Electronic Structure Study of the Formal Oxidation States of Thallium, Lead, and Bismuth in the $ASr_2Ca_{n-1}Cu_nO_{2n+3}$ **Superconductors (A =** $Tl_{0.5}Pb_{0.5}$ **,** $Tl_{0.5}Bi_{0.5}$ **)**

D. B. Kang, D. Jung, and M.-H. Whangbo*

Received June 28, I989

We examined the formal oxidation states of Pb and Bi in the single rock salt layer superconductors $ASr_2Ca_{n-1}Cu_nO_{2n+3}$ (A = $T_{0.5}P_{0.5}$, $T_{10.5}B_{10.5}$; $n = 2.3$) by performing tight-binding band electronic structure calculations on the distorted AO₃ layers and also molecular orbital calculations on the distorted $AO₆$ octahedra. Our results show that the most likely oxidation state of Pb is +4, and that of Bi is either +3 or +5. The similarities in the T_c values of $(Tl_0sPb_0s)Sr_2CaCu_2O_7$ and $(Tl_0sBi_0s)Sr_2CaCu_2O_7$ suggest that the Bi atoms of **(Tlo,5Bio.5)Ca,~Cu,02n+3** are half in the +3 and half in the +5 oxidation states. Thus the Pb and Bi atoms of $ASr_2Ca_{n-1}Cu_nO_{2n+3}$ lower the copper oxidation state with respect to that of TIBa₂Ca_{n-1}Cu_nO_{2n+3}.

The members of the homologous copper oxide superconducting series $A_m B_2 C a_{n-1} C u_n O_{2n+m+2}$ (A = Tl, Bi; B = Ba, Sr; *m* = 1,2; $n = 1-3$ ¹ contain perovskite Cu-O layers and rock salt A-O layers as their structural building blocks. The *m* values are 1 and **2** when these compounds have single and double rock salt A-0 layers, respectively. For $B = Ba$ both single and double rock salt layer compounds are known when $A = TI$, while for $B = Sr$ only double rock salt layer compounds are found when $A = Bi$. Single rock salt layer compounds with $B = Sr$, i.e., $ASr_2Ca_{n-1}Cu_nO_{2n+3}$, are obtained if A is a mixture such as $Tl_{0.5}Pb_{0.5}$ or $Tl_{0.5}Bi_{0.5}.^{2,3}$ The superconducting transition temperatures T_c of these phases are relatively high: the T_c (zero resistivity) values of $(Tl_{0.5}Pb_{0.5})Sr_2CaCu_2O_7$, $(Tl_{0.5}Bi_{0.5})Sr_2CaCu_2O_7$, and $(Tl_{0.5} Pb_{0.5}$)Sr₂Ca₂Cu₃O₉ are 82, 90, and 114 K, respectively.

A recent band electronic structure study⁴ has shown that the TI 6s-block bands of TIBa₂Ca_{n-1}Cu_nO_{2n+3} lie well above the Fermi level (i.e., the formal oxidation state of Tl is $+3$) and thus do not remove electrons from the CuO₂ layer $x^2 - y^2$ bands. Namely, the single rock salt Tl-O layers of TlBa₂Ca_{n-1}Cu_nO_{2n+3} do not act as a hole source.⁴ This finding is consistent with the observation that the copper oxidation state of stoichiometric TlBa₂Ca_{n-1}Cu_nO_{2n+3} is already so high (e.g., +3.00, +2.50, and +2.33 for $n = 1-3$, respectively, if the oxidation states of $T1^{3+}$, Ba²⁺, Ca²⁺, and O²⁻ are assumed) that electron removal from the $CuO₂$ layers by the single rock salt Tl-O layers seems unnecessary. The single rock salt A-O layer of $ASr_2Ca_{n-1}Cu_nO_{2n+3}$ (A = $Tl_{0.5}Pb_{0.5}$, $Tl_{0.5}Bi_{0.5}$) is similar in structure to the corresponding layer of TlBa₂Ca_{n-1}Cu_nO_{2n+3}, so that the Tl oxidation state in $\text{AST}_2\text{Ca}_{n-1}\text{Cu}_n\text{O}_{2n+3}$ is expected to be +3. In understanding the superconductivity of the $ASr_2Ca_{n-1}Cu_nO_{2n+3}$ series, it is crucial to know the formal oxidation states of their Pb and Bi atoms since they provide information concerning whether or not the role of the Pb and Bi atoms in $ASr_2Ca_{n-1}Cu_nO_{2n+3}$ (A = Tl_{0.5}Pb_{0.5}, $Tl_{0.5}Bi_{0.5}$) is to reduce the copper oxidation state with respect to that in TIBa₂Ca_{n-1}Cu_nO_{2n+3}. In the present work, we probe this question by carrying out tight-binding band electronic structure calculations⁵ on several model rock salt A-O layers and also molecular orbital calculations on model $AO₆$ clusters of $ASr₂Ca_{n-1}Cu_nO_{2n+3}$ within the framework of the extended Hückel method.6 The atomic parameters employed in the present study are summarized in Table I.

- (1) For reviews. see: (a) Sleight, **A.** W. *Science* **1988,** *242,* 1519. (b) Sleight, A. **W.;** Subramanian, M. **A,;** Torardi, *C . C . Mater. Res. Bull. 1989, 14,* **45.**
- Subramanian, M. A.; Torardi, C. *C.;* Gopalakrishnan, J.; Gai, P. L.; Calabrese, **J.** C.; Askew, T. R.; Flippen, R. B.; Sleight, A. W. *Science* **1988,** *242,* **249.**
- Li, **S.;** Greenblatt, M. *Physica* **C 1989,** *157,* **365.**
- Jung, D.; Whangbo, M.-H.; Herron, N.; Torardi, *C.* C. *Physica* **C 1989,** *160,* **381.**
- Whangbo, M.-H.; Hoffmann, R. *J. Am. Chem. SOC.* **1978,100,6093.** Hoffmann, R. *J. Chem. Phys.* **1963,** *39,* **1397. A** modified Wolfsberg-Helmholz formula was used to calculate the off-diagonal *Hi* values: Ammeter, J.H.; Biirgi, **H.-B.;** Thibeault, J.; Hoffmann, R. *J(Am. Chem. SOC.* **1978,** *100,* 3686.

Table I. Atomic Parameters Used in the Calculations

atom	orbital	H_{ii} , eV	$\zeta_1^{\,a}$	ζ_2^a	$c_1^{\ b}$	$c_2^{\ b}$	
T1	6s	-16.2	2.37				
	6p	-9.0	1.97				
Pb	6s	-18.7	2.57				
	6р	-10.8	2.13				
Bi	6s	-21.2	2.76				
	6p	-12.6	2.29				
Cu	4 _S	-11.4	2.20				
	4p	-6.06	2.20				
	3d	-14.0	5.95	2.30	0.5933	0.5744	
Ω	2s	-32.3	2.275				
	2p	-14.8	2.275				

^a Slater type orbital exponents. ^b Contraction coefficients of a double- ζ expansion.

Distortion of the Single Rock Salt A03 Layer

The AO₃ layer of $ASr_2Ca_{n-1}Cu_nO_{2n+3}$ can be constructed in terms of $A\ddot{O}_6$ octahedra upon sharing the octahedral edges of their equatorial oxygen (O_{α}) atoms. The single rock salt $A-O_{\alpha}$ sheet of the AO, layer is shown in **1.** The axial oxygen atoms **(Oax)**

of the $AO₃$ layer are shared with the Cu atoms of the neighboring perovskite CuO₂ layers 2 to form linear A-O_{ax}-Cu linkages perpendicular to the CuO₂ sheet. When the $A-O_{eq}$ sheet of an ideal $AO₃$ layer is represented by 3a, the positions of A and O_{eq}

in the distorted AO₃ layer (as found in $\text{ASr}_2\text{Ca}_{n-1}\text{Cu}_n\text{O}_{2n+3}$ with $A = Tl_{0.5}Pb_{0.5}$ for $n = 2$ and 3) are each given by four split positions as shown in **3b** around the ideal positions of **3a.2** Previous band electronic structure calculations on $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}^7$

^{~ ~~~~ ~~} **(7)** Ren, **J,** Jung, D., Whangbo, M -H; Tarascon, J -M, Le Page, **Y,** Torardi, *C C Physica* **C** *1989, 158,* **501;** *1989, 159,* **¹⁵¹**

and $Tl_mBa_2Ca_{n-1}Cu_nO_{2n+m+2}$ ⁴ showed that such rock salt layer distortions have profound effects on the positions of the rock salt layer bands (e.g., Bi 6p- and TI 6s-block bands) with respect to the Fermi level and therefore on the hole concentration in the $CuO₂$ layers. Thus in electronic structure calculations on $ASr₂Ca_{n-1}Cu_nO_{2n+3}$, it is necessary to consider several model structures of the $AO₃$ layer that can be generated by choosing one of the four positions for A and O_{eq} . Since the nature and the extent of the AO_3 layer distortions in $(Tl_{0.5}Pb_{0.5})Sr_2CaCu_2O_7$ and $(Tl_{0.5}Pb_{0.5})Sr_2Ca_2Cu_3O_9$ are almost the same,² we construct several model structures of the A0, layer on the basis of the crystal structure of $(Tl_{0.5}Pb_{0.5})Sr_2Ca_2Cu_3O_7$.² The arrangement of four $O_{\alpha q}$ atoms around A in the ideal AO_3 layer is given by **4a** $(A-O_{\alpha q})$

= 2.69 **A).** The arrangements **4b,c** are two examples in which the A-O_{eq} bonds are longer than those of **4a** $(A-\dot{O}_{eq}) = 2.97$ Å in **4b;** A-3, = 2.82 and **3.17 A** in **4c).** Likewise, **4d** and **4e** are two examples in which the $A-O_{\epsilon 0}$ bonds are shorter compared with those of **4a** $(A - O_{eq} = 2.44 \text{ Å} \text{ in } 4d; A - O_{eq} = 2.25 \text{ and } 2.61$ **A** in **4e).** Though not shown, there exist many other possible arrangements that lie between the above extremes.

In constructing the ideal and the distorted structures of the AO, layers of $ASr_2Ca_{n-1}Cu_nO_{2n+3}$, it is necessary to consider how to distribute two different cations in the $AO₃$ layers (e.g.: Tl and Pb; Tl and Bi). **5a-c** are three simple A-O_{eq} sheet patterns

examined in our study, where unit cells are shown by dashed lines. **5a,c** have four A sites per unit cell, and **5b** has two **A** sites per unit cell. In the ideal pattern **5a,** all A sites have equal **A-0** bonds. **5b** has two nonequivalent A sites, one with four short and the other with four long $A-O_{eq}$ bonds. **5c** has three nonequivalent **A** sites, one with four short, one with two short and two long, and one with four long **A-0,** bonds. To simulate the distorted **A0,** layers with $A = Tl_{0.5}Pb_{0.5}$ or $Tl_{0.5}Bi_{0.5}$, we distribute the Tl and **M** (=Pb or **Bi)** atoms as shown in **5a-c,** where the large empty and filled circles represent TI and **M** atoms respectively. Certainly, there are many other possible $A-O_{eq}$ sheet patterns and Tl/M atom distributions, but the three examples **5a-c** are sufficient for

Figure 1. 6s-block levels calculated for the AO_6 octahedra $(A = Tl, Pb,$ Bi) with the **A-0,** arrangements of (a) **4a,** (b) **4b,** (e) **4c,** (d) **4d,** and (e) **4e.** In each column a-e, the top, the middle, and the bottom levels refer to the 6s-block levels of TI, Pb, and Bi, respectively.

our purposes as will be discussed later.

Electronic Structure

In copper oxide superconductors, the highest occupied bands (i.e., the $x^2 - y^2$ bands) of the CuO₂ perovskite layers are primarily constructed from the $x^2 - y^2$ orbitals of the copper atoms and the p orbitals of the in-plane oxygen atoms. The $x^2 - y^2$ orbital of copper is a δ orbital with respect to the Cu-O_{ax}-A axis, so that the $x^2 - y^2$ orbital practically does not overlap with any orbital of O_{ax} and A. Consequently, the $x^2 - y^2$ bands of the CuO₂ layers do not have any orbital contribution from the A-O **rock** salt layers. Likewise, the **s-** and p-block bands of the A-0 rock salt layers have no $x^2 - y^2$ orbital contribution from the CuO₂ perovskite layers. Therefore, the **s-** and p-block bands of the A-O rock salt layers are essentially the same regardless of whether they are calculated for the whole crystal lattice including the $CuO₂$ perovskite layers or for an isolated A-O rock salt layer. For simplicity of calculations, we adopt the latter approach in our study.

A. A06 Octahedra. We performed molecular orbital calculations on a number of $AO₆$ octahedra (A = Tl, Pb, Bi) to examine how their 6s-block levels are affected by the $A-O_{eq}$ sheet distortions in the AO, layer. The 6s-block levels of the **A06** octahedra having the **A-0,** bond arrangements **4a-e** are shown in Figure 1, where the Fermi level of the half-filled $x^2 - y^2$ bands of the CuO₂ layers (taken from $ASr_2Ca_2Cu_3O_9^2$) is shown by the dashed line. The essential features of Figure 1 can be summarized as follows: (a) With respect to the ideal AO₆ octahedron **4a**, shortening and lengthening of the **A-0,** bonds lead to higher and lower lying 6s-block levels, respectively, for all $AO₆$ ($A = TI$, Pb, Bi). This reflects the fact that the 6s-block levels of $AO₆$ octahedra are antibonding in the A-0 bonds. (b) The 6s-block levels of TI and Pb are well above the Fermi level even when the surrounding A- O_{eq} (A = Tl, Pb) bonds are long. Thus the most likely oxidation states of Tl and Pb are $+3$ and $+4$, respectively (i.e., their 6s-block levels are not occupied). (c) The 6s-block level of Bi lies below or close to the Fermi level for the AO₆ octahedra with long A-O_{eq} bonds but well above the Fermi level for those with short **A-0,** bonds. Thus the Bi oxidation state can be either $+3$ (i.e., the 6s-block band is filled) or $+5$ (i.e., the 6s-block band is empty) depending upon the coordinate environment of Bi.

B. AO₃ Layers. As described in the previous section, the 6s-block levels of the $AO₆$ (A = Tl, Pb, Bi) octahedra lie generally high in energy. Of the elements TI, Pb, and Bi, the atom Bi is most electronegative and has the most contracted atomic orbitals. Given the same A-O_{eq} bonds, the lowest lying 6s-block level of $AO₆$ occurs for $A = Bi$. Even for this case, the 6s-block level lies below the Fermi level only when the $Bi-O_{eq}$ bonds are long. Thus in our band electronic structure calculations on the **AO,** layers $(A = Tl_{0.5}Pb_{0.5}, Tl_{0.5}Bi_{0.5})$, it is important to examine whether or not the lowest lying possible 6s-block bands originating from M (=Pb, Bi) lie below the Fermi level. Consequently, we calculate the band electronic structures of the AO_3 layers having the $A-O_{eq}$ sheet patterns 5a-c. In the ideal pattern 5a, each M is surrounded by four TI atoms, and each **TI** by four **M** atoms. In the distorted pattern **5b,** all **M** and TI atoms are located at the sites with four long and four short A-O_{sq} bonds, respectively. In 5c all Tl atoms are placed at the sites with two short and two long $A - O_{eq}$ bonds, while the M atoms are half at the sites with four long $A-O_{eq}$ bonds and half at those with four short $A-O_{eq}$ bonds.

Figure 2. Band electronic structures calculated for the $(Tl_{0.5}Pb_{0.5})O_3$ layer with the A-O_{eq} sheet patterns of (a) 5a, (b) 5b, and (c) 5c. The dashed line refers to the Fermi level of the half-filled CuO₂ layer x^2 *y2* bands. **In** units of the reciprocal vectors **a*** and **b*,** the wave vector points Γ , *X*, and *M* are given as follows: $\Gamma = (0,0)$, $X = (\mathbf{a}^*/2, 0)$, and $M = (\mathbf{a}^*/2, \mathbf{b}^*/2).$

Parts a-c of Figure **2** show the band electronic structures calculated for the AO_3 layers ($A = TI_{0.5}Pb_{0.5}$) having the $A-O_{\infty}$ sheet patterns **Sa-c,** respectively, where all the bands have the Pb character. The bands having the TI character lie above these Pb bands, and are not shown. In all three cases, the 6s-block bands of both TI and Pb lie above the Fermi level. **In** agreement with the results of the molecular orbital calculations on the $AO₆$ octahedra, therefore, the oxidation states of TI and Pb in $(Tl_{0.5}Pb_{0.5})Sr_2Ca_{n-1}Cu_nO_{2n+3}$ are expected to be +3 and +4, respectively. This conclusion is supported by the recent X-ray absorption study,8 which showed that the X-ray absorption near-edge spectra of $(Tl_{0.5}Pb_{0.5})Sr_2Ca_{n-1}Cu_nO_{2n+3}$ $(n = 2, 3)$ are consistent with formal oxidation states of **+4** and +3 for Pb and TI, respectively.

Parts a-c of Figure 3 show the band electronic structures calculated for the AO₃ layers (A = $Tl_{0.5}Bi_{0.5}$) with the A-O_{eq} sheet patterns **5s-c,** respectively, where all the bands have the Bi character. The bands having the TI character lie above these Bi bands, and are not shown. In all cases the TI 6s-block bands lie above the Fermi level. For patterns **Ja,b,** the Bi 6s-block bands lie above and below the Fermi level, respectively. With the $A-O_{\alpha}$ sheet pattern **Jc,** the only occupied 6s-block band originates from the Bi sites with four long Bi-O_{eq} bonds. Therefore, in $(Tl_{0.5}Bi_{0.5})Sr_2Ca_{n-1}Cu_nO_{2n+3}$, the TI oxidation state is expected to be $+3$. The Bi oxidation state is expected to be $+3$ in the most favorable case, when Bi is surrounded by four long $Bi-O_{\infty}$ bonds but *+5* in other cases.

Figure 3. Band electronic structures calculated for the $(Tl_{0.5}Bi_{0.5})O_3$ layer with the **A-0,** sheet patterns of (a) **Sa, (b) 5b,** and (c) **5c.**

Discussion and Concluding Remarks

The oxidation state of the copper atom in the stoichiometric series TlBa₂Ca_{n-1}Cu_nO_{2n+3} can be written as Cu³⁺(Cu²⁺)_{n-1}, given the usual oxidation states of other elements. Since the most likely oxidation state of Pb is $+4$ in $(Tl_{0.5}Pb_{0.5})Sr_2Ca_{n-1}Cu_nO_{2n+3}$, the copper oxidation state of this compound is given by $Cu^{2.5+}$.
 $(Cu^{2+})_{n-1}$. The copper oxidation state of The copper oxidation state of $(Tl_{0.5}Bi_{0.5})Sr_2Ca_{n-1}Cu_nO_{2n+3}$ is also written as $Cu^{2.5+}(Cu^{2+})_{n-1}$ if the average oxidation state of Bi is **+4.** According to our study, this is possible via the Bi^{3+}/Bi^{5+} mixed valence, provided that half the Bi atoms of the $(Tl_{0.5}Bi_{0.5})O_3$ layer are at the sites with four long Bi-O_{gg} bonds. In such a case, $(Tl_{0.5}Pb_{0.5})Sr_2CaCu_2O_7$ and $(Tl_0,Bi_0s)Sr_2CaCu_2O_7$ would have similar hole densities (n_H) in their CuO₂ layers, and hence would have similar T_c values according to the empirical relationship $T_c \propto n_H$ (underdoped region).⁹ In fact, the two compounds have similar T_c values (i.e., 82 vs 90) **K).293** It will be of interest to experimentally verify the presence of Bi^{3+}/Bi^{5+} mixed valence in $(Tl_{0.5}Bi_{0.5})Sr_2CaCu_2O_7$. Finally we note that the Pb and Bi atoms of $ASr_2Ca_{n-1}Cu_nO_{2n+3}$ reduce the average oxidation state of Cu with respect to that in $TIBa_2Ca_{n-1}Cu_nO_{2n+3}$. This result supports the experimental deduction3 that the Pb and Bi atoms in the Sr-containing copper oxide superconductors play the role of lowering the copper oxidation state, thereby stabilizing the phases.

Acknowledgment. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, **US.** Department of Energy, under Grant DE-FG05-86ER45259. D.B.K. thanks the Korea Science and Engineering Foundation for the financial support making it possible to visit North Carolina State University. We thank Dr. C. C. Torardi for invaluable discussion.

⁽⁸⁾ Parise, J. B.; Gai, P. L.; Subramanian, M. **A.;** Gopalakrishnan, J.; Sleight, **A.** W. *Physica* **C 1989,** *159,* **245.**

^{(9,} Whangbo, **M.-H.;** Kang, D. B.; Torardi, C. C. *Physica C* **1989,** *158,* **371.**