phenyl-3,4-dimethylphosphole)pentacarbonylmolybdenum(0) with vinyl donors. We have also probed the utility of Michael additions to one of the products for the synthesis of unsymmetrical asymmetric triphosphines and arsino diphosphines and report the results herein. Our overall goal in this research is to develop a general process for the synthesis of novel chiral bidentate and tridentate ligands with a defined stereochemistry that will be useful in asymmetric synthesis and catalysis.

Experimental Section

A. Reagents and Physical Measurements. Diphenylvinylphosphine, phenyldivinylphosphine, and diethylvinylphosphine (all from Organometallics, Inc.), diphenylphosphine and diphenylarsine (Pressure Chemical Co.), and 2,2'-azo bis(isobutyronitrile) (AIBN, Aldrich) were used as received. DMPP (1-phenyl-3,4-dimethylphosphole) was prepared as previously described.⁷ Trimethylamine N-oxide dihydrate (Aldrich) was dried by mixing it with dry benzene and then removing the solvent on a rotary evaporator with heat. CoCl₂·2H₂O was obtained by heating CoCl₂·6H₂O (Baker Chemicals) under vacuum (0.1 mmHg) at 50 °C for approximately 5 h. Silica gel used for column chromatography (grade 12, 28-200 mesh) was obtained from Aldrich. All preparations were

- (a) University of Nevada.
 (b) Université Louis Pasteur.
 (c) Holt, M. S.; Nelson, J. H.; Savignac, P.; Alcock, N. W. J. Am. Chem. Soc. 1985, 107, 6939.
- Soc. 1985, 107, 6939.
 Rahn, J. A.; Holt, M. S.; Gray, G. A.; Alcock, N. W.; Nelson, J. H. Inorg. Chem. 1989, 28, 217.
 Green, R. L.; Nelson, J. H.; Fischer, J. Organometallics 1987, 6, 2256.
 Vac, R.; Nelson, J. H.; Milosavljević, E. B.; Solujić, L.; Fischer, J. Inorg.
- Chem. 1989, 28, 4132. Solujić, L.; Milosavljević, E. B.; Nelson, J. H.; Alcock, N. W.; Fischer, (6) I. Inorg. Chem. 1989, 28, 3453.
- (7) Breque, A.; Mathey, F.; Savignac, P. Synthesis 1981, 983.

carried out under a dry dinitrogen atmosphere. Melting points were determined on a Mel-Temp apparatus and are uncorrected. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN 37921. Infrared spectra were obtained on a Perkin-Elmer 599 spectrometer as CH_2Cl_2 or hexane solutions in sealed NaCl cells. ³¹P{¹H} NMR spectra were recorded at 40.26 MHz on a JEOL FX-100 spectrometer in the FT mode. ¹H, ¹H³¹P}, and ¹³C¹H NMR spectra were recorded at 300, 300, and 75 MHz, respectively, on a GE GN-300 spectrometer. Heteronuclear chemical shift correlated (HETCOR), homonuclear chemical shift correlated (COSY), and 2-DJ spectra were obtained as previously described⁸ on a GN-300 spectrometer. Proton and carbon chemical shifts are relative to internal MeaSi, while phosphorus chemical shifts are relative to external 85% H₃PO₄ with a positive value being downfield of the respective reference.

B. Synthesis. (1-Phenyl-3,4-dimethylphosphole)pentacarbonyl-molydenum(0) (1). A mixture containing 2.00 g (7.57 mmol) of molybdenum hexacarbonyl and 0.08 g of CoCl₂·2H₂O⁹ (0.48 mmol) in 10 mL of toluene and 10 mL of *n*-butyl ether was refluxed for 15 min. To the hot light blue solution was added 1.5 mL (7.97 mmol) of DMPP via syringe, and refluxing was continued for an additional 40 min. The green solution was cooled to room temperature, and 10 g of silica gel was added to adsorb the catalyst (CoCl₂·2H₂O). The silica gel was extracted with five 10-mL portions of toluene; the extracts were combined, filtered, and evaporated to dryness. The oily greenish product contained a mixture of pentacarbonyl and tetracarbonylmolybdenum(0) complexes. Separation and purification was carried out by column chromatography on silica gel (hexane eluent). Evaporation of the hexane yielded colorless needles: yield 2.63 g, 82%; mp 92–93 °C (lit.¹⁰ mp 91.5–92 °C). IR (hexane): ν_{CO} 2072 (A₁¹), 1991 (B₁), 1954 (A₁², E) cm⁻¹. ¹H NMR (CDCl₃): δ 2.0 (s, CH₃, 6 H), 6.2 (d, ²J_{PH} = 35.5 Hz, ==CH, 2 H), 7.3–7.5 (m, Ar H, 5 H). ¹³C[¹H] NMR (CDCl₃): δ 16.83 (d, ³J_{PC} = 10.25 Hz, CH₃), 128.34 (d, ³J_{PC} = 10.26 Hz, C_m), 129.68 (d, ²J_{PC} = 39.56 Hz, C_a), 129.71 (s, C_p), 130.76 (d, ²J_{PC} = 14.62 Hz, C_o), 149.25 (d, ²J_{PC} = 8.8 Hz, C_β), 204.80 (d, ²J_{PC} = 8.8 Hz, CO_{cis}), 209.24 (d, ²J_{PC} = 19.05 Hz, CO_{trann}). ³¹P[¹H] NMR (CDCl₃): δ 27.2. Anal. Calcd for C₁₇H₁₃MOO₅P: C, 48.13; H, 3.09. Found: C, 48.18; H, 2.92. Elution of the column with CH₂Cl. produced 0.4 g of *cis*-(DMPP)-Mo(CO).¹⁰ gel (hexane eluent). Evaporation of the hexane yielded colorless needles: of the column with CH₂Cl₂ produced 0.4 g of cis-(DMPP)₂Mo(CO)₄¹⁰ (mp 98-99 °C (lit.¹⁰ mp 98-99 °C)) as bright yellow crystals. IR

- Albers, M. O.; Singleton, E.; Coville, N. J. J. Chem. Educ. 1986, 63, (9)444.
- (10) Santini, C. C.; Fischer, J.; Mathey, F.; Mitschler, A. J. Am. Chem. Soc. 1980, 102, 5809.

Nelson, J. H.; Affandi, S.; Gray, G. A.; Alyea, E. C. Magn. Reson. Chem. 1987, 25, 774. (8)

(hexane): ν_{CO} 2013, 1920, 1877 cm⁻¹. ¹H NMR (CDCl₃): δ 1.97 (s, CH₃, 12 H), 6.2 (d, ²J_{PH} = 35.5 Hz, =CH, 4 H), 7.3–7.5 (m, Ar H, 10 H). ¹³P[¹H] NMR (CDCl₃): δ 29.3. Anal. Calcd for C₂₈H₂₆MoO₄P₂: C, 57.54: H, 4.48. Found: C, 57.29; H, 4.27.

(Phenyldivinylphosphine)pentacarbonylmolybdenum(0) (9). To 2.67 g (10 mmol) of Mo(CO)₆ in 100 mL of methylcyclohexane was added 1.46 g (9 mmol) of PhVy₂P via syringe, and the mixture was refluxed for 2.5 h under N₂. The very pale yellow solution was filtered hot to remove unreacted Mo(CO)₆. Removal of the solvent via a rotary evaporator, extraction of the residue with hexane, and chromatography on silica gel with hexane gave a pale yellow oil;¹¹ yield 1.31 g, 33%. IR (hexane): ν_{CO} 2070 (A₁⁻¹), 1992 (B₁), 1954 (A₁⁻², E) cm⁻¹. ¹H NMR (CDCl₃): δ 5.78 (ddd, ²J_{bc} = 1.46 Hz, ³J_{ac} = 17.58 Hz, ³J_{PH} = 17.60 Hz, H_c, 2 H), 6.15 (ddd, ²J_{bc} = 1.46 Hz, ³J_{ac} = 17.58 Hz, ³J_{PH} = 36.13 Hz, H_b, 2 H), 6.55 (ddd, ³J_{ab} = 11.72 Hz, ³J_{ac} = 17.58 Hz, ²J_{PH} = 20.76 Hz, H_a, 2 H), 7.4–7.6 (m, Ar H, 5 H). ¹³C[¹H] NMR (CDCl₃): δ 128.40 (d, ³J_{PC} = 8.79 Hz, C_m), 129.71 (s, C_p, C_β), 131.00 (d, ²J_{PC} = 11.72 Hz, C₀), 133.51 (d, ¹J_{PC} = 34.18 Hz, C_a), 205.01 (d, ²J_{PC} = 8.79 Hz, CO_{cis}), 209.52 (d, ²J_{PC} = 22.0 Hz, CO_{trans}). ³¹P[¹H] NMR (CDCl₃): δ 20.3.

[2-(Phenylvinylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo-[2.2.1]hept-5-ene]tetracarbonylmolybdenum(0) (2). Method A. A mixture containing 1.13 g (2.78 mmol) of (DMPP)Mo(CO)₅ (1) and 0.5 mL (3.08 mmol) of phenyldivinylphosphine in 25 mL of toluene was refluxed for 24 h. The green solution was cooled, decolorized with activated carbon, and filtered. The resulting yellow solution was evaporated to dryness and purified by column chromatography on silica gel (CH₂Cl₂/hexane (30:70) eluent). This effected separation of the two diastereomers of 2 from a mixture of facial and meridional tricarbonyl complexes. Both 2a and 2b elute from the column in advance of the other products. The two diastereomers, however, could not be separated from one another by column chromatography on silica gel. Fractional crystallization of the diastereomeric mixture from CH2Cl2/hexane afforded a separation. Diastereomer 2a crystallized first as pale yellow crystals in yields of about 40%, with mp 181–183 °C. IR (CH₂Cl₂): ν_{CO} 2027 (m), 1923 (sh), 1905 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 1.56 (s, CH₃, 6 (m), 1923 (sh), 1905 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 1.56 (s, CH₃, 6 H), 1.82 (m, ³J_{PH} = 24.0 Hz, ³J_{PH} = 19.2 Hz, ²J_{HH} = 13.02 Hz, ³J_{HH} = 9.2 Hz, ³J_{HH} = 0.9 Hz, H₄, 1 H), 2.39 (ddt, ³J_{PH} = 22.4 Hz, ²J_{HH} = 13.0 Hz, ³J_{HH} = 2.1 Hz, ³J_{PH} = 2.1 Hz, ⁴J_{PH} = 34.9 Hz, ²J_{PH} = 9.2 Hz, ³J_{HH} = 9.2 Hz, ³J_{HH} = 9.2 Hz, ³J_{HH} = 2.1 Hz, ⁴H₂, 1 H), 2.86 (dtt, ³J_{PH} = 2.1 Hz, ⁴J_{PH} = 4.5 Hz, ²J_{PH} = 2.1 Hz, ²J_{HH} = 2.1 Hz, ⁴J₁H, 2.90 (dt, ⁴J_{PH} = 4.5 Hz, ²J_{PH} = 2.1 Hz, ³J_{HH} = 2.1 Hz, ⁴J₁H, 6.03 (ddd, ³J_{PH} = 20.3 Hz, ³J_{HH} = 11.4 Hz, ²J_{HH} = 1.5 Hz, H₆, 1 H), 6.04 (ddd, ³J_{HH} = 17.9 Hz, ³J_{HH} = 11.4 Hz, ²J_{PH} = 10.5 Hz, H_a, 1 H), 7 20-7.6 (m, Ar H 10 H), Anal. Calcd for C₃(H₂, MOQ.Pa; C, 55.93): 7.20-7.76 (m, Ar H, 10 H). Anal. Calcd for C₂₆H₂₄MoO₄P₂: C, 55.93; H, 4.43. Found: C, 55.95; H, 4.35. Diastereomer 2b was isolated from the filtrate as pale yellow crystals in yields of about 35%, with mp 151–155 °C. IR (CH₂Cl₂): ν_{CO} 2026 (m), 1923 (sh), 1905 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 1.52 (s, CH₃, 3 H), 1.60 (m, ³J_{PH} = 39.1 Hz, ³J_{PH} = 18.3 Hz, ²J_{HH} = 13.4 Hz, ³J_{HH} = 9.0 Hz, ³J_{HH} = 0.9 Hz, H₄, 1 H), 1.62 (s, CH₃, 3 H), 2.03 (m, ³J_{PH} = 22.8 Hz, ²J_{HH} = 13.4 Hz, ³J_{PH} = 2.2 Hz, ³J_{HH} = 2.1 Hz, ³J_{HH} = 0.6 Hz, H₃, 1 H), 2.76 (m, ³J_{PH} = 34.9 Hz, ²J_{PH} = 9.0 Hz, ³J_{HH} = 9.0 Hz, ³J_{HH} = 2.2 Hz, ³J_{HH} = 2.2 Hz, H₂, 1 H), 2.79 (m, ²J_{PH} = 3.0 Hz, ³J_{PH} = 3.0 Hz, ⁴J_{HH} = 1.2 Hz, H₁, 1 H), 2.84 (m, ⁴J_{PH} = 3.5 Hz, ²J_{PH} = 1.8 Hz, ⁴J_{HH} = 1.2 Hz, H₅, 1 H), 5.72 (ddd, ³J_{PH} = 36.2 Hz, ³J_{HH} = 11.8 Hz, ²J_{HH} = 0.9 Hz, H_c, 1 H), 5.92 (ddd, ³J_{HH} = 18.2 Hz, ²J_{PH} = 16.8 Hz, ³J_{HH} = 11.8 Hz, H_a, 1 H), 7.20-7.80 (m, Ar H, 10 H). Anal. Calcd for C₂₆H₂₄MoO₄P₂: C, 55.93; H. 4.33. Found: C, 55.91; H, 4.32. 151-155 °C. IR (CH₂Cl₂): v_{CO} 2026 (m), 1923 (sh), 1905 (s) cm⁻¹. ¹H H, 4.33. Found: C, 55.91; H, 4.32.

Method B. A mixture containing 1.19 g (3 mmol) of (PhVy₂P)Mo-(CO)₅ (9) and 0.56 mL (3.0 mmol) of DMPP in 35 mL of toluene was refluxed for 12 h. The resulting brown solution was evaporated to dryness and purified by column chromatography and fractional crystallization as in method A. There was obtained a 40% yield of diastereomer 2a and a 35% yield of diastereomer 2b.

[2-(Diphenylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo-[2.2.1]hept-5-ene]tetracarbonylmolybdenum(0) (7). A mixture containing 2.00 g (4.9 mmol) of (DMPP)Mo(CO)₅ (1) and 1.2 mL (5.09 mmol) of Ph₂VyP in 25 mL of toluene was refluxed for 24 h. The resulting green solution was cooled to room temperature, decolorized with activated carbon, and filtered. The resulting yellow solution was evaporated to dryness and purified by column chromatography on silica gel (CH₂Cl₂/hexane (30:70) eluent), followed by recrystallization from CH₂Cl₂/95% ethanol to yield 0.890 g (30%) of light yellow, slightly light-sensitive crystals, mp 230-232 °C. IR (CH₂Cl₂): ν_{CO} 2027 (m), 1920 (sh), 1905 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 1.56 (s, CH₃, 3 H), 1.60 $\begin{array}{l} (\mathrm{m},\,{}^{3}J_{\mathrm{PH}}=24.7~\mathrm{Hz},\,{}^{2}J_{\mathrm{HH}}=13.7~\mathrm{Hz},\,{}^{3}J_{\mathrm{HH}}=9.2~\mathrm{Hz},\,{}^{3}J_{\mathrm{PH}}=7.8~\mathrm{Hz},\,\mathrm{H_{4}},\\ 1~\mathrm{H}),\,1.65~(\mathrm{s},\,\mathrm{CH}_{3},\,3~\mathrm{H}),\,2.18~(\mathrm{m},\,{}^{3}J_{\mathrm{PH}}=22.9~\mathrm{Hz},\,{}^{2}J_{\mathrm{HH}}=13.7~\mathrm{Hz},\,{}^{3}J_{\mathrm{PH}}\\ =2.4~\mathrm{Hz},\,{}^{3}J_{\mathrm{HH}}=2.2~\mathrm{Hz},\,{}^{3}J_{\mathrm{HH}}=1.0~\mathrm{Hz},\,\mathrm{H_{3}},\,1~\mathrm{H}),\,2.87~(\mathrm{s},\,\mathrm{H_{1}},\,1~\mathrm{H}),\\ 2.88~(\mathrm{d},\,{}^{4}J_{\mathrm{HH}}=1.4~\mathrm{Hz},\,\mathrm{H_{5}},\,1~\mathrm{H}),\,3.23~(\mathrm{m},\,{}^{3}J_{\mathrm{PH}}=34.6~\mathrm{Hz},\,{}^{2}J_{\mathrm{PH}}=9.0~\mathrm{Hz},\,{}^{3}J_{\mathrm{HH}}=9.2~\mathrm{Hz},\,{}^{3}J_{\mathrm{HH}}=2.2~\mathrm{Hz},\,{}^{3}J_{\mathrm{HH}}=1.0~\mathrm{Hz},\,\mathrm{H_{2}},\,1~\mathrm{H}),\,7.1-7.9~\mathrm{(m},\,\mathrm{Ar}\,\mathrm{H},\,15~\mathrm{H}).~~\mathrm{Anal}.~~\mathrm{Calcd}~\mathrm{for}~\mathrm{C_{30}H_{26}MoO_4P_2:}~\mathrm{C},\,59.22;~\mathrm{H},\,4.31.~\mathrm{Found:}~\mathrm{C},\,58.93;~\mathrm{H},\,4.41.~\mathrm{Calcd}~\mathrm{for}\,\mathrm{C_{30}H_{26}MoO_4P_2:}~\mathrm{C},\,59.22;~\mathrm{H},\,4.31.~\mathrm{Found:}~\mathrm{C},\,58.93;~\mathrm{H},\,4.41.~\mathrm{Calcd}~\mathrm{for}\,\mathrm{C}_{30}H_{26}MoO_4P_2:~\mathrm{C},\,59.22;~\mathrm{H},\,4.31.~\mathrm{Found:}~\mathrm{C},\,58.93;~\mathrm{H},\,4.41.~\mathrm{Calcd}~\mathrm{Found}\,\mathrm{C},\,58.93;~\mathrm{H},\,4.41.~\mathrm{Calcd}~\mathrm{Calcd}\,\mathrm{Found}\,\mathrm{Calcd}\,\mathrm{Found}\,\mathrm{Calcd}\,\mathrm{Cal$

[2-(Diethylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo[2.2.1] hept-5-ene]tetracarbonylmolybdenum(0) (8). In a similar manner as for 7, from 3.66 g (8.63 mmol) of (DMPP)Mo(CO)₅ (1) and 1.0 mL (8.61 mmol) of Et₂VyP were obtained 2.40 g (55%) of colorless crystals, mp 153-154 °C. IR (CH₂Cl₂): ν_{CO} 2022 (m), 1918 (sh), 1905 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 1.14 (td, ${}^{3}J_{PH} = 4.2$ Hz, ${}^{3}J_{HH} = 7.8$ Hz, CH₂CH₃, 3 H), 1.18 (td, ${}^{3}J_{PH} = 5.1$ Hz, ${}^{3}J_{HH} = 7.5$ Hz, CH₂CH₃, 3 H), 1.54 (s, CH₃, 3 H), 1.56 (s, CH₃, 3 H), 1.76 (m, ${}^{3}J_{PH} = 22.5$ Hz, ${}^{2}J_{HH} = 13.8$ Hz, ${}^{3}J_{HH} = 8.0$ Hz, ${}^{3}J_{PH} = 2.1$ Hz, ${}^{4}J_{HH} = 8.0$ Hz, ${}^{3}J_{HH} = 2.4$ Hz, ${}^{3}J_{HH} = 1.6$ Hz, H₂, 1 H), 2.27 (m, ${}^{3}J_{PH} = 20.1$ Hz, ${}^{3}J_{HH} = 1.8$ Hz, ${}^{3}J_{HH} = 2.4$ Hz, ${}^{3}J_{HH} = 1.6$ Hz, H₂, 1 H), 2.68 (dd, ${}^{2}J_{PH} = 3.0$ Hz, ${}^{3}J_{PH} = 1.2$ Hz, H₁, 1 H), 2.84 (m, ${}^{2}J_{PH} = 3.0$ Hz, ${}^{4}J_{HH} = 1.0$ Hz, ${}^{3}J_{HH} = 1.2$ Hz, H₁, 1 H), 2.84 (m, ${}^{2}J_{PH} = 3.0$ Hz, ${}^{4}J_{HH} = 1.6$ Hz, H₅, 1 H), 7.2-7.4 (m, Ar H, 5 H). Anal. Calcd for C₂₂H₂₆MOO₄P₂: C, 51.58; H, 5.11. Found: C, 51.84; H, 5.12.

[Dimeric (1-phenyl-3,4-dimethylphosphole)]tetracarbonylmolybdenum-(0) (10). A mixture containing 1.08 g (2.66 mmol) of (DMPP)Mo(CO)₅ (1) and 0.5 mL (1.89 mmol) of DMPP in 25 mL of toluene was refluxed in the dark for 24 h. The resulting green solution was cooled to room temperature, decolorized with activated carbon, and filtered. The resulting yellow solution was evaporated to dryness. A ³¹P[¹H] NMR spectrum of the crude product showed it to be a mixture of *cis*-(DMPP)₂Mo(CO)₄¹⁰ (δ (³¹P) = 29.3) and the Diels-Alder dimer¹⁰ (δ (³¹P) = 52.62, 159.35; ²J_{PP} = 9.8 Hz). Separation and purification of the Diels-Alder dimer was carried out by column chromatography on silica gel (CH₂Cl₂/95% ethanol to yield 0.56 g (36%) of yellow crystals, mp 230-235 °C (lit.¹⁰ mp 170 °C). IR (CH₂Cl₂): ν_{CO} 2007 (m), 1915 (s), 1875 (vs) cm⁻¹. ¹H NMR (CDCl₃): δ 1.20 (s, CH₃, 3 H), 1.51 (d, ⁴J_{HH} = 1.2 Hz, CH₃, 3 H), 1.56 (s, CH₃, 3 H), 2.00 (d, ⁴J_{PH} = 1.2 Hz, CH₃, 3 H), 2.65 (ddd, ³J_{PH} = 40.9 Hz, ²J_{PH} = 6.3 Hz, ³J_{HH} = 3.1 Hz, H₂, 1 H), 2.69 (dd, ³J_{PH} = 1.6 Hz, ⁴J_{PH} = 1.8 Hz, H₅, 1 H), 3.01 (ddd, ³J_{HH} = 3.0 Hz, ⁴J_{HH} = 1.8 Hz, ²J_{PH} = 1.5 Hz, H₁, 1 H), 6.23 (dq, ²J_{PH} = 3.43 Hz, ⁴J_{HH} = 1.2 Hz, ==CH, 1 H), 7.3-7.6 (m, Ar H, 10 H). Anal. Calcd for C₂₈H₂₆MoO₄P₂: C, 57.54; H, 4.48. Found: C, 57.39; H, 4.42.

[2-((2-(Diphenylphosphino)ethyl)phenylphosphino)-5,6-dimethyl-7phenyl-7-phosphabicyclo[2.2.1]hept-5-ene]tetracarbonylmolybdenum(0) (3). A mixture containing 0.29 g (0.51 mmol) of 2a, 0.2 mL (1.15 mmol) of Ph₂PH, and 0.10 g (0.61 mmol) of AIBN was heated without solvent (in an oil bath) at 75 °C for 17 h. Excess Ph₂PH was then removed at 80 °C under vacuum for 2 h. The creamish colored oily product was crystallized from CH₂Cl₂/CH₃OH at 0 °C to yield 0.285 g (75%) of colorless crystals, mp 260-267 °C dec. IR (CH₂Cl₂): ν_{CO} 2025 (m), 1924 (sh), 1900 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 1.48 (s, CH₃, 3 H), 1.55 (s, CH₃, 3 H), 1.6 (m, H₄, 1 H), 1.9 (m, ${}^{3}J_{PH} = 21.9$ Hz, ${}^{2}J_{HH} = 14.0$ Hz, ${}^{3}J_{PH} = 0.9$ Hz, H₃, 1 H), 1.95-2.1 (m, CH₂, 2 H), 2.15-2.4 (m, CH₂, 2 H), 2.58 (m, ${}^{3}J_{PH} = 34.9$ Hz, ${}^{2}J_{PH} = 8.6$ Hz, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{3}J_{HH} = 8.8$ Hz, H₂, 1 H), 2.72 (s, H₁, 1 H), 2.73 (m, H₅, 1 H), 7.0-7.81 m (Ar H, 20 H). Anal. Calcd for C₃₈H₃₅MoO₄P₃: C, 61.30; H, 4.74. Found: C, 61.52; H, 4.83.

fac-[2-((2-(Diphenylphosphino)ethyl)phenylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-5-ene]tricarbonylmolybdenum(0) (5). A solution containing 0.10 g (0.13 mmol) of 3 in 15 mL 2-methoxyethyl ether was refluxed for 4 h. The solvent was removed under vacuum at 50 °C, and the resulting oily product was recrystallized from CH₂Cl₂/CH₃OH to yield 0.250 g (27%) of colorless crystals, mp 265–271 °C. IR (CH₂Cl₂): ν_{CO} 1943 (s), 1855 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 1.24 (d, ⁴J_{PH} = 1.5 Hz, CH₃, 3 H), 1.41 (m, ³J_{PH} = 21.0 Hz, ³J_{PH} = 21.0 Hz, ²J_{PH} = 12.3 Hz, ³J_{HH} = 8.4 Hz, H₄, 1 H), 1.56 (d, ⁴J_{PH} = 0.9 Hz, CH₃, 3 H), 2.15–2.50 (m, CH₂, 4 H), 2.19 (m, H₁, 1 H), 2.32 (m, H₃, 1 H), 2.62 (m, ³J_{PH} = 35.5 Hz, ³J_{HH} = 8.4 Hz, ²J_{PH} = 7.5 Hz, ³J_{HH} = 0.9 Hz, H₂, 1 H), 2.73 (s, H₅, 1 H), 7.0–8.0 (m, Ar H, 20 H). Anal. Calcd for C₃₇H₃₅MoO₃P₃: C, 62.02; H, 4.92. Found: C, 61.97; H, 4.92.

[2-((2-(Diphenylarsino)ethyl)phenylphosphino)-5,6-dimethyl-7phenyl-7-phosphabicyclo[2.2.1]hept-5-ene]tetracarbonylmolybdenum(0) (4). To a solution containing 0.50 g (0.85 mmol) of **2a** in 20 mL of dry tetrahydrofuran (THF) was added 0.06 g (0.53 mmol) of potassium *tert*-butoxide and 0.2 mL (0.87 mmol) of Ph₂AsH in 15 mL of dry THF. The reaction mixture was refluxed for 15 h, after which the solvent was removed on a rotary evaporator at 50 °C. The resulting pasty residue was chromatographed on silica gel (CH₂Cl₂/hexane (50:50) eluent) and the product recrystallized from CH₂Cl₂/CH₃OH to yield 0.67 g (82%) of colorless crystals, mp 248-254 °C dec. IR (CH₂Cl₂): ν_{CO} 2025 (m),

Table I. Crystal and Refinement Data for Compounds 2b and 5

	2b	5
formula	C ₂₆ H ₂₄ MoO ₄ P ₂	C ₃₇ H ₃₅ MoO ₃ P ₃
fw	558.37	716.55
a, Å	18.277 (5)	18.286 (5)
b, Å	10.006 (3)	11.379 (3)
c, Å	27.650 (8)	16.109 (4)
β , deg	91.99 (2)	96.67 (2)
space group	C2/c	$P2_1/c$
Ż	8	4
$d(calcd), g cm^{-3}$	1.468	1.430
μ , cm ⁻¹	57.837	49.442
abs factor range	0.79-1.22	0.78-1.29
temp, °C	-100	-100
final $R(F)^a$	0.033	0.030
final $R_{w}(F)$	0.061	0.050

^a Minimizing $\sum w(|F_0| - |F_c|)^2$ with $\sigma^2(F^2) = \sigma^2(\text{counts}) + (pI)^2$.

Table II. Atom Coordinates for C₂₆H₂₄MoO₄P₂ (2b)^a

atom	x	У	Z	B, Å ²
Mo	0.63715 (2)	0.24126 (3)	0.66554 (1)	2.522 (9)
Pl	0.76353 (6)	0.2240 (1)	0.63950 (4)	2.51 (2)
P2	0.65604 (6)	-0.0059 (1)	0.65582 (4)	2.56 (2)
C1	0.7801 (2)	0.0641 (5)	0.6073 (1)	2.73 (9)
C2	0.8632 (2)	0.0604 (5)	0.6045 (2)	3.2 (1)
C3	0.8943 (2)	0.1121 (4)	0.6447 (2)	2.96 (9)
C4	0.8367 (2)	0.1524 (4)	0.6796 (2)	2.64 (9)
C5	0.8981 (3)	-0.0049 (5)	0.5623 (2)	4.5 (1)
C6	0.9750 (3)	0.1192 (5)	0.6591 (2)	4.5 (1)
C7	0.7994 (2)	0.0201 (4)	0.6941 (2)	2.88 (9)
C8	0.7564 (2)	-0.0299 (4)	0.6491 (2)	2.83 (9)
C9	0.8015 (2)	0.3625 (4)	0.6057 (2)	2.67 (9)
C10	0.8236 (3)	0.4745 (5)	0.6302 (2)	3.3 (1)
C11	0.8463 (3)	0.5865 (5)	0.6061 (2)	4.4 (1)
C12	0.8465 (3)	0.5858 (5)	0.5564 (2)	4.9 (1)
C13	0.8255 (3)	0.4749 (6)	0.5308 (2)	5.2 (1)
C14	0.8030 (3)	0.3589 (5)	0.5556 (2)	4.1 (1)
C15	0.6153 (2)	-0.1039 (4)	0.6058 (2)	2.84 (9)
C16	0.6452 (3)	-0.2263 (5)	0.5925 (2)	3.7 (1)
C17	0.6094 (3)	-0.3036 (6)	0.5572 (2)	4.2 (1)
C18	0.5464 (3)	-0.2602 (5)	0.5349 (2)	4.4 (1)
C19	0.5170 (3)	-0.1395 (6)	0.5479 (2)	4.6 (1)
C20	0.5508 (2)	-0.0616 (5)	0.5829 (2)	3.8 (1)
C21	0.6341 (2)	-0.1128 (4)	0.7060 (2)	3.2 (1)
C22	0.5899 (2)	-0.0723 (5)	0.7403 (2)	3.6 (1)
C23	0.6447 (2)	0.4368 (5)	0.6756 (2)	3.09 (9)
01	0.6522 (2)	0.5492 (3)	0.6827 (1)	4.68 (8)
C24	0.6085 (3)	0.2740 (5)	0.5956 (2)	3.5 (1)
02	0.5930 (2)	0.3003 (5)	0.5563 (1)	6.4 (1)
C25	0.5307 (3)	0.2374 (4)	0.6822 (2)	3.4 (1)
O3	0.4706 (2)	0.2390 (4)	0.6916 (2)	5.5 (1)
C26	0.6699 (2)	0.2196 (5)	0.7358 (2)	2.99 (9)
O4	0.3096 (2)	0.2081 (3)	0.7242 (1)	3.85 (7)

^a Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as $4/3[a^2\beta_{11} + b^2\beta_{22} + c^2\beta_{33}]$ + $ab(\cos \gamma)\beta_{12}$ + $ac(\cos \beta)\beta_{13}$ + $bc(\cos \alpha)\beta_{23}$].

1922 (sh), 1900 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 1.48 (d, ⁴J_{PH} = 1.5 Hz, CH₃, 3 H), 1.55 (s, CH₃, 3 H), 1.6 (m, H₄, 1 H), 1.89 (dd, ³J_{PH} = 22.0 Hz, ²J_{HH} = 13.4 Hz, H₃, 1 H), 2.06 (m, CH₂, 4 H), 2.58 (m, ³J_{PH} = 35.1 H), δ (m, δ H₂, δ H), δ (m, δ H₂, δ H), δ (m, δ H), \delta (m, δ H), δ (m, δ H), \delta (m, δ H), \delta (m, δ H), δ (m, δ H), \delta (m, δ H), \delta (m, δ (m, δ Hz, ${}^{2}J_{PH} = 8.6$ Hz, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{3}J_{HH} = 1.7$ Hz, ${}^{3}J_{HH} = 1.7$ Hz, ${}^{1}J_{HH} = 1.7$ Hz, ${}^{1}J_{HH} = 1.7$ Hz, ${}^{1}J_{HH} = 1.7$ Hz, ${}^{1}J_{HH} = 1.8$ Hz, ${}^{1}H_{2}$, 1 H), 2.71 (d, ${}^{3}J_{PH} = 1.7$ Hz, ${}^{1}H_{1}$, 1 H), 2.73 (d, ${}^{3}J_{PH} = 1.8$ Hz, ${}^{1}H_{2}$, ${}^{1}J_{2}$, ${}^{2}J_{2}$, 2 C, 59.73; H, 4.71. Found: C, 59.54; H, 5.09. The presence of toluene was confirmed by ¹H NMR spectroscopy.

fac -[2-((2-(Diphenylarsino)ethyl)phenylphosphino)-5,6-dimethyl-7phenyl-7-phosphabicyclo[2.2.1]hept-5-ene]tricarbonylmolybdenum(0) (6). A solution containing 0.26 g (0.33 mmol) of 4 in 30 mL of 2-methoxyethyl ether was refluxed for 6 h. The solvent was removed under vacuum ethyl ether was refluxed for 6 h. The solvent was removed under vacuum at 60 °C and the residue recrystallized from CH_2Cl_2/CH_3OH to yield 0.17 g (67%) of colorless crystals, mp 246–249 °C. IR (CH_2Cl_2): ν_{CO} 1942 (m), 1852 (s) cm⁻¹. ¹H NMR ($CDCl_3$): δ 1.26 (d, ${}^{4}J_{PH} = 0.9$ Hz, CH₃, 3 H), 1.42 (m, ${}^{3}J_{PH} = 21.0$ Hz, ${}^{3}J_{PH} = 21.0$ Hz, ${}^{2}J_{HH} = 12.3$ Hz, ${}^{3}J_{HH} = 8.0$ Hz, H₄, 1 H), 1.53 (s, CH₃, 3 H), 1.92 (m, ${}^{3}J_{PH} = 14.4$ Hz, ${}^{2}J_{HH} = 12.3$ Hz, ${}^{3}J_{HH} = 7.6$ Hz, H₃, 1 H), 2.17 (d, ${}^{2}J_{PH} = 1.5$ Hz, H₁, 1 H), 2.26–2.44 (m, CH₂, 2 H), 2.44–2.60 (m, CH₂, 2 H), 2.64 (m, ${}^{3}J_{PH} = 1.0$ Hz, ${}^{3}J_{HH} = 1.0$ Hz, ${}^{3}J_{HH} = 1.0$

Affandi et al.

Table III. Atom Coordinates for C₃₇H₃₅MoO₃P₃ (5)^a

				n 82
atom	x	<u> </u>	Z	<i>B</i> , A ²
Мо	0.74993 (2)	0.05862 (3)	0.12027 (2)	1.926 (8)
P 1	0.84116 (6)	0.2064 (1)	0.08380 (7)	2.14 (2)
C1	0.8300 (2)	0.2456 (4)	-0.0291 (3)	2.21 (9)
C2	0.9026 (2)	0.3043 (4)	-0.0411 (3)	2.46 (9)
C3	0.9575 (2)	0.2538 (4)	0.0067 (3)	2.34 (9)
C4	0.9298 (2)	0.1493 (4)	0.0527 (3)	2.6 (1)
C5	0.9053 (3)	0.4047 (5)	-0.1010 (3)	3.5 (1)
C6	1.0387 (3)	0.2820 (5)	0.0145 (3)	4.0 (1)
C7	0.9013 (2)	0.0603 (4)	-0.0171 (3)	2.6 (1)
C8	0.8310 (2)	0.1168 (4)	-0.0640 (3)	2.31 (9)
C9	0.8690 (2)	0.3394 (4)	0.1397 (3)	2.39 (9)
C10	0.8439 (3)	0.4499 (4)	0.1129 (3)	3.4 (Ì)
C11	0.8667 (3)	0.5502 (5)	0.1535 (3)	4.6 (1)
C12	0.9163 (3)	0.5441 (5)	0.2236 (3)	4.5 (1)
C13	0.9434 (3)	0.4370 (5)	0.2532 (3)	4.5 (1)
C14	0.9190 (3)	0.3341 (5)	0.2121(3)	3.6 (1)
P2	0.75185 (6)	0.0342(1)	-0.03182(7)	2.13(2)
C15	0.7617(2)	-0.1088(4)	-0.0808(3)	2.08 (9)
C16	0.7645(2)	-0.2106 (4)	-0.0342(3)	2.29 (9)
C17	0.7705(3)	-0.3184(4)	-0.0717(3)	3.1(1)
C18	0.7734(3)	-0.3269 (4)	-0.1568(3)	3.2(1)
C19	0.7719(3)	-0.2254(4)	-0.2040(3)	3.2(1)
C20	0.7661(2)	-0.1177(4)	-0.1667(3)	2.8(1)
C21	0.6694(2)	0.0996 (4)	-0.0923(3)	2.7(1)
C22	0.6052(2)	0.1040(4)	-0.0390(3)	2.6(1)
P3	0.63604(6)	0.1649(1)	0.06524(7)	2.25(2)
C23	0.5542(2)	0.1538(4)	0.1216(3)	2.57(9)
C24	0.4893(3)	0 2103 (5)	0.0905(3)	3.6 (1)
C25	0.4298(3)	0.2108(5)	0.1356(4)	4.2 (1)
C26	0.4338(3)	0.1546(2)	0.2115(3)	4.6 (1)
C27	0.4967(3)	0.0954(6)	0.2418(3)	5.1 (1)
C28	0.5562(3)	0.0950 (5)	0.1955(3)	3.8 (1)
C29	0.6361(2)	0.3235(4)	0.0493 (3)	2 33 (9)
C30	0.6127(3)	0.3790 (5)	-0.0251 (3)	45(1)
C31	0.0127(3)	0.5790(5)	-0.0201(3)	54(1)
C32	0.0000(4)	0.5680 (4)	0.0384(4)	39(1)
C33	0.6558(3)	0.5156(5)	0.1123(3)	4.0 (1)
C34	0.6585(3)	0.3929 (5)	0.1125(3) 0.1176(3)	36(1)
C35	0.0303(2)	-0.0488(4)	0.1537(3)	2.5(1)
01	0.8397(2)	-0.1166 (3)	0.1720(2)	4 23 (8)
C36	0.6847(3)	-0.0774(4)	0.1316(3)	3.0 (1)
$\tilde{0}$	0.6484(2)	-0.1603(3)	0.1370(2)	4 44 (8)
C37	0.7435(2)	0.1200(4)	0.1370(2) 0.2340(3)	27(1)
03	0.7370(2)	0.1607(4)	0 2983 (2)	516(9)
05	0.1010(2)	0.1007 (4)	(2,2)(2)(2)	5.10 (5)

^aSee footnote a of Table II.

Hz, H₂, 1 H), 2.74 (s, H₅, 1 H), 6.8-8.0 (m, Ar H, 20 H). Anal. Calcd for C₃₇H₃₅AsMoO₃P₂: C, 58.44; H, 4.64. Found: C, 58.79; H, 4.81. C. X-ray Data Collection and Processing. Yellow plates of 2b and 5 were isolated from CH₂Cl₂/CH₃OH solutions at room temperature. Crystal data and details of data collection are given in Table I. Data were obtained at -100 °C, achieved by using a locally built gas-flow device. The resulting data sets were transferred to a VAX computer, and

for all subsequent calculations the Enraf-Nonius SDP/VAX package12 was used with the exception of a local data reduction program. The raw step-scan data were converted to intensities by using the Lehmann-Larsen methods¹³ and then corrected for Lorentz and polarization factors.

The structures were solved by using the heavy-atom method. After refinement of the heavy atoms, difference-Fourier maps revealed maximas of residual electronic densities close to the positions expected for the hydrogen atoms. They were introduced in structure factor calculations by their computed coordinates (C-H = 0.95 Å) and isotropic temperature factors such as $B(H) = 1.3[B_{eqv}(C)] Å^2$ but not refined. For 2b the C22 hydrogen atoms were not introduced. At this stage empirical absorption corrections were applied by using the method of Walker and Stuart¹⁴ since face indexation was not possible under the cold gas stream. Final difference maps revealed no significant maxima. The scattering

- (13) Lehmann, M. S.; Larsen, F. K. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1974, A30, 580.
 (14) Walker, N.; Stuart, D. Acta Crystallogr., Sect. A: Struct. Crystallogr.
- Cryst. Chem. 1983, A39, 158.

⁽¹²⁾ Frenz, B. A. The Enraf-Nonius CAD4-SDP. In Computing in Crys-tallography; Schenk, H., Olthof-Hazekamp, R., Van Koningsveld, H., Bassi, G. C., Eds.; Delft University Press: Delft, The Netherlands, 1978; pp 64-71.

Table IV. Selected Bond Distances (Å) for Compounds 2b and 5

2	2b		5
 Mo-P1	2.499 (1)	Mo-P1	2.486 (1)
Mo-P2	2.513 (2)	Mo-P2	2.470 (1)
Mo-C23	1.980 (4)	Mo-P3	2.481 (1)
Mo-C24	2.014 (6)	Mo-C35	1.986 (5)
Mo-C25	2.017 (5)	Mo-C36	1.976 (5)
Mo-C26	2.024 (5)	Mo-C37	1.976 (5)
P1-C1	1.861 (4)	P1-C1	1.861 (5)
P1-C4	1.851 (4)	P1-C4	1.867 (4)
C2-C3	1.337 (6)	C2-C3	1.323 (6)
C23-O1	1.150 (5)	C35-O1	1.149 (5)
C24-O2	1.143 (6)	C36-O2	1.161 (6)
C25-O3	1.136 (6)	C37-O3	1.154 (5)
C26-O4	1.162 (5)		

Table V. Selected Bond Angles (deg) for Compounds 2b and 5

2b		5	
P1-Mo-P2	76.38 (3)	P1-Mo-P2	75.78 (4)
P1-Mo-C23	92.9 (2)	P1-Mo-P3	98.30 (4)
P1-Mo-C24	86.9 (1)	P1-Mo-C35	87.8 (1)
P1-Mo-C25	173.5 (1)	P1-Mo-C36	168.6 (1)
P1-Mo-C26	91.4 (1)	P1-Mo-C37	95.4 (1)
P2-Mo-C23	168.0 (2)	P2-Mo-P3	78.97 (4)
P2MoC24	95.1 (1)	P2-Mo-C35	95.7 (1)
P2-Mo-C25	98.2 (1)	P2-Mo-C36	94.7 (1)
P2-Mo-C26	87.8 (1)	P2-Mo-C37	165.6 (1)
C23-Mo-C24	89.3 (2)	P3-Mo-C35	170.6 (1)
C23-Mo-C25	92.9 (2)	P3-Mo-C36	85.7 (1)
C23-Mo-C26	87.4 (2)	P3-Mo-C37	91.2 (1)
C24-Mo-C25	90.1 (2)	C35-Mo-C36	87.0 (2)
C24-Mo-C26	176.2 (2)	C35-Mo-C37	95.4 (2)
C25-Mo-C26	92.0 (2)	C36-Mo-C37	95.2 (2)
C1-P1-C4	80.1 (2)	C1-P1-C4	79.7 (2)

factor coefficients and anomalous dispersion coefficients come respectively from parts a and b of ref 15. Final atom coordinates for **2b** and **5** are given in Tables II and III and selected bond lengths and angles in Tables IV and V, respectively.

Results and Discussion

I. General Reactions of Molybdenum Carbonyl Complexes. A. Reaction of DMPP with Molybdenum Hexacarbonyl. Mathey and co-workers¹⁰ discovered that, in a photochemical reaction between DMPP and $Mo(CO)_6$, the Diels-Alder *exo*-phosphole dimer 10 was formed along with the classical (DMPP)Mo(CO)₅ (reaction 1). Since the free phosphole does not dimerize, they

concluded that dimerization takes place within the coordination sphere of the metal. In view of the Woodward-Hoffmann rules, they postulated that the initial [2 + 2] photodimer underwent thermal rearrangement to the [4 + 2] dimer. In the present work, the reaction of $Mo(CO)_6$ with a 1:2 molar ratio of DMPP in refluxing methylcyclohexane led only to the formation of cis- $(DMPP)_2Mo(CO)_4$. In contrast, a stepwise reaction (reaction 2) led to the formation of both $cis-(DMPP)_2Mo(CO)_4$ and 10 (10:1 ratio). (DMPP)Mo(CO)₅ was first prepared and isolated with use of the $CoCl_2 \cdot 2H_2O$ catalyst developed by Albers⁹ et al. This procedure is rapid and proceeds cleanly in high yield. A solution of (DMPP)Mo(CO)₅ and DMPP in toluene was then refluxed in the dark. The resultant cis-(DMPP)₂Mo(CO)₄ and 10 were separated by a combination of column chromatography and fractional crystallization. The complex 10 was easily identified by its characteristic ³¹P{¹H} NMR spectrum, which contains a

low-field resonance ($\delta = 159.36$ ppm) typical of 7-phosphanorbornenes.^{2-6,10} Since (DMPP)₂Mo(CO)₄ does not react to form **10**, it is possible that the key intermediate in the formation of **10** by reaction 2 is the seven-coordinate (DMPP)₂Mo(CO)₅. We thank a reviewer for this suggestion.

B. Reactions of (DMPP) $Mo(CO)_5$ with Vinylphosphines. The results of reaction 2 suggested that (DMPP) $Mo(CO)_5$ would undergo [4 + 2] Diels-Alder cycloadditions, as we have found to occur for palladium,^{2,3} platinum,^{2,3} ruthenium,^{4,5} and nickel⁶ complexes of DMPP. A racemic mixture of a single diastereomer (7) was obtained by reacting (DMPP) $Mo(CO)_5$ with Ph_2VyP (reaction 3). In addition to 7, traces of a tricarbonyl complex

were also obtained. The tricarbonyl complex was found to be a mixture of the facial and meridional isomers formed from the reaction of 7 with an additional molecule of Ph_2VyP and was not further characterized.

In the [4 + 2] cycloaddition reactions on palladium^{2,3} (reaction 4) only a racemic mixture of a single diastereomer (>90% isolated yield) was formed when R = phenyl and R' = vinyl, even though

the presence of a small amount of the other diastereomer was observed in the reaction mixture.^{2,3} In the analogous reaction of $(DMPP)Mo(CO)_5$ with PhVy₂P (reaction 5) ³¹P{¹H} NMR

spectroscopy of the crude reaction mixture showed the presence of two diastereomers (approximately 2:1 **2a:2b** ratio) and a trace of a tricarbonyl complex. Column chromatography on silica gel only led to separation of the diastereomeric mixture from the other species. The two diastereomers were then separated by fractional crystallization.

Reaction 5 was repeated with use of several different solvent systems and with varying reaction conditions. In all cases both diastereomers were obtained. Using higher boiling solvents such as 2-methoxyethyl ether or *n*-butyl ether led to a shorter reaction time period. This also led to an increase in the relative amounts of diastereomer **2b** to give a ratio of about 1:1 **2a:2b**. This suggests that formation of diastereomer **2b** is slightly favored by more vigorous reaction conditions. Use of the catalyst¹⁶ trimethylamine

 ^{(15) (}a) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Kynoch: Birmingham, England, 1974; Table 2.2b. (b) Ibid., Table 2.3.1.

N-oxide with lower boiling solvents also led to formation of both diastereomers in a ratio of about 3:2 2a:2b.

Thus, the distereoselectivity of reaction 5 appears to be kinetically controlled, as 2a and 2b are not interconvertible. To confirm this, the cycloaddition reaction was performed in the reverse direction; i.e., (PhVy2P)Mo(CO)5 was reacted with DMPP. This reaction also produced both diastereomers (3:2 2a:2b).

The two diastereomers are schematically represented by

The crystal structure^{2,3} of dichloro[2-(phenylvinylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-5-ene]palladium(II) shows it to be the diastereomer analogous to i. It is of especial interest to determine if the major diastereomer formed in reaction 5 (2a) has the same stereochemistry. A cyanide displacement^{2,3} of the ligand from the palladium complex followed by reaction of the ligand with $Mo(CO)_6$ (reaction 6) gave a

product whose ³¹P¹H NMR spectrum was identical with that of the minor diastereomer (2b). Since both steps of reaction 6 should proceed with retention of the stereochemistry, 2a is diastereomer ii and 2b is diastereomer i. This is unambiguously confirmed by X-ray crystallography (vide infra).

The different stereoselectivity of the cycloaddition reaction for the molybdenum complex can most easily be explained on the basis of steric factors. It was previously suggested^{2,3} that the reaction mechanism probably involves a polar stepwise intramolecular [4 + 2] Diels-Alder cycloaddition between phosphine and phosphole in mutually cis positions. The metal provides both electronic activation and molecular direction^{2-6,10} for the transition state schematically represented by

When $\mathbf{R} \neq \mathbf{R}'$, the larger of the two groups will normally occupy the less congested region to reduce steric hindrance. In contrast to the square-planar palladium(II) and platinum(II) complexes, where the steric hindrance from the two cis halides causes a much preferred orientation of the R groups on the vinylphosphine, there is a less organized transition state in the six-coordinate molybdenum(0) system. The four carbonyls on the molybdenum complex impose almost equal steric constraints for any orientation of the vinylphosphine, leading to much lower diastereoselectivity for Mo(0) than for Pd(II) or Pt(II).

(DMPP)Mo(CO)₅ also reacts cleanly with Et₂VyP (reaction 7) to yield a single diastercomer of 8.

C. Reactions of (DMPP)Mo(CO)₅ with Other Dieneophiles. Since we^{4,5} have recently shown that ruthenium(II) complexes

Table VI. 40.26-MHz ³¹P{¹H} NMR Data^a for LMo(CO), Complexes

compd	$\delta(^{31}\text{P})$, ppm (J_{PP} , Hz)
2a	49.0, 143.4 (17.1)
2Ь	47.2, 142.5 (17.1)
3	-13.3, 53.0, 142.4 (PP', 17.1; P'P", 36.6)
4	53.0, 142.3 (17.1)
5	60.9, 82.7, 146.4 (PP', 17.1; P'P", 22.0)
6	86.6, 146.4 (17.1)
7	50.5, 142.1 (17.1)
8	44.8, 141.7 (22.0)
10	52.62, 159.36 (9.8)

^a In CDCl₃ at 300 K.

of DMPP react with other vinyl donors to form a new class of conformationally rigid asymmetric hemilabile¹⁷ ligands, we wished to determine if similar reactions would also occur with (DMPP)Mo(CO)₅. Reactions of (DMPP)Mo(CO)₅ with phenyl vinyl sulfoxide, phenyl vinyl sulfide, and N,N-dimethylacrylamide generally led to extensive decomposition or, under less vigorous conditions, to no reaction at all. However, after 2 days at reflux in toluene (DMPP)Mo(CO)₅ reacted with phenyl vinyl sulfoxide to produce modest yields of the phosphole self-dimer 10, suggesting a disproportionation or ligand redistribution reaction.

D. Michael Additions of Ph2PH and Ph2AsH to 2b. Michael type additions have extensive use as a basis for the synthesis of polytertiary phosphines:

$$R_2P - H + CH_2 = CHPR_2 \rightarrow R_2PCH_2CH_2PR_2$$

King¹⁸ has shown that addition of secondary phosphines to vinylphosphines is base catalyzed, and Meek and co-workers¹⁹ have shown that these reactions are also free radical catalyzed. Keiter and co-workers²⁰ have studied the same addition reactions and found that they are just as effective when the vinylphosphine is coordinated to a transition-metal carbonyl. More recently, Shaw and co-workers²¹⁻²³ have shown that when activated by coordination to a metal, the vinylidene diphosphine $(Ph_2P)_2C=CH_2$ (Vdpp) undergoes Michael additions with a variety of nucleophiles. On the basis of these precedents, it was anticipated that the 2-vinyl group of complex 2b should also be quite reactive toward Michael additions. Reaction 8 was found to occur readily in good yield

(75%) to produce 3. As expected, the addition occurred only on the 2-vinyl group with no reaction at the hindered 5-ene. It is also of interest to note that addition of Ph₂PH did not directly result in the formation of the tridentate ligand. The triphosphine is present as a bidentate ligand with the added phosphorus behaving as a "dangling arm". This complex can be converted into the fac-tridentate tricarbonyl 5 by refluxing in a high-boiling solvent for a few hours.

A similar addition reaction with Ph₂AsH under free-radical conditions (AIBN catalyst) was not successful; only the starting

- Jeffrey, J. C.; Rauchfuss, T. B. Inorg. Chem. 1979, 18, 2658. King, R. B. Acc. Chem. Res. 1972, 5, 177. (17)
- (18)
- Dubois, D. L.; Myers, W. H.; Meek, D. W. J. Chem. Soc., Dalton (19) Trans. 1975, 1011.
- Keiter, R. L.; Sun, Y. Y.; Brodack, J. W.; Cary, L. W. J. Am. Chem. (20) Soc. 1979, 101, 2638.
- (21) Herring, A. M.; Higgins, S. J.; Jacobsen, G. B.; Shaw, B. L. J. Chem. Soc., Chem. Commun. 1986, 882.
 (22) Cooper, G. R.; Hassan, F.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc., Chem. Commun. 1985, 614.
- Herring, A. M.; Markham, D. P.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc., Chem. Commun. 1987, 643. (23)

⁽¹⁶⁾ Shi, Y.; Gao, Y.; Shi, Q.; Kershner, D. L.; Basolo, F. Organometallics 1987, 6, 1528 and references therein.

Figure 1. 300-MHz ¹H NMR spectra of the norbornene ring protons of 2b in CDCl₃ at 300 K.

material 2b was recovered. The base-catalyzed approach with KOBu^t gave the analogous 4, which was converted to 6, both in good yield.

II. Characterization of the Diels-Alder Adducts. A. Phosphorus NMR and Infrared Spectroscopy. These new compounds show ν_{CO} vibrations that are characteristic of tetracarbonyl and tri-carbonyl systems.²⁴ The ν_{CO} vibrations of **2a** and **2b** are almost identical and cannot be used to distinguish the two diastereomers. Both 5 and 6 exhibit ν_{CO} bands characteristic²⁴ of facial isomers, with none of the meridional isomers being formed.

The ³¹P{¹H} NMR data (Table VI) show that each complex possesses a low-field resonance ($\delta > 141$ ppm) that is diagnostic of the conversion of a phosphole into a 7-phosphanorbornene.^{2-6,10} The other resonances occur in the region (40-60 ppm) that is typical of a phosphorus in a five-membered chelate ring.²⁵ Each of the diastereomers of 2 showed distinct chemical shifts, allowing for easy diastereomer recognition.^{26,27}

For complex 3 there are three different resonances corresponding to the three different phosphorus atoms. The doublet at $\delta = -13.3$ ppm is assigned to the phosphorus on the dangling arm since this is close to the chemical shift of EtPh₂P (-13 ppm).²⁸

The values of ${}^{2}J_{PP}$ (9.8-22 Hz) are somewhat larger than what is normally observed²⁹ for five-membered chelate rings on molybdenum(0). Grim et al.³⁰ have suggested that the observed J_{PP} coupling in a chelated diphosphine complex is a sum of contributions transmitted through the ligand backbone $(J_{PP}(B))$ and through the metal center $(J_{PP}(M))$; i.e., $J_{PP} = J_{PP}(B) + J_{PP}(M)$. Since ${}^{3}J_{PP}$ for the 2-phosphino-7-phosphanorbornene disulfides is nil,^{2,3} it is assumed that ${}^{3}J_{PP}$ will also be zero in the chelate complexes. Thus, the PP couplings observed in compounds 2, 7, 8, and 10 are probably transmitted solely through the metal center³¹ and are probably negative in sign.²⁹ For complexes 3 and 5 there is additional coupling to the third phosphorus. In 3 the dangling-arm phosphorus (P") is coupled only to the 2-phosphino phosphorus (P') by a large through-backbone coupling (36.6 Hz). This coupling seemingly disappears upon coordination of P" to form 5. This can be justified on the basis of Grim's explanations as discussed above. Garrou²⁵ has stated that, in a five-membered chelate ring, the metal $J_{PP}(M)$ and backbone $J_{PP}(B)$ contributions

- (25) Garrou, P. E. Chem. Rev. 1981, 81, 229.
 (26) Payne, N. C.; Stephan, D. W. J. Organomet. Chem. 1981, 221, 20.
 (27) Kyba, E. P.; Pines, S. P. J. Org. Chem. 1982, 47, 400.
- (28)
- Multinuclear NMR; Mason, J., Ed.; Plenum: New York, 1987; p 386. Crumbliss, A. L.; Topping, R. L. In Phosphorus 31 NMR Spectroscopy (29)
- in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH: Deerfield Beach, FL, 1987; pp 531-557. Grim, S. O.; Barth, R. C.; Mitchell, J. D.; Del Gaudio, J. Inorg. Chem. (30)
- 1977, 16, 1776. (31)
- Grim, S. O.; Briggs, W. L.; Barth, R. C.; Tolman, C. A.; Jesson, J. P. Inorg. Chem. 1974, 13, 1095.

Figure 2. 300-MHz ¹H³¹P NMR spectra in the norbornene ring proton region of 2a in CDCl₃ at 300 K: (A) normal ¹H spectrum; (B) decoupling of the 7-phospha phosphorus; (C) decoupling of the 2-phosphino phosphorus.

Figure 3. 300-MHz ¹H{³¹P} NMR spectra in the vinyl proton region of 2a in CDCl₃ at 300 K: (A) normal ¹H spectrum; (B) decoupling of the 7-phospha phosphorus; (C) decoupling of the 2-phosphino phosphorus.

to J_{PP} are almost equal but are of opposite signs, thus leading to a small value of J_{PP} (e.g. in (dppe)Mo(CO)₄, $J_{PP} = -4.0 \text{ Hz}^{29}$).

B. Proton and Carbon NMR Spectroscopy. Assignments of the ¹H and ¹³C chemical shifts were made by comparison with the data reported for similar palladium,²³ platinum,²³ ruthenium,⁴⁵ and nickel⁶ complexes. COSY, HETCOR, and ¹H³¹P decoupling experiments confirmed the assignments for most complexes.

Each proton in the norbornene ring has a line shape that is characteristic of its type (Figure 1). The H₁ and H₅ resonances usually appear as broad singlets, with H₅ being the most downfield of the ring protons. Sometimes both of these protons show additional small coupling to each other and to phosphorus, as is evident in Figure 1 but not in Figure 2. The H₂ resonance appears as a doublet of triple triplets, with the largest coupling being to the 7-phospha phosphorus and nearly equal-magnitude couplings occurring to the 2-phosphino phosphorus and H₄. The H₃ resonance is a doublet of double triplets, with the largest couplings being to the 2-phosphino phosphorus and to H_4 . The H_4 resonance is very complex (Figure 1) and is often obscured by the methyl resonances. For H_4 the largest coupling is to the 7-phospha phosphorus.

The large values of ${}^{3}J_{PH}$ for H₂ and H₄ and the smaller ${}^{3}J_{PH}$ value for H₃ are in keeping with expectations from previous

⁽²⁴⁾ Affandi, S.; Nelson, J. H.; Alcock, N. W.; Howarth, O. W.; Alyea, E. C.; Sheldrick, G. M. Organometallics 1988, 7, 1724.

Figure 4. ORTEP plot of the structure of [2-(phenylvinylphosphino)-5,6dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-5-ene]tetracarbonylmolybdenum(0) (2b) showing the atom-labeling scheme (50% probability ellipsoids). Hydrogen atoms are omitted.

studies.³² The ${}^{3}J_{PH}$ values are also in agreement with Karplus type relationships found for phosphonates.³³

The vinyl protons in 2a and 2b (Figure 3) display the same general splitting as observed for vinylphosphine complexes of palladium and platinum.^{3,11,34}

The relative H_3 chemical shifts readily distinguish the diastereomers 2a and 2b. H_3 lies in the deshielding region of a neighboring magnetically anisotropic phenyl ring for 2a, and as a result its chemical shift lies downfield (2.39 ppm) of that of H_3 in 2b (2.03 ppm).

The ¹³C assignments were accomplished via HETCOR experiments. All complexes except for **5** and **6** display distinct sets of carbonyl ¹³C resonances for the carbonyl groups respectively cis to both phosphorus atoms and trans to one phosphorus atom. The chemical shifts for the trans carbonyls are downfield of those for the cis carbonyls.³⁵ The cis carbonyl resonances appear as triplets and the trans carbonyl resonances as doublets of doublets with the larger ²J_{PC} value being to the trans phosphorus. Both **5** and **6** show carbonyl resonances characteristic of facial L₃-Mo(CO)₃ complexes. For **5** these are each doublets of triplets with the larger ²J_{PC} value to the trans phosphorus. For **6** these are each doublets of doublets, again with the larger ²J_{PC} value to the trans phosphorus.

Each of the ring carbon resonances appears in a region that is typical of its type. The C_3 resonance, a doublet of doublets, is the most upfield except for 10, where it is the most downfield ring resonance. The C_2 and C_1 resonances are also doublets of doublets, while the C_4 resonance is generally a doublet with coupling only to the 7-phospha phosphorus. The larger coupling is to the 7-phospha phosphorus for C_1 , C_3 , and C_4 and to the 2-phosphino phosphorus for C_2 .²⁻⁶

There are distinct sets of phenyl resonances for each carbon type in the complexes that have more than one phenyl group. For example, 3 displays four distinct C_m doublets, the most upfield phenyl resonances. Since 8 has only one phenyl group (the phenyl on the 7-phospha phosphorus), the assignment of its set of phenyl resonances could be used to distinguish these phenyl carbons from the others, assuming that the chemical shifts do not change very much. Similarly, the phenyl carbon resonances for the phenyl groups attached to arsenic in 4 and 6 were readily identified, as

Figure 5. ORTEP plot of the structure of fac-[2-((2-(diphenyl-phosphino)ethyl)phenylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-5-ene]tricarbonylmolybdenum(0) (5) showing the atom-labeling scheme (50% probability ellipsoids). Hydrogen atoms are

they are singlets. In general, however, the phenyl resonances could not be assigned to a particular phenyl group.

omitted.

For complexes **2a** and **2b** there are two vinyl carbon (C_{α} and C_{β}) resonances. C_{α} is always upfield of C_{β} . It is noteworthy that in **2a** C_{α} has a very large coupling to the 2-phosphino phosphorus (~51 Hz) while in **2b** the same coupling is only about 13 Hz. C_{β} has a larger coupling (25-27 Hz) than expected.³⁴

The near-constancy of the proton and carbon NMR data suggests that the general structures are the same for all complexes.

C. Crystal Structure Analysis. In order to gain conclusive support for the structural assignments of diastereomers 2a and 2b and to characterize the new ligand systems, X-ray crystal structures of 2b and 5 were obtained. The structures of these two molecules are shown in Figures 4 and 5, respectively. Both complexes exist as discrete molecules with no abnormal intermolecular contacts. Neither complex contains any element of symmetry. As a result, both complexes are chiral. As can be seen in Figures 4 and 5, the chelate rings are rigid, 2b is the diastereomer i, and 5 is the facial isomer. The phosphanorbornene rings in these molecules have strains similar to those observed in 10 and in a Cr(0) complex.³⁶ This strain can best be examined by considering the angles made by the bridgehead carbons and the 7-phospha phosphorus, which are 80.1 (2) and 79.7 (2)° for 2a and 5, respectively, compared to 79.4 (2)° for 10 and 79.0 (1)° for the Cr(0) complex.³⁶ This angle strain in the [4 + 2] adducts is in part responsible for the downfield position of the 7-phospha phosphorus ³¹P NMR chemical shift.

The coordination geometries of both **2b** and **5** show considerable distortion from regular octahedra. In **2b** the P1-Mo-P2 angle is small (76.38 (2)°), and in **5** the P1-Mo-P2 (75.78 (4)°) and P2-Mo-P3 (78.97 (4)°) angles are small while the P1-Mo-P3 angle (98.30 (4)°) is large.

The Mo-P bond lengths in **2b** are significantly different (2.449 (1), 2.513 (2) Å) and are respectively shorter and longer than those observed¹⁰ for **10** (2.480 (1), 2.470 (1) Å). For both **2b** and **10** the short Mo-P bonds are to the 7-phospha phosphorus, suggesting that it is the better donor. The Mo-CO bond lengths are in the

⁽³²⁾ Quin, L. D. The Heterocyclic Chemistry of Phosphorus; Wiley-Interscience: New York, 1981.

⁽³³⁾ Benezra, C. J. Am. Chem. Soc. 1973, 95, 6890.

 ⁽³⁴⁾ Rahn, J. A.; Holt, M. S.; O'Neil-Johnson, M.; Nelson, J. H. Inorg. Chem. 1988, 27, 1316.
 (25) Chem. P. V. Dubas, C. B. Dubas, P. M. J. (27)

⁽³⁵⁾ Gansow, O. A.; Kimura, B. Y.; Dobson, G. R.; Brown, R. A. J. Am. Chem. Soc. 1971, 93, 5922. Hickey, J. P.; Wilkinson, J. R.; Todd, L. J. J. Organomet. Chem. 1979, 179, 159. Box, J. W.; Gray, G. M. Inorg. Chem. 1987, 26, 2774.

⁽³⁶⁾ Marinetti, A.; Mathey, F.; Fischer, J.; Mitschler, A. J. Chem. Soc., Chem. Commun. 1982, 667.

	10	14.7) 59.22 (27.5, 17.4)		(7.2, 2.48 (12.3, 2.2)	55.55 (5.2, 3.1)	14 08 17 75			7, 5.4) 132.46 (14.1)	133.86 (19.8, 4.4)				(1.01) 88.261		128.22 (7.9)	128.77 (9.9)			128.65	130.90 (1.8)			129.37 (39.5)	(0.6) 0/061 (1) 00021 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ ~	217.00 dd		(24.0, 9.9) (24.0, 9.9)	:
	œ) 56.88 (25.7, 33.73 (21.5	() 32./3 (21.0)	30.48 (18./,	50.64 (9.7)	CH-0C1	20.37 (16.9)	(2.01) (2.07	135.12 (23.7				130.82 (10.4			128.13 (8.3)				129.13					208 01 + 70	210.92 t (9.		215.62 dd	5.7, (2.52)	(23.3, 9.0	
	2	56.79 (24.9, 14.6	2.00, U.22) 00.00	(8.8, 0.61) / C.15	50.53 (19.0)	72.001	(n·+1 'n/·c1		134.50 (25.5, 5.2	135.13 (30.0)	136.80 (31.6)		(10.3) (10.3)	(0.21) 62.161	(128.12 (8.5)	128.58 (8.5)	128.69 (8.3)		129.21	129.69	130.02 (1.4)			208 01 + (8 3)	210.93 t (9.0)		215.76 dd	(23.9, 10.0)	(24.9, 7.6)	
	9	54.45 (22.1, 12.4)	20.24 (19.2, 37.9)	(0.01, 0.21) / 93.66	52.15 (21.5)	21./21 7 2 1 4 9 7	28 75 (35 8)	28.76	134.54 (19.5, 6.2)	135.04 (29.2, 2.5)	138.32 (2.0)	140.30 (3.9)	131.06	(/.01) 1C.161	133 43 (137)	(1.51) (2.52)	128.38 (11.9)	128.81	128.87	128.66	128.46	129.02	130.45		221 20 dd (24 2 0 1)	222.76 dd (7.5, 3.4)	223.01 dd (20.6, 9.0)				•
δ(¹³ C) (J _{PC})	5	53.33 (21.8, 12.1)	(9.16, 4.41) 10.00	(0.61, 27.72) 45.15	52.79 (21.6, 3.5)	12 27 14 02	(911 911) (2 11	28.69 (17.4, 17.4)	134.33 (17.5, 5.1)	135.16 (28.3)	137.97 (25.0)	(5.55) 55.961	(11.9) (11.9)	(11.9) 04.151 131 06 (11.0)	(2:11) 02:121 (2:11) 02:121	127.50 (7.9)	128.08 (9.0)	128.50 (8.9)	128.70 (10.0)	128.37	128.76	128.95	130.39		221 27 dt (23 2 10 2)	222.06 dt (26.4, 11.8)	223.10 dt (30.0, 9.9)				:
	4	56.09 (25.9, 14.4) 24.02 (10.7, 25.4)	04.92 (19.7, 50.4)	32.10 (18.2, /.3)	50.17 (19.2)	12 10.00	20.78 (1), 17.72	29.01 (13.6)	132.56 (29.4, 1.7)	134.60 (25.5, 5.4)	130.10	130.28	(10.4) (10.4)	132.49 137.06	133 38 (12 0)	128.21 (9.7)	128.63	128.66	128.72 (10.3)	128.47	128.63	129.25	130.54 (1.3)		200 52 + (0 0)	210.30 t (9.5)		215.46 dd	(24.6, 7.8)	(23:4, 8.2)	
	3	56.17 (25.8, 14.2) 25.15 (20.2, 25.0)	(0.05, 5.02) 51.05	32.13 (18.1, 1.3)	50.22 (19.2)	13 36 14 01	21 00 (15 3)	28.52 (17.5, 14.9)	132.57 (27.9)	134.61 (25.6, 5.2)	137.62 (43.5)	131.79 (43.3)	130.76 (10.4)	132.19 (17.9)	(0.61) 78.761 (1.61) 78 881	128.21 (8.4)	128.51 (5.7)	128.54 (6.6)	128.77 (10.0)	128.55	128.84	129.27	130.60 (1.4)		200 42 4 (0 1)	210.30 t (9.4)		215.35 dd	(16.8, 7.8) 218 15 44	(23.6, 9.2)	
	2b	56.46 (25.9, 15.0)	33.47 (24.2, 34.7)	30.86 (18.4, 1.9)	50.63 (19.4, 4.9)	13 81 14 64			134.60 (20.0, 5.1)	134.85 (29.8)			130./1 (10.6)	(/·II) c/·IfI		128.16 (7.9)	128.84 (8.5)	~		129.22	130.17			132.83 (13.2) 134 95 (77 6)	(0.12) (0.14)	211.08 t (9.3)		215.73 dd	(67, 77, 71) 117 71 44	(23.3, 9.6)	
	2a	56.88 (26.0, 14.9) 25.01 (23.7, 25.0)		31.38 (18.2, 8.4)	50.51 (19.0)	13 74 14 66			133.19 (32.2)	134.66 (25.8, 10.2)			130./8 (10.4)	(ð.cl) 44 (l.s.ð)		128.22 (8.5)	128.77 (9.7)			129.27	130.47			130.20 (51.2)	00 14 1 (0 U)	210.66 t (9.1)		215.73 dd	(24.6, 7.4) 717 65 44	(23.4, 9.1)	
	position	ບັບ	5u	،ر	ປັບ	226 2 6-0 H	CH.	2002	Ű			G	ڻ			J	Ē			പ	-			ບັບ	ر. م	Since is		CO _{ltans}			

Table VII. 75-MHz ¹³C^{{1}H} NMR Data for LMo(CO)_n Complexes^a

normal range. The structural results show that the bonding of these new rigid chiral ligands to Mo(0) is typical of bidentate and tridentate phosphines in five-membered chelate rings.

Acknowledgment. The financial assistance of the donors of the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged.

Registry No. 1, 74363-92-1; 2a, 123642-42-2; 2b, 123749-01-9; 3, 123642-43-3; 4, 123642-44-4; 5, 123642-45-5; 6, 123642-46-6; 7, 123642-47-7; 8, 123642-48-8; 9, 72868-88-3; 10, 74364-03-7; DMPP, 30540-36-4; Et₂VyP, 13652-21-6; Ph₂P(CH=CH₂), 2155-96-6; PhP-(CH=CH₂)₂, 26681-88-9; Ph₂PH, 829-85-6; Ph₂ÅsH, 829-83-4; molybdenum hexacarbonyl, 13939-06-5; [2-(phenylvinylphosphino)-5,6-dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-5-ene (isomer a), 123642-41-1.

Supplementary Material Available: For the two structure studies, listings of crystal and refinement data, bond distances and angles, H atom coordinates, and thermal parameters (U) (12 pages); listings of observed and calculated structure factors (×10) (24 pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Synthetic and Mechanistic Investigations of the Reactions of Organic Nitriles with Thiazyl Chloride and the Thermolysis of 1,3-Dichloro-1,3,2,4,6-dithiatriazines

Allen Apblett and Tristram Chivers*

Received April 25, 1989

The reaction of organic nitriles with (NSCl)₃ at 23 °C produces good yields of the six-membered rings RCN₃S₂Cl₂ (2, R = ¹Bu, CCl_3 , Ph) in the absence of a solvent or 2 ($\tilde{R} = Me_2N$, Et_2N , Pr_2N) in chloroform. The reaction is complete in a few days for $R = R'_2N$, but it requires several weeks for the other derivatives. For R = Ph and 'Bu the formation of 2 is accompanied by smaller amounts of the five-membered ring $RCN_2S_2^+Cl^-(1)$. The reaction rate is accelerated by UV irradiation, although the yields of 2 are lower. A red intermediate in the reaction of Me_2NCN with 2 mol of NSCl is tentatively identified as $Me_2NCNS(Cl)N$ on the basis of ¹H, ¹³C, and ¹⁴N NMR spectroscopy. The thermolysis of 2 ($R = {}^{4}Bu$, CCl₃, Ph, Me₂N, Et₂N, ${}^{i}Pr_{2}N$) generates 1 in excellent yields. This ring contraction is shown by ¹⁴N NMR spectroscopy to occur at temperatures ranging from 40 °C $(R = {}^{t}Bu)$ to 110 °C $(R = Me_2N)$ and by ${}^{1}H$ NMR spectroscopy to be second-order. A mechanism for the conversion of 2 into 1 is proposed. The reaction of Me2NCN with NSCl in a 1:1 molar ratio at 23 °C in CCl4 produces the eight-membered ring $1.3-(Me_2NC)_2N_4S_2Cl_2$ (8, R = NMe₂), in 80% yield, whereas a mixture of 8 and Me₂NCN₄S₃Cl is obtained in nitromethane.

Introduction

The first investigations of the reactions of organic nitriles RCN $(R = {}^{t}Bu, CCl_{3}, Ph)$ with (NSCl)₃ were carried out at $\geq 60 {}^{\circ}C$ and led to the isolation of the corresponding 1,2,3,5-dithiadiazolium chloride (1) in $\leq 50\%$ yields.¹ Subsequently, the reaction of

CF₃CN with (NSCl)₃ at 50 °C in an autoclave was reported to give 1 (R = CF₃) as the major product (45%) with the 1,3-dichloro-1,3,2,4,6-dithiatriazine $(2, R = CF_3)$, as a minor product (21%).² By contrast, we found that 2 (R = Me₂N, Et₂N, ⁱPr₂N) is obtained in >80% yields by the cycloaddition reaction of the corresponding dialkylcyanamide, R2NCN, with two NSCI units generated from dilute solutions of (NSCl)₃ in CCl₄ at 60 °C.³ It is not clear from these results whether the difference in the identity of the products from the RCN-(NSCl)₃ reaction is determined by variations in the reaction conditions or by the nature of the R group (or both).

The synthesis, structures, and properties of the seven- π -electron 1,2,3,5-dithiadiazolyl radicals (3)⁴⁻⁷ and the eight- π -electron

- (1) (a) Alange, G. G.; Banister, A. J.; Bell, B.; Millen, P. W. Inorg. Nucl. Chem. Lett. 1977, 13, 143. (b) Alange, G. G.; Banister, A. J.; Bell, B.; Millen, P. W. J. Chem. Soc., Perkin Trans. 1 1979, 1192.
- (2) Höfs, H. U.; Hartmann, G.; Mews, R.; Sheldrick, G. M. Z. Naturforsch. B 1984, 39B, 1389.
 (3) Chivers, T.; Richardson, J. F.; Smith, N. R. M. Inorg. Chem. 1986, 25,
- (4) (a) Brooks, W. V. F.; Burford, N.; Passmore, J.; Schriver, M. J.; Sutcliffe, L. H. J. Chem. Soc., Chem. Commun. 1987, 69. (b) Burford, N.; Passmore, J.; Schriver, M. J. J. Chem. Soc., Chem. Commun. 1986, 140

Table I. ¹⁴N NMR Chemical Shifts for RCN₃S₂Cl₂ (2)^a

R	$\delta(N)^b$	δ(N) ^c	$\delta(R_2N)$	
Me ₂ N	-211	-263	-211	
Et_2N	-213	240	-213	
Pr ₂ N	-205	-241	-220	
Cl ₃ C	-181	-248		
^t Bu	-191	-242		
Ph	-196	-237		

^{*a*} In CH_2Cl_2 . Chemical shifts are relative to $MeNO_2(l)$. ^{*b*} The two equivalent ring nitrogen atoms. ^cThe unique ring nitrogen atom.

1,3,2,4,6-dithiatriazines $(4)^{2,8-12}$ are of current interest, and these ring systems are usually prepared by the reduction of 1 and 2, respectively.13 Consequently, we have examined several RCN-(NSCl), systems in detail in order to (a) determine the effect of the R group on the outcome of the reaction, (b) establish the appropriate reaction conditions for the synthesis of 1 and 2, (c) elucidate the mechanism of the RCN-(NSCl)_x cycloaddition reaction, and (d) identify any other products that may be formed

- Höfs, H. V.; Bats, J. W.; Gleiter, R.; Hartmann, G.; Mews, R.; Ec-(5) kert-Maksic, M.; Oberhammer, H.; Sheldrick, G. M. Chem. Ber. 1985, 118, 3781.
- (6) Vegas, A.; Perez-Salazar, A.; Banister, A. J.; Hey, R. G. J. Chem. Soc., Dalton Trans. 1980, 1812. (7) Boerê, R. T.; Oakley, R. T.; Reed, R. W.; Westwood, N. P. C. J. Am.
- (b) Boerë, R. T.; Cordes, A. W.; Oakley, R. T. J. Chem. Soc., Chem. Commun. 1985, 929. (b) Boerë, R. T.; French, C. L.; Oakley, R. T.; Cordes, A. W.; Privett, J. A. J.; Craig, S. L.; Graham, J. B. J. Am. Chem. Soc. 1985, 107, 7710
- (1) Horrs, T.; Edelmann, F.; Richardson, J. F.; Smith, N. R. M.; Treu, O., Jr.; Trsic, M. Inorg. Chem. 1986, 25, 2119.
 (10) Banister, A. J.; Hansford, M. I.; Hauptman, Z. V. J. Chem. Soc., Chem. Commun. 1987, 63.
 (11) Hoffmener, B. E.; Chen, W. T.; Coddard, I. D.; Oaklay, B. T. Car, J.
- (11) Hoffmeyer, R. E.; Chan, W. T.; Goddard, J. D.; Oakley, R. T. Can. J. Chem. 1988, 66, 2279.
- (12)
- Oakley, R. T. Prog. Inorg. Chem. 1988, 36, 1. The synthesis of 4 by the direct insertion of plasma-generated nitrogen atoms into the S-S bond of 3 has been reported, but this reaction appears to be limited to aryl derivatives.¹⁰