Contribution from the Laboratoire de Chimie Théorique,[§] Université de Paris-Sud, 91405 Orsay, France, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Semimetallic versus Semiconducting Properties of MX₂ Layer Compounds Containing d² Metal Ions

Enric Canadell^{*,†} and Myung-Hwan Whangbo^{*,†}

Received August 4, I989

Electronic structures of CrNb2Se4, P-MoTe,, and **cu-Zr12** were examined by performing tight-binding band calculations. **Our** study suggests that the electronic properties of M'Nb₂Se₄ (M' = Ti, V, Cr) are more consistent with the oxidation state of +2 for M' rather than that of $+3$. α -ZrI₂ and β -MoTe₂ are semiconducting and semimetallic, respectively, despite their structural similarity and identical d-electron count on the metal $(i.e., d^2)$. The structural origin of this difference was also examined.

Many layered compounds contain MX₂ layers made up of MX₆ octahedra.¹ In MX₂ layers containing d^2 metal ions, metal atoms are found to cluster to form zigzag chains.^{$2-5$} It is convenient to regard such an MX₂ layer as made up of M_2X_6 double octahedral chains (1) having zigzag metal-metal bonds (i.e., dashed

lines in 1),⁶ since the electronic structure of the MX₂ layer closely resembles that of its constituent M_2X_6 chain.⁶ For the M_2X_6 chain **1** with $X = S$ or Se, the bottom four of its six t_{2g} -block bands overlap^{6,7} and hence become partially filled for d^2 metal ions, so that MX_2 layers with d^2 metal ions are expected to be metals. The present work is concerned with d^2 metal ions, i.e., $M'Nb_2Se_4$ (M' = Ti, V, Cr),³ β -MoTe₂,⁴ and α -ZrI₂.⁵ Both M'Nb₂Se₄^{3a} and β -MoTe₂^{4e} are metals, as expected, but they exhibit resistivity anomalies at low temperature.^{3a,4c,d} α -ZrI₂ is a semiconductor with activation energy of 0.1 eV,⁵ although it is quite similar in structure to the MX_2 layers of $M'Nb_2Se_4$ and $\beta-MoTe_2$. We examine the electronic properties of these systems by performing tight-binding band electronic structure calculations⁸ on the basis of the extended Hückel method. 9 The atomic parameters employed in our study are summarized in Table I.

Crystal Structure

A perspective view of the M_2X_6 double octahedral chain 1 is shown in 2 , where each MX_6 octahedron represents a single octahedral chain of **1.** The projection view of **2** along the chain is

given **by 3,** where two chalcogen atoms indicated by a double-

⁺ Université de Paris-Sud.
[‡] North Carolina State University.

⁸ The Laboratoire de Chimie Théorique is associated with the CNRS (UA 506) and **is** a member of the ICMO and the lPCM (Orsay, France).

*^a*Contraction coefficients used in the double-{ expansion.

headed arrow are projected as one chalcogen atom. According to this projection view, an MX_2 layer with d^2 metal ions is represented by 4.6 It is such \overline{MX}_2 layers that stack to form

three-dimensional lattices in M'Nb₂Se₄ (M' = Ti, V, Cr), β -MoTe₂, and α -ZrI₂. In M'Nb₂Se₄, the M' atoms occupy half the octahedral sites between NbSe₂ layers.

Band Electronic Structures

A. $M'Nb_2Se_4$ ($M' = Ti$, V , Cr). In understanding the electrical properties of $M'Nb₂Se₄$, it is crucial to know the oxidation state

- Hulliger, F. **In** *Structural Chemistry* of *Layer-Type Phases;* Levy, F., Ed.; Reidel: Dordrecht, The Netherlands, 1976.
- Kadijk, F.; Huisman, R.; Jellinek, F. Acta Crystallogr. 1968, B24, 1102.
(a) Meerschaut, A.; Spiesser, M.; Rouxel, J.; Gorochov, O. J. Solid
State Chem. 1980, 31, 31. (b) Meerschaut, A.; Rouxel, J. C. R. Seances (3) *Acad. Sci., Ser. C* **1977, 277,** 163.
- (a) Brown, B. E. *Acta Crystallogr*. **1986**, 20, 268. (b) Manolikas, C.;
van Landuyt, J.; Amelinckx, S. *Phys. Status Solidi A* **1979**, 53, 327.
(c) Hughes, H. P.; Friend, R. H. J. *Phys. C* 1978, 11, L103. (d) Clarke, R.; Marseglia, E.; Hughes, H. P. *Philos. Mag. B* **1978,** *38,* 121. (e) Wilson, J. A.; Yoffe, **A.** D. *Ado. Phys.* **1969,** *18,* 193. *(f)* Vellinga, M.
- B.; de Jonge, R.; Haas, C. J. Solid State Chem. 1970, 2, 299.
Guthrie, D. H.; Corbett, J. D. J. Solid State Chem. 1981, 37, 256.
Canadell, E.; Le Beuze, A.; El Khalifa, M. A.; Chevrel, R.; Whangbo,
M.-H. J. Am. Chem. Soc. (6)
-
-
- berg-Helmholz formula was used to calculate the off-diagonal H_{ij} values: Ammeter, J. H.; Bürgi, H.-B.; Thibeault, J.; Hoffmann, R. *J. Am. Chem. SOC.* **1978,** *100,* 3686.

Figure 1. Dispersion relations of the t_{2g}-block bands (a, b, and c) of a single NbSe₂ layer, where $\Gamma = (0, 0)$, $Y = (b^*/2, 0)$, $M = (b^*/2, c^*/2)$, single NbSe₂ layer, where $\Gamma = (0, 0)$, $Y = (b^2/2, 0)$, $M = (b^2/2, c^2/2)$, and $Z = (0, c^2/2)$. The Fermi levels e_f and e'_f refer to the d² and d^{2.5} directions refer to the divisory respectively. to the intra- and the interchain directions, respectively.

Figure 2. Hole (a) and electron Fermi surfaces (b) associated with the **d2** electron counting **(er)** of **Figure** 1. The shaded and unshaded regions of wave vector lead to filled and unfilled band levels respectively.

of M'. The NbSe₂ layers have zigzag metal chains as in β -MoTe₂ and α -ZrI₂, so that the electron count on Nb is expected to be d2. This requires the oxidation state of *2+* for M', which seems consistent with the magnetic properties of $M'Nb₂Se₄$: For example, the effective magnetic moment of Cr in $CrNb₂Se₄$ is 4.4 $\mu_{\rm B}$,^{3a} which is quite close to that of Cr²⁺ found for CrMo₂S₄ (i.e., $4.6 \pm 0.1 \mu_B$.¹⁰ Figure 1 shows the dispersion relations calculated for the t_{2g} -block bands (a, b, and c) of a single NbSe₂ layer taken from the crystal structure of $CrNb₂Se₄$ ^{3a} As described elsewhere,⁷ bands a and c result from the metal-metal bonding and antibonding levels of zigzag metal-metal bonds, respectively, while band b originates from the metal $x^2 - y^2$ orbitals. The latter describe 1,3-interactions in each zigzag metal chain. Band d overlapping the bottom portion of the t_{2g} -block bands is the top of the Se pblock bands. The Fermi level *ef* of Figure 1 corresponds to the d2 electron counting. The partially filled bands of Figure 1 lead to a hole and an electron Fermi surface shown in parts a and b of Figure 2, respectively, which show that the NbSe₂ layer is a semimetal. This conclusion is consistent with the results of the Hall coefficient measurements on $M'Nb₂Se₄.^{3a}$ The hole pockets of Figure 2 are nested by the vector $q \approx 0.29b^*$. Thus, an electronic instability associated with this nesting might be

- (1 1) (a) Alcock, **N.** W.; Kjekshus, **A.** *Aczu Chem. Scund.* **1965,19,79. (b)** Wildervanck, J. C.; Jellinek, F. *J. Less-Common Mer.* **1971,** *24,* **73.**
- (12) Canadell, E.; Whangbo, M.-H. *Inorg. Chem.* 1987, 26, 3974.
(13) Canadell, E.; Mathey, Y.; Whangbo, M.-H. *J. Am. Chem. Soc.* 1988,
- *110,* **104. (14)** Whangbo, M.-H.; Foshee, M. **J.** *Inorg. Chem.* **1981,** *20,* **113.**
- **(15)** Summerville, R. H.; Hoffmann, R. J. *Am. Chem. SOC.* **1976, 98, 7240.**

Figure 3. Fermi surface associated with the $d^{2.5}$ electron counting (e_0) of Figure 1. The shaded and unshaded regions of wave vectors lead to filled and unfilled band levels, respectively.

Figure 4. Dispersion relations of the t_{2g} -block bands calculated for (a) a single MoTe₂ layer and (b) the 3D β -MoTe₂ lattice. $\Gamma = (0, 0), X = (a^*/2, 0)$ and $Y = (0, b^*/2)$ for the MoTe₂ layer, and $\Gamma = (0, 0, 0), X = (a$ $r = (a^*/2, 0, 0)$ and $Y = (0, b^*/2, 0)$ for the 3D β -MoTe₂ lattice. The $\Gamma \rightarrow X$ and $\Gamma \rightarrow Y$ directions represent the inter- and the intrachain directions, respectively. The dashed line refers to the Fermi **level.**

responsible for a weak resistivity upturn of $CrNb₂Se₄$ at \sim 50 K.^{3a} However, such a resistivity upturn is absent in $TiNb₂Se₄$ and $VNb₂Se₄.^{3a}$ An electronic factor responsible for this observation might be that the hole pockets of $TiNb₂Se₄$ and $VNb₂Se₄$ are not large enough.

The above discussion is based upon the assumption of d^2 electron counting for Nb. If the M' atoms of $M'Nb₂Se₄$ have the oxidation state $+3$, as suggested by Meerschaut et al.,^{3a} the electron count on Nb becomes $d^{2.5}$. This raises the Fermi level to e_f in Figure 1, thereby making band b, half-filled. Consequently, the resulting Fermi surface, shown in Figure 3, is one-dimensional in nature, and is nested by a vector $q = 0.5b^* + 0.5c^*$. One may rationalize the resistivity upturn of CrNb₂Se₄, which occurs at 50 K,^{3a} as a consequence of an electronic instability associated with this nesting. According to this reasoning, $TiNb₂Se₄$ and $VNb₂Se₄$ are expected to exhibit a similar resistivity anomaly as in $CrNb₂Se₄$, in disagreement with experiment.^{3a} Slight differences in the $Nb₂Se₄$ layer structures of M'Nb₂Se₄ induced by the different M' atoms would have stronger effects on their electronic properties when their Fermi surfaces are given by Figure **2** rather than by Figure 3. Thus, the available resistivity data on $TiNb₂Se₄$ and $VNb₂Se₄$ are more consistent with the semimetallic band picture based upon a d² electron counting on Nb.

B. β -MoTe₂. Due to displacive movement between MoTe₂ layers, β -MoTe₂ shows a resistivity anomaly at about 250 K.^{4b- \bar{e}} This suggests that the nature of the partially filled bands of β -MoTe₂ is affected by a slight change in MoTe₂ layers. Figure 4a shows the dispersion relations calculated for the t_{2a} -block bands of a single MoTe₂ layer. In general, the t_{2g}-block bands, a, b, and c of the MoTe₂ layer are similar to the corresponding ones of the NbSe₂ layer (Figure 1). At Γ , the top of band a_2 is close in energy to the bottom of band b_2 in the MoTe₂ layer while this is not the case in the NbSe₂ layer. This is caused by the fact that the top of the Te p-block bands lies considerably higher in energy than case in the NbSe₂ layer. This is caused by the fact that the top
of the Te p-block bands lies considerably higher in energy than
that of the Se p-block bands. Along $\Gamma \rightarrow Y$ of Figure 4a, bands
and a base of d have the s a_2 and d have the same symmetry so that they mix. Band a_2 has more metal d-orbital character near *Y* but more Te p-orbital character near Γ .

⁽IO) Chevrel, R.; Sergent, M.; Meury, J. **L.;** Quan, D. T.; Colin, *Y. J. Solid Stare Chem.* **1974.** *IO,* **260.**

Figure 5. Dispersion relations of the t_{2g} -block bands calculated for a rigure 5. Dispersion relations of the t_{2g} -block bands calculated for a single Zrl₂ layer, where $\Gamma = (0, 0), X = (a^*/2, 0), M = (a^*/2, b^*/2)$
and $Y = (0, b^*/2)$. The $\Gamma \rightarrow X$ and $\Gamma \rightarrow Y$ directions represent the interand the intrachain directions, respectively. The dashed line refers to the Fermi level.

Figure 4b shows the t_{2g} -block bands calculated for the threedimensional (3D) β -MoTe₂ lattice. With respect to the case of a single MoTe, layer, all the band levels are doubled in β -MoTe, since it has two MoTe₂ layers per unit cell. Figure 4b shows that this band doubling does not lead to nearly degenerate bands but to substantially split ones. Namely, the t_{2g}-block bands of β -MoTe₂ reflect appreciable interlayer Te-Te interactions. This is possible since the t_{2g} -block bands have large Te p-orbital character and since MoTe₂ layers interact via short Te-Te contacts (e.g., 3.86) and 3.91 **A)** smaller than the van der Waals radii sum of 4.20 **A.** With d2 metal ions, the Fermi level cuts the bands arising from the t_{2g}-block bands a_2 and b_1 . It is clear from Figure 4b that this will lead to hole and electron Fermi surfaces, and hence β -MoTe₂ is a semimetal. Since a displacive movement of MoTe, layers will modify the interlayer Te-Te contact distances, the band splittings of Figure 4b will also change so that the resulting hole and electron Fermi surfaces will be slightly different. Consequently, the electrical resistivity of β -MoTe₂ should be affected by a displacive movement of MoTe₂ layers.

C. α -**ZrI**₂. Figure 5 shows the t_{2g}-block bands of a single ZrI₂ layer. In contrast to the case of $NbSe_2$ and $MoTe_2$ layers, the bottom two of the t_{2g} -block bands are separated from the rest, thereby leading to a band gap. The top of the iodine p-block bands lies below the t_{2g}-block bands, and hence are not shown in Figure 5. As in β -MoTe₂, α -ZrI₂ has two ZrI₂ layers per unit cell.⁵ Our band calculations on the 3D α -ZrI₂ lattice show that each band of Figure 5 splits into two, thereby reducing the band gap. It is clear from Figures I, 4a, and *5* that the presence of a band gap in α -ZrI₂ is caused by the fact that band a_2 lies below band b₁. We now examine why this happens for α -ZrI₂ but not for $M'Nb₂Se₄$ and β -MoTe₂. Shown in 5-7 are various bond angles

associated with three adjacent MX_6 octahedra found in the NbSe₂,

MoTe₂ and ZrI₂ layers, respectively. Clearly, the MX_6 octahedra of M'Nb₂Se₄, β -MoTe₂, and α -ZrI₂ are remarkably similar in shape. This distortion of $MX₆$ octahedra could not have induced the difference in their electronic structures.

The electronegativity difference between M and X can affect the extent of orbital mixing between the two atoms. To examine how strongly our results are influenced by this factor, we calculated the band structure of the NbSe₂ layer using the H_{ii} (valence shell ionization potential) values of Zr and I and that of the ZrI₂ layer using the H_{ii} values of Nb and Se. These calculations still show that bands a_2 and b_1 are overlapping in the NbSe₂, but are separated in the ZrI_2 layer. Thus the difference in the H_{ii} values of M and **X** is not responsible for why the electronic structure α -ZrI₂ differs from that of M'Nb₂Se₄ or β -MoTe₂. anic Chemistry, Vol. 29, No. 7, 1990

MoTe₂ and ZrI₂ layers, respectively. Clearly, the MX₆ octahe

of M'Nb₂Se₄, β -MOTe₂ and α -ZrI₂ are remarkably similar

of M'Nb₂Se₄, β -MOTe₂ and α -ZrI₂

It is noted that Figures 1, 4a, and 5 that, along the chain direction, bands a_2 and b_1 have different symmetries and hence overlap when band a_2 is raised high enough in energy, thereby leading to a metallic situation for d^2 metal systems. Bands a_2 and d have the same symmetry, so that band a_2 lies high in energy when the p-block band of X lies high in energy. To have bands a_2 and b_1 overlapping, therefore, the p-block band of X should be high in energy. The latter requires strong antibonding in intralayer $X \cdots X$ contacts. The relevant $X \cdots X$ distances in the NbSe₂, MoTe₂, and ZrI₂ layers are summarized in 8-10, re-

spectively. Clearly, the $X \cdots X$ contact distances are much longer in the ZrI, layer than in the NbSe, or MoTe, layer, which is a direct consequence of the fact that the Zr-I bonds are much longer than the Nb-Se and Mo-Te bonds. In addition, iodine has more contracted orbitals than does tellurium. Consequently, the top of the iodine p-block bands lies considerably lower in energy compared with that of the tellurium or selenium p-block bands. This explains why bands a_2 and b_1 overlap in the NbSe₂ and MoTe₂ layers but not in the $ZrI₂$ layer.

Concluding Remarks

 β -MoTe₂ and α -ZrI₂ are structurally similar in that they all contain $M\bar{X}_2$ layers of d^2 metal ions. Nevertheless, β -MoTe₂ is a semimetal while α -ZrI₂ is a semiconductor. This difference originates from the fact that, in contrast to the case of β -MoTe₂, the top of the p-block bands of X lies below the bottom of the metal t_{2g}-block bands in α -ZrI₂ due to the long intralayer I^{...}I contact distances. Our calculations on β -MoTe₂ show that the partially filled t_{2s}-block bands of β -MoTe₂ contain a sizable contribution from tellurium p-orbitals, so the hole and electron Fermi surfaces resulting from them are expected to be affected by a slight change in the interlayer Te-Te contact distances.

 $M'Nb₂Se₄$ ($M' = Ti$, V, Cr) phases are structurally similar to β -MoTe₂ and α -ZrI₂. Our calculations show that if the oxidation state of \mathbf{M}' is +2 $\mathbf{M}'\mathbf{Nb}_2\mathbf{Se}_4$ phases are two-dimensional semimetals with small hole and electron pockets. If the oxidation state of M' is $+3$, M'Nb₂Se₄ phases are calculated to be one-dimensional metals. Therefore, it would be interesting to measure the resistivity anisotropy as well as the possible superlattice modulation of these compounds. comments.

Acknowledgment. This work was supported by NATO, Scientific **Affairs** Division, and also by DOE, Office of Basic Sciences, Division of Materials Science, under Grant DE-FG05-86ER45259. We are thankful to Dr. A. Meerschaut for references and valuable

Contribution from the Laboratoire de Chimie Théorique (CNRS URA 506) and Laboratoire de Physique des Solides (CNRS LA 2), Université de Paris-Sud, 91405 Orsay, France, Laboratoire de Chimie des Solides, IPCM, Université de Nantes, 44072 Nantes, France, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Comparison of the Electronic Structures of Layered Transition-Metal Trichalcogenides TaSe₃, TaS₃, and NbSe₃

E. Canadell,^{*,†} I. E.-I. Rachidi,[†] J. P. Pouget,*,[‡] P. Gressier,§ A. Meerschaut,§ J. Rouxel,*,§ D. Jung, M. Evain,^{\parallel} and M.-H. Whangbo*, \parallel

Received August 22, I989

The electronic structures of the three layered transition-metal trichalcogenides NbSe₃, TaS₃, and TaSe₃ were examined by performing tight-binding band electronic structure calculations. The Fermi surfaces of these materials were also calculated to analyze their metallic and/or charge density wave properties. In these trichalcogenides MX_1 ($M = Nb$, Ta; $X = S$, Se) made up of prismatic **MX3** chains, the broken **X-X** bonds of their equilateral-like **MX,** chains and the short intra- and interlayer **X-X** contacts are found to be crucial for the semimetallic properties of TaSe, and for the charge density wave phenomena **of** NbSe3 and TaS₃. For the electronic parameters of the charge density waves in NbSe₃ and TaS₃, a quantitative agreement is obtained between the experimental observations and the present band electronic structure calculations.

Layered transition-metal trichalcogenides MX_3 (M = Nb, Ta; $X = S$, Se) contain layers made up of trigonal-prismatic chains.¹ These MX_3 prismatic chains are classified as isosceles- or equilateral-like depending upon whether the oxidation state of the X_3 triangle forming the base of the MX_6 prism is $(X^2 + X_2^2)$ or **3X2-,** respectively? For simplicity, isosceles- and equilateral-like prismatic chains may be referred to as I- and E-prismatic chains, respectively. Thus NbSe, and monoclinic TaS, each have four I- and two E-prismatic MX_3 chains per unit cell, while TaSe₃ has two **I-** and two E-prismatic chains per unit cell. Consequently, it is expected that NbSe, and TaS, each have two d electrons per unit cell but TaSe₃ has none. In agreement with this simple electron counting, both NbSe, and TaS, are metals at room temperature. When the temperature is lowered, both undergo two different charge density wave (CDW) transitions. At the end of these two transitions, $Ta\ddot{S}_3$ becomes a semiconductor but $NbSe_3$ remains metallic.' The above electron counting on TaSe, suggests that TaSe, would be a semiconductor, but it is a semimetal'. Although a number of band electronic structure studies on $NbSe₃³$ and $T a S e_1^4$ have been reported, there has been no systematic study concerning how NbSe, and TaS, differ in their electronic structures and why TaSe, is semimetallic from the viewpoint of their crystal structures. In addition, Fermi surfaces have not been reported for TaS_3 and $TaSe_3$. Therefore, we carry out tightbinding band electronic structure calculations⁵ on NbSe₃, TaS₃, and $TaSe₃$ within the framework of the extended Hückel method⁶ and discuss similarities and differences in their electronic structures. The atomic parameters employed in our study are summarized in Table I.

Crystal Structures and Short X.-X Contacts

In the layered trichalcogenide ZrTe₃, composed exclusively of I-prismatic chains, short intra- and interlayer Te-Te are found to play a crucial role for its semimetallic property and resistivity anomaly.⁷ By analogy, one might expect short $X \cdots X$ contacts of MX_3 ($M = Nb$, Ta; $X = S$, Se) to be also important in de-

Table I. Exponents and Parameters Used in the Calculations							
atom	orbital	H_{ii} , eV	ţ,	ζ_2	c_1^a	$c_2^{\,a}$	
Nb	5s	-10.10	1.90				
	5p	-6.86	1.85				
	4d	-12.10	4.08	1.64	0.6401	0.5516	
Ta	6s	-10.10	2.28				
	6p	-6.86	2.24				
	5d	-12.10	4.76	1.94	0.6597	0.5589	
S	3s	-20.00	1.817				
	3p	-13.30	1.817				
Se	4s	-20.50	2.44				
	4p	-13.20	2.07				

 a Contraction coefficients used in the double- ζ expansion.

Table II. Short $X-X$ and $X \cdots X$ Distances (A) in NbSe₃, TaS₃, and TaSe, Shown in **1** and **2**

dist	NbSe ₁	TaS ₃	TaSe,
A	2.37	2.07	2.58
A'	2.50	2.11	
B	2.73	2.80	2.66
C	2.92	2.84	2.90
	3.30	3.26	3.49
E	2.92	2.92	

termining the electronic properties of MX_3 . The projection view along the chain direction (i.e., the b-axis direction) of $NbSe₃⁸$ and

- (2) Whangbo, M.-H. **In** *Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures;* Rouxel, J., **Ed.;** Reidel: Dordrecth, The Netherlands, 1986; p 27.
- (3) (a) Shima, N. J. Phys. Soc. Jpn. 1982, 51, 11; 1983, 52, 578. (b)
Bullett, D. W. J. Phys. C: Solid State Phys. 1982, 15, 3069. (c)
Whangbo, M.-H.; Gressier, P. Inorg. Chem. 1984, 23, 1305.
-
-
- (4) Bullett, D. W. J. Phys. C: Solid State Phys. 1979, 12, 277.
(5) Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093.
(6) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. A modified Wolfs-
berg-Helmholz formula w *Am. Chem. Soc.* 1978, *100,* 3686.

⁺ Laboratoire de Chimie Théorique, Université de Paris-Sud.
[‡] Laboratoire de Physique des Solides, Université de Paris-Sud.

⁸ Université de Nantes.

¹ North Carolina State University.

⁽¹⁾ Reviews: (a) Meerschaut, **A.;** Rouxel, J. **In** *Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures;* Rouxel, J., Ed.; Reidel: Dordrecht, The Netherlands, 1986; p **205.** (b) Monceau, P. **In** *Electronic Properties of Inorganic Quasi-One-Dimensional Compounds;* Monceau, P., Ed.; Reidel: Dordrecht, The Netherlands, 1985; Part **11,** p 139.