Efficient Catalytic Systems for Electron Transfer from an NADH Model Compound to Dioxygen

Shunichi Fukuzumi,*,1ª Seiji Mochizuki, and Toshio Tanaka1b

Received November 28, 1988

Two-electron reduction of dioxygen with an NADH model compound, 10-methylacridan (AcrH₂), occurs efficiently in the presence of metalloporphyrins and perchloric acid in acetonitrile at 298 K. Overall four-electron reduction of dioxygen by AcrH₂ has also been made possible by adding iodide ion to the metalloporphyrin-catalyzed system. The catalytic mechanisms are discussed on the basis of detailed kinetics and the kinetic isotope effects for the overall CoTPP⁺-catalyzed reduction of dioxygen by $AcrH_2$ as well as for each half catalytic cycle, the oxidation of AcrH₂ by CoTPP⁺ and the reduction of dioxygen by CoTPP in the presence of HClO₄.

Reduced nicotinamide adenine dinucleotide (NADH) plays a vital role as the electron source in the respiratory chain, where the four-electron reduction of dioxygen by NADH is accompanied by a large free energy change that is coupled to the generation of the H⁺ electrochemical gradient $(\Delta \mu_{H^+})$.² This protonic energy is utilized for ATP synthesis, ion translocation, and protein importation to satisfy the energy requirement of the cell.³ The NADH plays another vital role as the electron source in the respiratory burst in polymorphonuclear neutrophils (PMN), in which a number of membrane stimulants enhance the two-electron (or one-electron) reduction of dioxygen to produce H_2O_2 (or O_2^{-}) in order to combat infections.⁴ In the two-electron and fourelectron reduction to dioxygen by NADH in the mitochondria and the PMN plasma membrane, respectively, iron porphyrins are known to be important components of the electron transport systems.2-4

On the other hand, metalloporphyrin-catalyzed reduction of dioxygen has been extensively studied in the electrochemical system in conjunction with the search for an inexpensive cathode material for dioxygen fuel cell,⁵ and four-electron reduction of dioxygen to water has been achieved by using various dimeric metalloporphyrins⁶ as well as monomeric indium porphyrins.⁷ However, no efficient catalytic electron-transfer system has so far been reported for two-electron or four-electron reduction of dioxygen by NADH model compounds,8 although electrochemical oxidation

- (a) To whom correspondence should be addressed. (b) Current address: (1)Department of Applied Physics and Chemistry, Fukui Institute of Technology, Fukui 910, Japan.
- (a) Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J. (2)D. Molecular Biology of the Cell; Garland Publishing Inc.: New York, 1983. (b) Capaldi, R. A., Ed. Membrane Proteins in Energy Trans-duction; Dekker: New York, 1979.
- (a) Hatefi, Y. Annu. Rev. Biochem. 1985, 54, 1015. (b) Hassinen, I. (3) E. Biochim. Biophys. Acta 1986, 853, 135.
- (4) (a) Badwey, J. A.; Karnovsky, M. L. Annu. Rev. Biochem. 1980, 49, 695. (b) Gimenez-Gallego, G.; Benavides, J.; Garcia, M. L.; Valdivieso, F. Biochemistry 1980, 19, 4834. (c) Light, D. R.; Walsh, C.; O'Callaghan, A. M.; Goetzl, E. J.; Tauber, A. I. Biochemistry 1981, 20, 1468.
 (d) Cabia T. G.; Babiar B. M. J. Biol. Chem. 1979, 254, 9070. (c)
- laghan, A. M.; Goetzl, E. J.; Tauber, A. I. Biochemistry 1981, 20, 1468.
 (d) Gabig, T. G.; Babior, B. M. J. Biol. Chem. 1979, 254, 9070. (e)
 Ohno, Y. I.; Hirai, K. I.; Kanoh, T.; Uchino, H.; Ogawa, K. Blood 1982, 60, 253. (f) Doussiere, J.; Vignais, P. V. Biochemistry 1985, 24, 7231.
 (a) Jahnke, H.; Schonborn, M.; Zimmerman, G. Top. Curr. Chem. 1976, 61, 133. (b) Buttry, D. A.; Anson, F. C. J. Am. Chem. Soc. 1984, 106, 59. (c) Shigehara, K.; Anson, F. C. J. Am. Chem. Soc. 1984, 106, 59. (c) Shigehara, K.; Anson, F. C. J. Phys. Chem. 1982, 86, 2776.
 (d) Forshey, P. A.; Kuwana, T.; Kobayashi, N.; Osa, T. Adv. Chem. Ser. 1982, No. 201, 601. (e) Ozer, D.; Parash, R.; Broitman, F.; Mor, U.; Bettelheim, A. J. Chem. Soc., Faraday Trans. 1 1984, 80, 1139. (f)
 Bettelheim, A.; White, B. A.; Raybuck, S. A.; Murray, R. W. Inorg. Chem. 1987, 26, 1009. (g) Bettelheim, A.; Ozer, D.; Parash, R. J. Chem. Soc., Faraday Trans. 1 1983, 79, 1555.
 (a) Collman, J. P.; Denisevich, P.; Konai, Y.; Marrocco, M.; Koval, C.; (5)
- (a) Collman, J. P.; Denisevich, P.; Konai, Y.; Marrocco, M.; Koval, C.; (a) Son, F. C. J. Am. Chem. Soc. 1980, 102, 6027. (b) Durand, R. R.;
 Bencosme, C. S.; Collman, J. P.; Anson, F. C. Ibid. 1983, 105, 2710.
 (c) Liu, H. Y.; Weaver, M. J.; Wang, C.-B.; Chang, C. K. J. Electroanal. Chem. Interfacial Electrochem. 1983, 145, 439. (d) Chang, C. K.; Liu, H. Y.; Abdalmuhdi, I. J. Am. Chem. Soc. 1984, 106, 2725. (e) Liu, H.-Y.; Abdalmuhdi, I.; Chang, C. K.; Anson, F. C. J. Phys. *Chem.* 1985, 89, 665. (f) Collman, J. P.; Hendricks, N. H.; Kim, K.; Bencosme, C. S. J. Chem. Soc., Chem. Commun. 1987, 1537.
- (7) Collman, J. P.; Kim, K. J. Am. Chem. Soc. 1986, 108, 7847.

of NADH has been studied extensively.9

We report herein efficient electron-transfer systems for both the two-electron and overall four-electron reduction of dioxygen by an NADH model compound using metalloporphyrins as catalysts in the presence of perchloric acid $(HClO_4)$ in acetonitrile (MeCN).¹⁰ 10-Methylacridan (AcrH₂) was used as an acid-stable NADH model compound,¹¹ since common NADH model compounds such as 1-benzyl-1,4-dihydronicotinamide are known to decompose in the presence of an acid.¹² Mechanisms of the metalloporphyrin-catalyzed reduction of dioxygen by AcrH₂ are discussed on the basis of detailed kinetic studies on the overall catalytic reactions as well as on each half catalytic cycle, the reduction of a metalloporphyrins by AcrH₂ and the oxidation of the reduced metalloporphyrin by dioxygen in the presence of HClO₄.

Experimental Section

Materials. 10-Methylacridan (AcrH₂) was prepared from 10methylacridinium iodide $(AcrH^+I^-)$ by the reduction with NaBH₄ in methanol and purified by recrystallization from ethanol.¹³ The dideuterated analogue, $[9,9'^{-2}H_2]$ -10-methylacridan (AcrD₂), was prepared from 10-methylacridone by the reduction with LiAlD_{4}^{14} which was purchased from Aldrich. (Tetraphenylporphinato)iron(III) chloride (FTPPCl) was synthesized and purified according to the literature.¹⁵ Cobalt(II) tetraphenylporphyrin (CoTPP) was prepared as given in the literature.¹⁶ The CoTPP was oxidized by dioxygen in the presence of

- (8) It has been reported that two-electron reduction of dioxygen by NADH is catalyzed by a number of transition-metal complexes but the catalytic activity is very low: Vol'pin, M. E.; Novodarova, G. N.; Kolosova, E. M.; Guzhova, N. V.; Kononenko, A. A.; Lejkin, Y. N. Inorg. Chim. Acta 1981, 50, 21. It has also been reported that an NADH model compound activates dioxygen in the presence of FMN (flavin mononucleotide) and MnTPPS (tetrakis(4-sulfonatophenyl)porphyrin-Mn
- Complex) to give epoxides from olefins: Tabushi, I.; Kodera, M. J. Am. Chem. Soc. 1986, 108, 1101.
 (a) Gorton, L. J. Chem. Soc., Faraday Trans. 1 1986, 82, 1245.
 (b) Albery, W. J.; Bartlett, P. N. J. Chem. Soc., Chem. Commun. 1984, 234.
 (c) Jaegfeldt, H.; Kuwana, T.; Johansson, G. J. Am. Chem. Soc. 1983, 105, 1805.
 (d) Nature T.; Kato, T.; Akiba, L.; Oca, T. Chem. Soc. 1983, 105, 1805. (d) Natsue, T.; Kato, T.; Akiba, U.; Osa, T. Chem. Lett. 1986, 843. (e) Samec, Z.; Elving, P. J. J. Electroanal. Chem. Interfacial Electrochem. 1983, 144, 217. (f) Degrand, C.; Miller, L. L. J. Am. Chem. Soc. 1980, 102, 5278.
- J. Am. Chem. Soc. 1980, 102, 5278.
 A preliminary report has appeared: Fukuzumi, S.; Mochizuki, S.; Tanaka, T. J. Chem. Soc., Chem. Commun. 1989, 391.
 (a) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. J. Chem. Soc., Chem. Commun. 1985, 1069. (b) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. Tetrahedron 1986, 42, 1021.
 (a) Johnston, C. C.; Gardner, J. L.; Suelter, C. H.; Metzler, D. E. Biochemistry 1963, 2, 689. (b) Kim, C. S. Y.; Chaykin, S. Ibid. 1968, 7 2339
- 7. 2339.
- (13) (a) Roberts, R. M. G.; Ostović, D.; Kreevoy, M. M. Faraday Discuss. Chem. Soc. 1982, 74, 257. (b) Colter, A. K.; Saito, G.; Sharom, F. J. Can. J. Chem. 1977, 55, 2741.
- (14) (a) Powell, M. F.; Bruice, T. C. J. Am. Chem. Soc. 1983, 105, 7139. (b) Ostović, D.; Roberts, R. M. G.; Kreevoy, M. M. Ibid. 1983, 105, 7629.
- (a) Aldler, A. D.; Longo, F. R.; Kampas, F.; Kim, J. J. Inorg. Nucl. Chem. 1970, 32, 2443. (b) Fleischer, E. B.; Palmer, J. M.; Srivastava, T. S.; Chatterjee, A. J. Am. Chem. Soc. 1971, 93, 3162. (c) Jones, R.
- D.; Summerville, D. A.; Basolo, F. *Ibid.* 1978, 100, 4416.
 (16) (a) Shirazi, A.; Goff, H. M. *Inorg. Chem.* 1982, 21, 3420. (b) Aldler, A. D.; Longo, F. R.; Varadi, V. *Inorg. Synth.* 1976, 16, 213.

HCl in methanol to obtain (tetraphenylporphinato)cobalt(III) chloride (CoTPPCI),¹⁷ which was purified by recrystallization from methanol. The perchlorate salts of FeTPP⁺ and CoTPP⁺ were obtained by the metathesis of the corresponding chloride salts with AgClO₄ and recrystallized from toluene.¹⁸ Perchloric acid (70%) was obtained from Wako Pure Chemicals. Reagent grade acetonitrile was purified by the successive distillation (four times) over P₂O₅ before use.

Spectral Measurements. Electronic absorption spectra were recorded with a Union SM-401 spectrophotometer with a quartz cell (1-mm or 1-cm i.d.), which was placed in a thermostated compartment at 298 K. The stoichiometry of the catalytic reduction of dioxygen by AcrH₂ in the presence of CoTPP⁺ and HClO₄ in MeCN was determined by measuring the absorbances due to AcrH⁺ with various initial concentrations of AcrH₂ and a fixed concentration of dioxygen. The amount of I₂ formed in the catalytic oxidation of I⁻ by dioxygen in the presence of CoTPP⁺ and HClO₄ was determined by measuring the visible spectrum of I₃⁻ (λ_{max} = 361 nm, ϵ = 2.50 × 10⁴ M⁻¹ cm⁻¹), which was converted quantitatively from I₂ by treating the diluted MeCN solution (×100) of the product I₂ with a large excess amount of NaI.¹⁹ The amount of H₂O₂ formed in the catalytic two-electron reduction of dioxygen by AcrH₂ in the presence of CoTPP⁺ and HClO₄ was determined by the standard method (titration by iodide ion) according to the procedure described elsewhere.¹⁹

The concentration of dioxygen in air-saturated MeCN containing the same concentration of HClO₄ as employed in determining the stoichiometry of the catalytic reduction of dioxygen was determined as 2.6×10^{-3} M from the photooxidation of AcrH₂ by dioxygen in the presence of HClO₄ in MeCN as described elsewhere.^{20,21} The dioxygen concentration in air-saturated MeCN determined in this manner was in good agreement with those in aprotic solvents such as alkanes, acetone, alcohol, and carbon tetrachloride.²²

Kinetic Measurements. Acetonitrile solutions containing various concentrations of dioxygen were prepared by saturating the MeCN solution with a stream of mixture gas (dioxygen and nitrogen) of various partial pressures of dioxygen. The various partial pressures of dioxygen were attained by controlling the flow rates of dioxygen and nitrogen with gas regulators. Rates of the oxidation of AcrH2 at 298 K were monitored by the rise of the absorption band due to AcrH⁺ ($\lambda_{max} = 358$ nm, $\epsilon =$ $1.8 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) by using the conventional spectrophotometer. Kinetic measurements for the fast reactions with half-lives <10 s were performed by using a Union RA-103 stopped-flow spectrophotometer. The stopped-flow measurements were employed for the oxidation of Iby CoTPP⁺ in MeCN at 298 K under deaerated conditions by monitoring the rise and decay of the absorption bands at 412 and 434 nm due to the formation of CoTPP and the decay of CoTPP+, respectively. All the kinetic measurements were carried out under pseudo-first-order conditions where the concentrations of dioxygen and HClO₄ were maintained at >10-fold excess of the concentration of reductant, which is also maintained at >10-fold excess of the catalyst concentration whenever possible. Pseudo-first-order rate constnats $k^{(1)}$ were determined by least-squares curve fit by use of a Union System 77 microcomputer. The pseudo-first-order plots were linear for 3 or more half-lives with the correlation coefficient $\rho > 0.999$.

Results

Two-Electron Reduction of Dioxygen with AcrH₂, Catalyzed by Metalloporphyrins in the Presence of HClO₄. An NADH model compound, 10-methylacridan (AcrH₂), is stable toward dioxygen in MeCN at 298 K. In the presence of HClO₄, however, sluggish oxidation of AcrH₂ by dioxygen proceeds in the dark.²³ When a catalytic amount of FeTPP⁺ is added to the MeCN solution of AcrH₂ in the presence of HClO₄, AcrH₂ ($\lambda_{max} = 285$ nm) is readily oxidized by dioxygen to yield AcrH⁺ ($\lambda_{max} = 358$ nm),

- (17) Sakurai, T.; Yamamoto, K.; Naito, H.; Nakamoto, N. Bull. Chem. Soc. Jpn. 1976, 49, 3042.
 (18) Reed, C. A.; Mashiko, T.; Bently, S. P.; Kastner, M. E.; Scheidt, W.
- (18) Reed, C. A.; Mashiko, T.; Bently, S. P.; Kastner, M. E.; Scheidt, W. R.; Spartalian, K.; Lang, G. J. Am. Chem. Soc. 1979, 101, 2948.
 (19) (a) Mair, R. D.; Graupner, A. J. Anal. Chem. 1964, 36, 194. (b)
- (19) (a) Mair, R. D.; Graupner, A. J. Anal. Chem. 1964, 36, 194. (b) Fukuzumi, S.; Kuroda, S.; Tanaka, T. J. Am. Chem. Soc. 1985, 107, 3020.
- (20) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. Inorg. Chem. 1989, 28, 2459.
- (22) Battino, R., Ed. Solubility Data Series, Oxygen and Ozone; Pergamon Press: Oxford, 1981; Vol. 7.
- (23) Under irradiation of light $\lambda = 300$ nm, which excites the absorption band of AcrH₂, the efficient photooxidation of AcrH₂ by dioxygen proceeds via photoinduced electron-transfer radical chain reactions; see ref 21.

Figure 1. Oxidation of AcrH₂ (1.0×10^{-3} M) with dioxygen (2.6×10^{-3} M), catalyzed by FeTPP⁺ (1.0×10^{-4} M) in the presence of HClO₄ (2.0×10^{-2} M) in MeCN.

Figure 2. Oxidation of AcrH₂ (8.0×10^{-4} M) with dioxygen (2.6×10^{-3} M), catalyzed by CoTPP⁺ (8.0×10^{-5} M) in the presence of HClO₄ (2.0×10^{-3} M) in MeCN.

as shown in Figure 1. The concentration of FeTPP⁺ ($\lambda_{max} = 399$ nm) decreases gradually with reaction time, accompanied by demetalation of FeTPP⁺ to give H₃TPP⁺ ($\lambda_{max} = 436$ nm). In the absence of HClO₄, no catalytic oxidation of AcrH₂ by dioxygen is observed, but instead FeTPP⁺ is converted to the μ -oxo dimer (FeTPP)₂O, following the reduction of FeTPP⁺ by AcrH₂.²⁴

When FeTPP⁺ is replaced by CoTPP⁺, AcrH₂ is also readily oxidized by dioxygen catalytically, as shown in Figure 2, where the concentration of CoTPP⁺ ($\lambda_{max} = 434$ nm) remains constant with reaction time. Thus, in the case of CoTPP⁺, no appreciable demetalation occurs during the reaction. The same result is obtained by using CoTPP instead of CoTPP⁺ as the starting catalyst, since CoTPP is readily converted to CoTPP⁺. The stoichiometry of the oxidation of AcrH₂ with dioxygen, catalyzed by CoTPP⁺ or CoTPP in the presence of HClO₄, is given by eq 1, which is confirmed by the detection of the equivalent amounts

(24) The use of other NADH model compounds, 1-(X-benzyl)-1,4-dihydronicotinamide (X-BNAH: X = 4-MeO, 4-Me, H, 4-Cl, 2,4-Cl₂), also results in the formation of (FeTPP)₂O: Fukuzumi, S.; Kondo, Y.; Mochizuki, S.; Tanaka, T. J. Chem. Soc., Perkin Trans. 1989, 1753.

Figure 3. Plots of pseudo-first-order rate constants $k^{(1)}$ vs (a) the CoTPP⁺ concentration (O) for the oxidation of AcrH₂ (1.0 × 10^{-3} M) with dioxygen (2.6×10^{-3} M), catalyzed by CoTPP⁺ in the presence of $HClO_4$ (2.0 × 10⁻³ M), and (b) the O₂ concentration (\bullet) for the oxidation of AcrH₂ (1.0 × 10⁻³ M) with dioxygen, catalyzed by CoTPP⁺ $(1.0 \times 10^{-4} \text{ M})$ in the presence of HClO₄ $(2.0 \times 10^{-2} \text{ M})$ in MeCN at 298 K.

Figure 4. Plots of pseudo-first-order rate constants $k^{(1)}$ vs the HClO₄ concentration for the oxidation of 2.0×10^{-4} M AcrH₂ (O) and AcrD₂ (Δ) with dioxygen (2.6 × 10⁻³ M), catalyzed by CoTPP⁺ (2.0 × 10⁻⁴ M) in the presence of HClO₄ in MeCN at 298 K.

of AcrH⁺ and H₂O₂ formed in the reaction (see Experimental Section). This system is subjected to the detailed kinetic analysis as follows.

Rates of the catalytic oxidation of AcrH2 with an excess amount of dioxygen and HClO₄ in the presence of a catalytic amount of CoTPP⁺ obey pseudo-first-order kinetics. The pseudo-first-order rate constant $(k^{(1)}/s^{-1})$ increases linearly with an increase in the CoTPP⁺ concentration, as shown in Figure 3a, which confirms that CoTPP⁺ acts as a catalyst in the oxidation of AcrH₂ by dioxygen in the presence of HClO₄ in MeCN. The $k^{(1)}$ value increases linearly also with an increase in the dioxygen concentration (Figure 3b). The dependence of $k^{(1)}$ on the HClO₄ concentration at fixed concentrations of dioxygen and CoTPP+ is shown in Figure 4, where the $k^{(1)}$ value increases with an increase in the HClO₄ concentration to reach a constant value. When $AcrH_2$ is replaced by the 9,9'-dideuterated analogue (AcrD₂), the $k^{(1)}$ values of AcrD₂ are much smaller than the corresponding values of AcrH₂ (Figure 4), demonstrating the presence of a large

Figure 5. Oxidation of AcrH₂ (1.0×10^{-3} M) by CoTPP⁺ (5.0×10^{-5} M) in the absence of dioxygen in MeCN.

Table I. Rate Constants (k_{obs}) for the Oxidation of AcrH₂ and AcrD₂ by CoTPP⁺ in the Absence and Presence of HClO₄ in MeCN at 298 K

[HClO ₄], M	$k_{obs}(AcrH_2),^a M^{-1} s^{-1}$	$k_{obs}(AcrD_2),^a$ M ⁻¹ s ⁻¹	$k_{\rm obs}{}^{\rm H}/k_{\rm obs}{}^{\rm D}$
0	5.7	1.3	4.4
1.0 × 10 ⁻⁴	4.9	1.1	4.5
1.0×10^{-3}	2.6×10^{-1}	5.9×10^{-2}	4.4
1.0×10^{-2}	Ь	Ь	

^a The experimental errors are within $\pm 5\%$. ^b Too slow to be determined accurately.

primary kinetic isotope effect, $k_{\rm H}/k_{\rm D}$.²⁵ The $k_{\rm H}/k_{\rm D}$ value is constant with the change in the HClO₄ concentration ($k_{\rm H}/k_{\rm D}$ = 7.1 ± 0.6).

Oxidation of AcrH₂ by CoTPP⁺ in the Absence of Dioxygen. In the absence of dioxygen, AcrH₂ is readily oxidized by CoTPP⁺ to yield AcrH⁺ and CoTPP ($\lambda_{max} = 412 \text{ nm}$), as shown in Figure 5. The stoichiometry of the reaction is given by eq 2. The rate

$$AcrH_2 + 2CoTPP^+ \rightarrow AcrH^+ + H^+ + 2CoTPP$$
 (2)

of formation of CoTPP obeys pseudo-first-order kinetics under the conditions that the concentrations of AcrH₂ are maintained at >10-fold excess over that of CoTPP⁺. The pseudo-first-order rate constant was proportional to the AcrH₂ concentration (eq 3). When $HClO_4$ is added to the $AcrH_2$ -CoTPP⁺ system, the

$$d[CoTPP]/dt = k_{obs}[AcrH_2][CoTPP^+]$$
(3)

second-order rate constant k_{obs} decreases with an increase in the HClO₄ concentration, as shown in Table I. Such a decrease in the rate constant is accompanied by the decrease of the absorbance of AcrH₂ due to the protonation equilibrium in MeCN (eq 4).^{11,26}

$$AcrH_2 + H^+ \stackrel{\wedge}{\Longrightarrow} AcrH_3^+ \tag{4}$$

The reducing power of AcrH₂ is known to be decreased significantly by the protonation, 11,26 and thereby only free AcrH₂ may be active for the reduction of CoTPP⁺. This may be the reason that the k_{obs} value decreases with an increase of the HClO₄ concentration (Table I).

⁽²⁵⁾ By the assumption that the secondary kinetic isotope effect is unity, the observed k_{obs} ratios of AcrH₂ to AcrD₂ corresponds to the primary kinetic isotope effect k_{obs}^{H}/k_{obs}^{D} . Fukuzumi, S.; Kuroda, S.; Goto, T.; Ishikawa, K.; Tanaka, T. J. Chem.

Soc., Perkin Trans. 2 1989, 1047.

Figure 6. (a) Plot of the I₂ concentration formed in the oxidation of I⁻ with dioxygen, catalyzed by CoTPP⁺ (2.5×10^{-5} M), vs the ratio of the I⁻ concentration to the initial concentration of dioxygen (2.6×10^{-3} M) in the presence of HClO₄ (0.10 M) in MeCN. (b) Plot of the AcrH⁺ concentration formed in the oxidation of AcrH₂ with dioxygen, catalyzed by CoTPP⁺ (2.5×10^{-5} M) in the presence of HClO₄ (1.0×10^{-2} M) and NaI in MeCN, vs the ratio of the AcrH₂ concentration to the initial concentration of dioxygen (2.6×10^{-3} M).

The corresponding k_{obs} values of AcrD₂ were also determined as listed in Table I. The k_H/k_D value is constant with the change in the HClO₄ concentration, $k_H/k_D = 4.4 \pm 0.4$. It should be noted that the k_H/k_D value in the absence of dioxygen (Table I) is significantly smaller than the corresponding value ($k_H/k_D =$ 7.1 ± 0.6) observed in the presence of dioxygen (Figure 4).

Overall Four-Electron Reduction of Dioxygen with AcrH₂, Catalyzed by CoTPP⁺ in the Presence of HClO₄ and Iodide Ion. Iodide ion is stable toward dioxygen in the absence and presence of HClO₄ in MeCN. When a catalytic amount of CoTPP⁺ is added to an MeCN solution of iodide ion in the presence of dioxygen and HClO₄, the iodide ion is oxidized by dioxygen catalytically to yield iodine. The stoichiometry of the formation of iodine is determined by the spectral titration (see Experimental Section) shown in Figure 6a and is given by eq 5. Thus, CoTPP⁺ catalyzes efficiently also the overall four-electron reduction of dioxygen by iodide ion in the presence of HClO₄ to yield water.

$$4I^{-} + O_{2} + 4H^{+} \xrightarrow[CoTPP^{+}]{} 2I_{2} + 2H_{2}O$$
 (5)

The reduction of CoTPP⁺ by iodide ion occurs rapidly in the absence of dioxygen in MeCN. Rates of the reduction of CoTPP⁺ by an excess amount of iodide ion also obey pseudo-first-order kinetics. The pseudo-first-order rate constant $k^{(1)}$ increases with an increase in the I⁻ concentration, as shown in Figure 7, where a linear correlation between $k^{(1)}$ and [I⁻] is obtained with an intercept.

The catalytic four-electron reduction of dioxygen by iodide ion to water (eq 5) can be combined successfully with the two-electron reduction of dioxygen by $AcrH_2$ (eq 1) in order to achieve the overall four-electron reduction of dioxygen by $AcrH_2$. Thus, when iodide ion is added to the catalytic system of the two-electron reduction of dioxygen (eq 1), the stoichiometry is changed to the overall four-electron reduction of dioxygen by $AcrH_2$, as shown in the spectral titration (Figure 6b) (eq 6). The concentration of CoTPP⁺ remained constant and no appreciable amount of CoTPP has been observed during the reaction.

$$2\operatorname{Acr} H_2 + O_2 + 2H^+ \xrightarrow[CoTPP^+/I^-]{} 2\operatorname{Acr} H^+ + 2H_2O \quad (6)$$

Rates of the four-electron reduction of dioxygen by $AcrH_2$ were determined under the pseudo-first-order conditions in which the concentrations of dioxygen, $HClO_4$, and H_2O^{27} were maintained

Figure 7. Plot of pseudo-first-order rate constant $k^{(1)}$ vs the I⁻ concentration for the reduction of CoTPP⁺ by I⁻ in MeCN.

Figure 8. Plots of pseudo-first-order rate constants $k^{(1)}$ vs the I⁻ concentration for the four-electron reduction of dioxygen (2.6 × 10⁻³ M) with 1.0×10^{-3} M AcrH₂ and AcrD₂, catalyzed by CoTPP⁺ (1.0 × 10⁻⁴ M) in the presence of HClO₄ (1.0 × 10⁻² M) and 1⁻ in MeCN containing H₂O (1.1 M) at 298 K.

at large excess over the concentrations of AcrH₂ and CoTPP⁺. Dependences of the pseudo-first-order rate constants $k^{(1)}$ of both AcrH₂ and AcrD₂ on the I⁻ concentration are shown in Figure 8, where both rate constants $k^{(1)}$ exhibits a maximal dependence on the I⁻ concentration at 1×10^{-4} M. It should be noted that essentially the same results are obtained when I⁻ is replaced by I₂. The primary kinetic isotope effect $k_{\rm H}/k_{\rm D}$ remains constant $(k_{\rm H}/k_{\rm D} = 2.4 \pm 0.2)$ with the change in the I⁻ concentration (Figure 9). On the other hand, $k^{(1)}$ shows a linear correlation with the HClO₄ concentration in MeCN containing H₂O (1.1 M),²⁸ as shown in Figure 9, where the intercept corresponds to an acid-independent term in $k^{(1)}$.

⁽²⁷⁾ The rates were determined in the presence of an excess amount of H_2O (1.1 M), since the rates without addition of H_2O would be affected by H_2O that was produced in the four-electron reduction of dioxygen by AcrH₂ because of the change of the protonation equilibrium (eq 4) with resultant increase of the H_2O concentration.

⁽²⁸⁾ In the presence of H₂O (1.1 M), little protonation of AcrH₂ occurs in MeCN, and thereby only the catalytic effect of HClO₄ is observed in Figure 9.

Figure 9. Plots of $k^{(1)}$ vs the HClO₄ concentration for the four-electron reduction of dioxygen $(2.6 \times 10^{-3} \text{ M})$ with AcrH₂ and AcrD₂ $(1.0 \times 10^{-3} \text{ M})$, catalyzed by CoTPP⁺ $(1.0 \times 10^{-4} \text{ M})$ in the presence of HClO₄ and I^{-} (5.0 × 10⁻⁵ M) in MeCN containing H₂O (1.1 M) at 298 K.

Scheme I

Iodine formed in the overall four-electron reduction of dioxygen by iodide ion (eq 6) is readily reduced by AcrH₂ to regenerate iodide ion in MeCN (eq 7). Rates of the oxidation of $AcrH_2$

$$\operatorname{Acr} \operatorname{H}_{2} + \operatorname{I}_{2} \xrightarrow{k_{\mathrm{ex}}} \operatorname{Acr} \operatorname{H}^{+} + \operatorname{H}^{+} + 2\operatorname{I}^{-}$$
(7)

by iodine also obey pseudo-first-order kinetics in the presence of water in MeCN when the protonation of $AcrH_2$ hardly occurs in the presence of $HClO_4$.^{11,26} The second-order rate constants k_{ox} were obtained as 15 and 4.2 M⁻¹ s⁻¹ for the oxidation of AcrH₂ and AcrD₂, respectively, by I₂ in the presence of 1.0×10^{-3} M in MeCN containing 1.1 M H₂O.²⁹

Discussion

Mechanism of the Oxidation of AcrH₂ by CoTPP⁺. The electron transfer from AcrH₂ to CoTPP⁺ is endothermic, on the basis of the redox potentials of AcrH₂ ($E_{ox}^{\circ} = 0.80$ V vs SCE)³⁰ and CoTPP⁺ ($E_{red}^{\circ} = 0.35$ V vs SCE).²⁰ However, once AcrH₂⁺⁺ produced in the electron transfer is deprotonated to give Acr \tilde{H}^{\bullet} , the electron transfer from Acr H^{\bullet} ($E_{ox}^{\circ} = -0.43$ V vs SCE)³⁰ to CoTPP⁺ is highly exothermic. Thus, two-electron oxidation of AcrH₂ by 2 equiv of CoTPP⁺ may proceed as shown in Scheme I, where the endothermic electron transfer from AcrH₂ to CoTPP+ is followed by the deprotonation of AcrH2⁺⁺, and the subsequent facile electron transfer from AcrH[•] to CoTPP⁺ makes the overall Scheme II

reaction exothermic. According to Scheme I, the rate of formation of CoTPP may be given by eq 8, where k_{et} is the rate constant

$$d[CoTPP]/dt = 2k_{et}k_{p}[AcrH_{2}][CoTPP^{+}]/(k_{b} + k_{p})$$
(8)

of electron transfer from $AcrH_2$ to $CoTPP^+$, k_p is the rate constant of deprotonation of $AcrH_2^{\bullet+}$, and k_b is the rate constant of back electron transfer from CoTPP to $AcrH_2^{\bullet+}$. In the presence of $HClO_4$, $AcrH_2$ is in protonation equilibrium (eq 4) when the second-order rate constant k_{obs} is given by eq 9, where K is the

$$k_{\rm obs} = \frac{2k_{\rm et}k_{\rm p}}{(k_{\rm b} + k_{\rm p})(1 + K[{\rm H}^+])}$$
(9)

protonation equilibrium constant (eq 4). Under the conditions that $K[H^+] \gg 1$,¹¹ the k_{obs} value is expected to decrease with an increase in the HClO₄ concentration, in accordance with the experimental results in Table I. The observed kinetic isotope effect $(k_{obs}^{\text{H}}/k_{obs}^{\text{D}} = 4.4 \pm 0.4)$ may be caused by the deprotonation of AcrH₂⁺⁺ in Scheme I.

A more quantitative discussion on Scheme I can be achieved by comparing the observed rates to those predicted by the Marcus theory for the rates of outer-sphere electron-transfer reactions.³¹ The Marcus relation for the rate constant of the electron transfer from the reductant (1) to the oxidant (2), k_{12} , is given by eq 10,³¹

$$k_{12} = (k_{11}k_{22}K_{12}f)^{1/2} \tag{10}$$

where k_{11} and k_{22} are the rate constants of the corresponding self-exchanges between AcrH₂ and AcrH₂⁺⁺ and K_{12} is the equilibrium constant for the electron transfer from AcrH₂ to CoTPP⁺. The K_{12} value is obtained from the E_{0x}° value of AcrH₂³⁰ and the E_{red}° value of CoTPP^{+ 20} by using eq 11.³² The

$$\log K_{12} = (F/-2.3RT)(E_{\rm ox}^{\circ} - E_{\rm red}^{\circ})$$
(11)

$$\log f = (\log K_{12})^2 / [4 \log (k_{11}k_{22}/Z^2)]$$
(12)

parameter f in eq 10 is given by eq 12,³¹ in which Z, the frequency factor, is taken to be 10^{11} M⁻¹ s^{-1,31} Thus, the rate constant of outer-sphere electron transfer from $AcrH_2$ to $CoTPP^+$ (k_{et}) is calculated as 6.9 M⁻¹ s⁻¹ from the one-electron oxidation potential of AcrH₂ ($E_{ox}^{\circ} = 0.80$ V vs SCE)³⁰ and the self-exchange rate constant ($k_{11} = 1.7 \times 10^9$ M⁻¹ s⁻¹),³⁰ together with the one-electron reduction potential of CoTPP⁺ ($E_{red}^{\circ} = 0.35$ V vs SCE)²⁰ and the self-exchange rate constant ($k_{22} = 20$ M⁻¹ s⁻¹),³³ as noted above by using eqs 10-12. According to eq 9, the observed rate constant in the absence of HClO₄ (6.3 M⁻¹ s⁻¹) corresponds to $2k_{et}k_p/(k_b + k_p)$, and thus $k_{obs} < 2k_{et}$. This relation is consistent with the calculation described above.

Mechanism of the Catalytic Two-Electron Reduction of Dioxygen by AcrH₂. The simplest reaction scheme of the catalytic two-electron reduction of dioxygen by AcrH₂ may be given by Scheme II. The rate-determining step may be the oxidation of AcrH₂ by CoTPP⁺ by AcrH₂, since CoTPP formed in the reduction of CoTPP⁺ by AcrH₂ is known to be readily oxidized by O_2 in the presence of HClO₄ in MeCN to yield CoTPP⁺ and H_2O_2 .^{27,34} However, the dependences of rates of the oxidation

⁽²⁹⁾ The rates were determined in the presence of H₂O (1.1 M) in order to prevent the protonation of AcrH₂,¹¹ which would cause the decrease in the rates without adding H₂O, since H⁺ is produced in the oxidation of

AcrH₂ by I₂ (eq 7). Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem. Soc. 1987, 109, 305. (30)

⁽³¹⁾

Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155. The work terms are neglected, since in the present case one of the (32)reactants and products is uncharged.

<sup>reactants and products is uncharged.
(33) Rohrbach, D. F.; Deutsch, E.; Heineman, W. R.; Pasternack, R. F.</sup> *Inorg. Chem.* 1977, 16, 2650.
(34) (a) Pavlović, D.; Ašperger, S.; Dokuzović, Z.; Jurišić, B.; Ahmeti, X.; Sertič, M.; Murati, I. J. Chem. Soc., Dalton Trans. 1985, 1095. (b) Pavlović, D.; Ašperger, S.; Domi, B. Ibid. 1986, 2535. (c) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. Chem. Lett. 1989, 27.

Scheme III

for AcrH₂ by CoTPP⁺ on the HClO₄ concentration are different in the absence and presence of dioxygen; the rate in the absence of dioxygen decreases with an increase in the HClO₄ concentration (Table I), but the rate in the presence of dioxygen increases with an increase in the HClO₄ concentration to reach a constant value (Figure 4). Moreover, the kinetic isotope effects $(k_{obs}^{H}/k_{obs}^{D})$ are different in the absence (4.4 ± 0.4) and presence of dioxygen (7.1 ± 0.6) . Such differences indicate that the mechanisms of oxidation of AcrH₂ by CoTPP⁺ in the presence of HClO₄ are different in the absence and presence of dioxygen and that the acid-catalyzed reduction of O_2 by CoTPP should also be involved in the rate-determining step in the catalytic two-electron reduction of O_2 by AcrH₂.

An alternative reaction mechanism may be given by Scheme III, where electron transfer from AcrH₂ to CoTPP⁺ occurs in concert with the reduction of O_2 by CoTPP in the presence of HClO₄. In such a case, electron transfer from AcrH₂ to CoTPP⁺ in the presence of O_2 and $HClO_4$ may produce a radical pair $(AcrH_2^{+}, CoTPPO_2H^{+})$, which may disappear by the facile hydrogen transfer from AcrH2++ to CoTPPO2H++ to yield AcrH+ and H₂O₂, accompanied by regeneration of CoTPP⁺ (Scheme III). The proton transfer from AcrH₂^{•+} to CoTPPO₂H^{•+} may be un-likely to occur, since CoTPPO₂H^{•+} is already protonated. According to Scheme III, the observed pseudo-first-order rate constant (Figures 3 and 4) may be given by eq 13, where k'_{et} is the

$$k^{(1)} = \frac{k'_{\text{et}}k_{\text{H}}[\text{H}^+][\text{CoTPP}^+][O_2]}{(k'_{\text{b}} + k_{\text{H}})(1 + K[\text{H}^+])}$$
(13)

rate constant of the electron transfer from AcrH₂ to CoTPP⁺ in the presence of O_2 , k'_b is the rate constant of the back electron transfer, $k_{\rm H}$ is the rate constant of the hydrogen transfer from $AcrH_2^{*+}$ to CoTPPO₂H^{*+}, and K is the protonation equilibrium constant of AcrH₂. This equation can explain well the observed kinetics that the catalytic rate is proportional to the concentrations of CoTPP⁺ and dioxygen and increases with an increase in the HClO₄ concentration to reach a constant value (Figures 3 and 4, respectively). According to eq 13, the kinetic isotope effect in the presence of dioxygen in Figure 4 $(k_{obs}^{H}/k_{obs}^{D} = 7.1 \pm 0.6)$ may be ascribed to that of hydrogen transfer from AcrH2⁺⁺ to $CoTPPO_2H^{++}$. This may be the reason that the observed kinetic isotope effect in the presence of dioxygen is different from that in the absence of dioxygen.

Free HO₂ radicals which could have escaped from the radical pair (AcrH₂^{•+},CoTPPO₂H^{•+}) may not be involved in the CoTPP⁺-catalyzed two-electron reduction of O₂ by AcrH₂, since HO2[•] radicals are known to initiate the radical chain reactions (eqs 14 and 15).^{21,35} In such a case, the kinetic formulation would be clearly different from that observed in Figure 3.³⁶

$$AcrH_2 + HO_2^{\bullet} \rightarrow AcrH^{\bullet} + H_2O_2$$
(14)

$$AcrH^{\bullet} + O_2 + H^+ \rightarrow AcrH^+ + HO_2^{\bullet}$$
(15)

Mechanism of the Overall Four-Electron Reduction of Dioxygen by Iodide Ion. It has long been known that the reduction of transition-metal complexes by iodide ion occurs through the two parallel paths, the reduction by one and two molecules of jodide Scheme IV

Scheme V

ion.^{37,38} Thus, the reduction of CoTPP⁺ by iodide ion may be given as shown in Scheme IV, where I⁻ forms a complex with CoTPP⁺, followed by the two parallel paths; one is the intramolecular electron transfer from I⁻ to CoTPP⁺, and the other is the reduction of CoTPPI by I⁻ to yield CoTPP and I_2^{\bullet} . The iodine atom formed in the intramolecular electron transfer (k_1) is in rapid equilibrium with I⁻ to give $I_2^{\bullet-}$ (eq 16).³⁹ The $I_2^{\bullet-}$ may be oxidized

$$\mathbf{I}^{\bullet} + \mathbf{I}^{-} \rightleftharpoons \mathbf{I}_{2}^{\bullet-} \tag{16}$$

$$CoTPP^+ + I_2^{-} \rightarrow CoTPP + I_2$$
(17)

further by CoTPP⁺ (eq 17), since the electron transfer from $I_2^{\bullet-}$ ($E_{ox}^{\circ} = 0.16 \text{ V vs SCE}$)⁴⁰ to CoTPP⁺ is exothermic, on the basis of their redox potentials. According to Scheme IV and eqs 16 and 17, the rate of formation of CoTPP in the reduction of CoTPP⁺ with a large excess of I⁻, when all the CoTPP⁺ molecules form the complex with I^- , may be given by eq 18. This kinetic

$$d[CoTPP]/dt = 2(k_1 + k_2[I^-])[CoTPP^+]$$
(18)

formulation agrees with the experimental results in Figure 7, where the pseudo-first-order rate constant shows a linear correlation with the I⁻ concentration, in which the intercept corresponds to $2k_1$.

In the presence of dioxygen and HClO₄, CoTPP formed in the reduction of CoTPP⁺ by I⁻ (Scheme IV and eq 17) may be readily oxidized by dioxygen to produce CoTPPO₂H^{•+}, as in Scheme III. The CoTPPO₂H^{•+} may be reduced by I⁻ in the presence of $HClO_4$ to yield CoTPPO₂H₂^{•+}. The CoTPPO₂H^{•+} may be further reduced by I⁻ to yield H₂O. Thus, as shown in Scheme V, CoTPP⁺ can catalyze the overall four-electron reduction of dioxygen by I^{-} (eq 5).

Mechanism of the Overall Four-Electron Reduction of Dioxygen by AcrH₂. The combination of the CoTPP⁺-catalyzed oxidation of AcrH₂ by dioxygen in the presence of HClO₄ (Scheme III) and the catalytic four-electron reduction of dioxygen by I⁻ (Scheme V) results in the successful overall four-electron reduction of dioxygen by $AcrH_2$ (eq 6). Iodine formed in the four-electron reduction of dioxygen by I⁻ (Scheme V) is readily reduced by AcrH₂ to regenerate I⁻ (eq 7). Thus, a mechanism of the catalytic overall four-electron reduction of dioxygen with AcrH₂ in the presence of CoTPP⁺, 'HClO₄, and I⁻ may be given as shown in Scheme VI by combining the reduction of I_2 by AcrH₂ (eq 7) with schemes III and V. According to Scheme VI, the pseudo-firstorder rate constant for the formation of AcrH⁺ may be given by eq 19.41 A maximal dependence of the rate constant on the I⁻

$$k^{(1)} = \frac{k'_{\text{et}}k_{\text{H}}[\text{H}^+][\text{O}_2][\text{CoTPP}^+]}{k'_{\text{b}} + k_{\text{H}}} + k_{\text{ox}}[\text{I}_2]$$
(19)

- 1982, 21, 2327
- Nagarijan, V.; Fessenden, R. W. J. Phys. Chem. 1985, 89, 2330.
- (40) Nord, G.; Pedersen, B.; Farver, O. Inorg. Chem. 1978, 17, 2233.

k

⁽³⁵⁾ Fukuzumi, S.; Ishikawa, M.; Tanaka, T. J. Chem. Soc., Perkin Trans. 2 1989, 1037

⁽³⁶⁾ In the case of radical-chain oxidation of $AcrH_2$ with HO_2^{\bullet} , which is produced by the initiation reaction of $AcrH_2$ with $CoTP^+$ in the presence of O_2 and decays by the bimolecular termination reaction, the observed rate would be proportional to $[AcrH_2]^{3/2}[CoTPP^+]^{1/2, 21,35}$

⁽³⁷⁾ (a) Donnan, F. G.; Rossignnal, R. Le J. Chem. Soc. 1903, 703. (b) Friedman, H. B.; Anderson, B. E. J. Am. Chem. Soc. 1939, 61, 116.
(c) Raycheba, J. M. T.; Margerum, D. W. Inorg. Chem. 1981, 20, 1441.
(d) Tejeda, P. P.; Velasco, J. R.; Burgos, F. S. J. Chem. Soc., Dalton Trans. 1983, 2679.
(38) Nord, G.; Pedersen, B.; Floryan-Løborg, E.; Pagsberg, P. Inorg. Chem.

Scheme VI

concentration in Figure 8 can be well explained by eq 19 as follows. Under the steady-state conditions, the rate of reduction of I_2 by AcrH₂ (eq 7) is balanced with the rate of oxidation of I^- by CoTPP⁺ (eq 16), when the steady-state concentration of I_2 is given by eq 20.⁴² According to eq 20, the steady-state concentration

$$[I_2] = k_1 [CoTPP^+] / k_{ox} [AcrH_2]$$
(20)

of I₂ is independent of the I⁻ concentration. This may be the reason that the rate of the overall four-electron reduction of dioxygen by AcrH₂ does not increase with an increase in the I⁻ concentration > 10⁻⁴ M and that the same results are obtained when I⁻ is replaced by I₂ in Figure 8. The steady-state concentration of I₂, which can be estimated as 1.7×10^{-4} M from the rate constants of k_1 and k_{ox} by using eq 20, agrees with the I⁻ concentration with which the maximum rate is obtained in Figure 8.⁴³ The decrease in the rate with a further increase in the I⁻ concentration (Figure 9) may be caused by the formation of I_3^- by the reaction of I_2 with I⁻. Thus, there is an optimal concentration of I⁻ employed in the catalytic four-electron reduction of dioxygen by AcrH₂ in the presence of I⁻, CoTPP⁺, and HClO₄. The dependence of the rate on the HClO₄ concentration (Figure 9) also agrees with eq 19. In this case, the presence of H₂O (1.1 M) decreases the protonation equilibrium constant (eq 4),¹¹ and thereby the rate constant increases with an increase in the HClO₄ concentration (compare Figure 9 with Figure 4 in which no H₂O is added).⁴¹ The intercept seen in Figure 9 corresponds to the second term in eq 19, which is independent of the acid concentration.

In conclusion, the catalytic four-electron reduction of dioxygen by an NADH model compound $(AcrH_2)$ has been achieved by the appropriate combination of two catalytic systems, as shown in Scheme VI, the catalytic two-electron reduction of dioxygen by AcrH₂ (Scheme III) and the catalytic four-electron reduction of dioxygen by I⁻ (Scheme V).

(43) The k₁ value is obtained as 2.5 × 10⁻² s⁻¹ from the intercept in Figure 7. Then, the steady-state concentration of I₂ is evaluated as 1.7 × 10⁻⁴ M (=(2.5 × 10⁻²)(1.0 × 10⁻⁴)/[15(1.0 × 10⁻³)]) by using eq 20.

⁽⁴¹⁾ The protonation of AcrH₂ (eq 4) can be neglected under the experimental conditions in Figures 8 and 9,²⁸ and thus, the effect is not included in eq 19.

⁽⁴²⁾ The concentration of I⁻ employed in Figure 9 is small enough to allow the second term in eq 18 for the formation rate of I₂ (=($^{1}/_{2}$)d-[CoTPP]/dt) to be neglected, k_{2} [I⁻], in deriving eq 20.