Preparation of [NS][AlCl₄] and [NS][CF₃SO₃] and Reactions of the Thiazyl Cation with Thiadiazoles and Organoselenium Halides: X-ray Crystal Structure of [N₂S₂SeCl][AlCl₄]

Allen Apblett, Tristram Chivers,* and James F. Fait

Received September 1, 1989

The reaction of (NSCl)₃ with 3 mol of AlCl₃ at ca. 50 °C in the absence of a solvent provides a simple, high-yield synthesis of [NS][AlCl₄]. The treatment of (NSCl)₃ with 3 mol of AgSO₃CF₃ in 1,2-C₂H₄Cl₂ is a convenient in situ source of [NS][SO₃CF₃]. However, a solution of $[NS][AlCl_4]$ in boiling $1,2-C_2H_4Cl_2$ produces $[(H_2N)HCCH(NH_2)][AlCl_4]_2$ after 24 h. The reactivity of thiazyl salts toward thiadiazoles, organoselenium halides, and chalcogens was monitored by ¹⁴N NMR spectroscopy, and stable products were isolated and characterized. The reactions of 2,1,3- and 1,2,3-benzothiadiazole with NS⁺X⁻ give either Lewis acid adducts (X⁻ = AlCl₄, AsF₆) and NSY (Y = Cl, F) or intensely colored charge-transfer complexes (X⁻ = CF₃SO₃, AsF₆) in which the NS⁺ cation is attached to the heterocyclic ring on the basis of ¹³C NMR data. By contrast, 3,5-dimethyl-1,2,4-thiadiazole reacts with [NS][SO₃CF₃] to give a protonated adduct of the thiadiazole. The reaction of EtSeCl with [NS][AlCl₄] yields [N₂S₂SeCl][AlCl₄] via a thermally unstable intermediate. The same final product and a small amount of [NS₂][AlCl₄] are formed in the reaction of $[NS][AlCl_4]$ with selenium. By contrast, the reaction of PhSeCl with $[NS][AlCl_4]$ produces a dark green charge-transfer complex. The structure of the $N_2S_2SeCl^+$ cation was shown by X-ray crystallography to be a five-membered ring with chlorine attached to selenium. The crystals of $[N_2S_2SeCl][AlCl_4]$ are monoclinic, space group $P2_1/n$, with a = 9.237 (1) Å, b = 10.685 (2) Å, c = 11.332 (2) Å, $\beta = 92.65$ (1)°, V = 1117.2 (2) Å³, and Z = 4. The least-squares refinement with anisotropic thermal parameters for all non-hydrogen atoms converged at R = 0.049 and $R_w = 0.045$ for 2817 unique observed reflections. The Se atom is 0.187 (5) Å out of the plane formed by the S_2N_2 unit with d(S-Cl) = 2.191 (1) Å and d(S-Se) = 2.1912.293 (1) Å. The S-N bond lengths indicate a tendency toward localized π bonding in the NSN unit of the cation. Significant cation-anion interactions between one Cl atom of AlCl4 and the Se and nearest S atom are observed.

Introduction

As the simplest example of a triply bonded species, the thiazyl cation, NS⁺, is a fundamental species in sulfur-nitrogen (S-N) chemistry. The following approaches have been used for the synthesis of thiazyl salts: (a) the treatment of gaseous NSX monomer (X = F, ^{1,2} Cl³) with halide ion acceptors, (b) the reaction of $(NSF)_x$ (x = 3, 4) with BF₃, AsF₅, or Sb₅,⁴ (c) the treatment of $(NSCl)_3$ with Lewis acids,⁵⁻⁸ and (d) the reaction of $(NSCl)_3$ with silver(I) salts.^{9,10} The last method is suitable for the high-yield synthesis of [NS][AsF₆],¹⁰ whereas method c has usually been used for the in situ generation of NS⁺ salts of chloroanions.

The reactions of both isolated and in situ generated NS⁺ have been investigated sporadically during the last 20 years. The most notable findings include insertion into the S-N bonds of S_4N_4 to give $S_5N_5^{+,6,11,12}$ insertion into S-Cl^{5,7,12} or Re-X (X = Cl, Br)¹³ bonds, and the formation of charge-transfer complexes with arenes.¹⁴ Recently, we described a simple synthesis of $[NS][AlCl_4]$ in the absence of solvent using method c.¹⁵ This discovery and the realization that ^{14}N NMR spectroscopy is a powerful technique for monitoring reactions of NS⁺¹⁶ have facilitated a more extensive

- Glemser, O.; Koch, W. Angew. Chem., Int. Ed. Engl. 1971, 10, 127. Miller, K. V.; Emken, W. C.; Duncan, L. C. J. Fluorine Chem. 1984, (1)
- (2) 26. 125
- Hey, R. G. Ph.D. Thesis, University of Durham, England, 1980.
- (4) Mews, R.; Wagner, D. L.; Glemser, O. Z. Anorg. Allg. Chem. 1975, 412, 148.

- (8) Banister, A. J.; Kendrick, A. G. J. Chem. Soc., Dalton Trans. 1987, 1565.
- (9) Herberhold, M.; Haumaier, L. Z. Naturforsch. 1980, 35B, 1277.
- (10) Apblett, A.; Banister, A. J.; Biron, D.; Kendrick, A. G.; Passmore, J.;
- Schriver, M.; Stojanac, M. Inorg. Chem. 1986, 25, 4451. Banister, A. J.; Clarke, H. G. J. Chem. Soc., Dalton Trans. 1972, 2661. (12)
- Mews, R. Angew. Chem., Int. Ed. Engl. 1976, 15, 691
- (13) Hartmann, G.; Mews, R. Z. Naturforsch. 1985, 40B, 343.
 (14) Brownstein, S.; Louie, B. Can. J. Chem. 1987, 65, 1361.
- (15) For a preliminary communication, see: Apblett, A.; Chivers, T.; Fait, J. F. J. Chem. Soc., Chem. Commun. 1989, 1596.
- (16) The common practice of quoting v_{1/2} values for ¹⁴N NMR signals is followed; we note, however that line widths are highly dependent on for the state of t factors such as temperature or solvent viscosity.

survey of the potential of NS⁺ as a synthon in S-N chemistry. Here we describe the results of the reactions of thiazyl salts with thiadiazoles, organoselenium halides, and selenium. Our preliminary investigations indicated the need for a thiazyl salt with a noncoordinating anion for reactions with substrates containing Lewis base sites. Consequently, the silver(I) salt method was employed for the in situ generation of $[NS][SO_3CF_3]$.¹⁷ The X-ray structure of $[N_2S_2SeCl][AlCl_4]$ was determined, and the structural details are compared with those of [N₂S₂SeCl]Cl.¹⁸

Experimental Section

Reagents and General Procedures. All experiments were performed under an atmosphere of dry nitrogen (99.99% purity). Solvents were dried by heating under reflux with the appropriate drying agent: methylene dichloride (P_4O_{10}) , chloroform (P_4O_{10}) , 1,2-dichloroethane (P_4O_{10}) , $CFCl_3$ (P_4O_{10}), and SO_2 (molecular sieves). They were then distilled and stored in bottles fitted with a Teflon stopcock and septa-sealed T-joint. Solvents were transferred when required to the appropriate vessel either by syringe or under nitrogen by use of a stainless steel transfer needle. Reactions were performed in Schlenk tubes sealed with rubber septa, and all products were isolated and manipulated under an atmosphere of nitrogen in a Vacuum Atmospheres drybox.

The following reagents were prepared by published methods: (NS-Cl)₃,¹⁹ 3,5-dimethyl-1,2,4-thiadiazole,²⁰ EtSeSeEt,²¹ and [NS][AsF₆].¹⁰ The following commercial products were used without further purification: 2,1,3-benzothiadiazole (Aldrich), 1,2,3-benzothiadiazole (Fluka), AgSO₃CF₃ (Aldrich), AgNO₃ (Fisher), hexamethylbenzene (Fisher), tert-butyl chloride (Fisher), PhSeCl (Aldrich), selenium (Fisher), and AsF₅ (Ozark-Mahoning). AlCl₃ (Aldrich) was purified by sublimation at 80 °C/0.1 Torr.

Instrumentation. Infrared spectra were recorded as Nujol or Fluorolube mulls on KBr, CsI, or polyethylene plates by using a Nicolet DX-5 FTIR spectrometer (4000–400 cm⁻¹) or a Perkin-Elmer 457 grating infrared spectrometer. ¹⁴N, ²⁷Al, and ⁷⁷Se NMR spectra were recorded on a Bruker AM-400 spectrometer, and chemical shifts are reported versus external nitromethane, $Al(NO)_3(aq)$, and $Me_2Se(\ell)$, respectively. ¹H and ¹³C NMR spectra were obtained on a Bruker ACE 200 spectrometer, and chemical shifts are reported relative to Me₄Si in CDCl₃. All NMR spectra were recorded at ca. 25 °C unless otherwise stated. Mass spectra were obtained by using a Kratos MS80 RFA instrument

- (17)Passmore, J.; Schriver, M. J. Inorg. Chem. 1988, 27, 2749.
- Gillespie, R. J.; Kent, J. P.; Sawyer, J. F. Inorg. Chem., in press. Jolly, W. L.; Maguire, K. D. Inorg. Synth. 1967, 9, 102. (18)
- (19)
- (20) Kresze, G.; Maschke, A.; Albrecht, R.; Bederke, K.; Patzschke, H. P.;
- Smalla, H.; Trede, A. Angew. Chem., Int. Ed. Engl. 1962, 1, 89. Shlyk, Y. N.; Bogolyubov, G. M.; Petrov, A. A. Zh. Obshch. Khim. 1968, 38, 1199. (21)

operating at 70 eV. Chemical analyses were performed by the Analytical Services Division of the Department of Chemistry, The University of Calgary, and by Canadian Microanalytical Service, New Westminster, BC, Canada. Melting points were obtained in sealed glass capillaries and are uncorrected.

Preparation of [NSJAICl₄]. A mixture of (NSCl)₃ (2.44 g, 10 mmol) and freshly sublimed AlCl₃ (4.00 g, 30 mmol) was triturated and then transferred to a vacuum sublimation apparatus (4.5 × 15 cm). This vessel was immersed in an ultrasonic bath for 2 h at ca. 50 °C, and the reaction mixture became a molten orange-yellow semisolid. Sublimation of the melt so formed at 60 °C/0.1 Torr gave pale yellow crystals of [NS][AlCl₄] (4.58 g, 21 mmol). Anal. Calcd for AlCl₄NS: Cl, 66.00; N, 6.52; S, 14.92; Al, 12.56. Found: Cl, 66.26; N, 6.68; S, 14.65; Al, 12.41 (by difference). Sometimes a pale green or red color was observed in the sublimate. ¹⁴N NMR spectrum in CH₂Cl₂ (δ , ppm; $\nu_{1/2}$, H2): +196, 390¹⁶ [lit. +202, 240 for [NS][AsF₆] in SO₂].¹⁷ IR (Nujol, cm⁻¹): 1406 w [ν (NS)], 483 s [ν (AlCl₄⁻)].

Preparation of [NS][CF₃SO₃]. A mixture of (NSCl)₃ (0.81 g, 3.3 mmol) and AgSO₃CF₃ (2.57 g, 10 mmol) was heated at reflux for 1 h in 1,2-dichloroethane (20 mL). The solution was then filtered to remove silver chloride (1.39 g, 9.7 mmol). The ¹⁴N NMR spectrum of the filtrate indicated that NS⁺, δ (¹⁴N) +204 ppm, $\nu_{1/2}$ 250 Hz, was the only nitrogen-containing species in solution. Removal of the solvent under vacuum yielded a sticky red oil from which only a small amount of [NS][CF₃SO₃] (0.21 g, 1.1 mmol) could be obtained by sublimation.¹²

Reaction of [NS][AlCl₄] with 1,2-Dichloroethane. A mixture of (NS-Cl)₃ (1.62 g, 6.7 mmol) and AlCl₃ (2.66 g, 20 mmol) in 1,2-dichloroethane (5 mL) was heated at ca. 80 °C for 24 h. Pale yellow crystals of ethylenediiminium tetrachloroaluminate $[(H_2N)HCCH(NH_2)]$ [Al-Cl₄]₂ (2.41 g, 6.1 mmol) were obtained upon cooling the solution to -30 °C. Anal. Calcd for C₂H₆Al₂N₂Cl₈: C, 6.07; H, 1.53; N, 7.08. Found: C, 5.84; H, 1.76; N, 7.38. NMR spectra (δ , ppm): ¹H in 1:1 CH₃NO₂/CDCl₃ 10.95 (s, 4 H, NH₂), 5.34 (s, 2 H, CH); ¹³C in 1:1 CH₃NO₂/CDCl₃ 168.9 (s); ¹⁴N in 1:1 CH₃NO₂/CDCl₃ -190 (t), $J_{NH} = 67$ Hz. IR (Nujol, cm⁻¹): 3278 s, 3146 m, 1659 m, 1410 vs, 1018 m, 609 m, 481 vs.

Preparation of [Arene-NS][CF₃SO₃] Complexes. The arene-NS⁺ complexes were prepared by the following general procedure. A mixture of (NSCl)₃ (0.42 g, 1.7 mmol) and AgSO₃CF₃ (1.30 g, 5.1 mmol) was triturated and placed in a 10 mm o.d. glass tube fitted with a Teflon-lined screw cap. Methylene dichloride (4 mL) was added to the mixture, and the tube was heated at 60 °C for 1.5 h. The solution of [NS][CF₃SO₃] so formed was cooled to 0 °C, and the arene (5.0 mmol) was added quickly by syringe. The resulting brightly colored solutions were shaken for 15 min, and then ¹⁴N NMR spectra were obtained. ¹³C NMR spectrum in CH₂Cl₂ for [hexamethylbenzene-NS][CF₃SO₃] (δ , ppm): 17.4, 147.4 [lit. δ (¹³C) 17.1, 147.2 ppm for [hexamethylbenzene-NS]-[AsF₆] in CH₂Cl₂].¹⁴

Reaction of [NS][AlCl₄] with 2,1,3-Benzothiadiazole. 2,1,3-Benzothiadiazole (0.14 g, 1.0 mmol) was added to a solution of [NS][AlCl₄] (0.22 g, 1.0 mmol) in methylene dichloride (3 mL) in a 10 mm o.d. glass tube fitted with a Teflon-lined screw cap. An immediate reaction occurred to give an orange-brown solution. The ¹⁴N NMR spectrum showed signals at +328 ppm attributed to NSCl [lit.¹⁷ δ (¹⁴N) +323 ppm in SO₂] and at -85 ppm due to 2,1,3-benzothiadiazole·AlCl₃. The latter assignment was confirmed by the observation of a resonance at -85 ppm for an authentic sample of the adduct prepared from 2,1,3-benzothiadiazole (0.14 g, 1.0 mmol) and AlCl₃ (0.13 g, 1.0 mmol) in methylene dichloride (3 mL).

Reaction of [NS][CF₃SO₃] with 2,1,3-Benzothiadiazole. 2,1,3-Benzothiadiazole (0.68 g, 5.0 mmol) was added to a solution of [NS][CF₃SO₃] (0.98 g, 5.0 mmol) in 1,2-dichloroethane (25 mL). A slow reaction occurred to give a bright green solution. After 24 h the solution was filtered to remove silver chloride (0.69 g, 4.8 mmol). The successive addition of 5-mL aliquots of chloroform, followed by cooling the solution σ^{-3} °C, produced several crops of [2,1,3-benzothiadiazole·NS]-[CF₃SO₃] (1.26 g, 3.8 mmol) as a green-black solid. Anal. Calcd for C₇H₄F₃N₃O₃S₃: C, 25.38; H, 1.22; N, 12.68, S, 29.03. Found: C, 25.46; H, 1.27; N, 12.78; S, 28.78. IR (Nujol, cm⁻¹): 1607 m, 1553 s, 1502 m, 1409 m [ν (NS⁺)], 1295 vs, 1286 vs, 1231 vs, 1215 s, 1169 s, 1160 s, 1027 vs, 930 m, 871 m, 811 m, 761 s, 636 vs, 581 s, 525 s, 514 s, 495 m, 411 m, 395 m. MS [m/e (%) ion]: 136 (60) C₆H₄N₂S⁺, 108 (20) C₆H₄S⁺, 90 (20) C₆H₄N⁺, 76 (20) C₆H₄⁺, 69 (55) ?, 64 (50) S₂⁺, 46 (100) NS⁺. ¹³C and ¹⁴N NMR data are given in Table I.

Reaction of [NS][AsF₆] with 2,1,3-Benzothiadiazole. A solution of [NS][AsF₆] (1.18 g, 5.0 mmol) in SO₂ (5 mL) was added to a solution of 2,1,3-benzothiadiazole (0.68 g, 5.0 mmol) in SO₂ (5 mL) in a two-bulb vessel. An immediate reaction occurred to give a bright green solution. The SO₂ was removed and a CFCl₃/SO₂ mixture (10:1, 10 mL) was added to the vessel by vacuum transfer. Several washings with this

Table I.	¹³ C and	14N I	NMR	Chemical	Shifts for
Benzothi	adiazole	NS ⁺	Charg	e-Transfer	· Complexes

	δ(¹	δ(¹³ C) ^a		δ(¹⁴ N) ^b	
heterocycle, L	L	L·NS ⁺	L	L·NS ⁺	
hexamethylbenzenec	132.1	147.4 ^d		-200 ^c	
2,1,3-benzothiadiazole ^c	154.4	150.9	-49	-57	
	128.8	133.6		-68°	
	121.1	120.3			
1,2,3-benzothiadiazole	156.2	147.6	-45	-51	
	138.8	146.9	-59	-113	
	127.2	134.9		-135e	
	124.9	134.0			
	121.7	123.0			
	117.3	119.0			

^aRelative to Me₄Si. ^bRelative to MeNO₂(1). ^cCounterion is CF₃S-O₃⁻. ^dLiterature¹⁴ δ ⁽¹³C) 147.0, 147.2, and 147.3 ppm for [NS]⁺-[BF₄]⁻, [NS]⁺[AsF₆]⁻, and [NS]⁺[SbF₆]⁻, respectively. ^cAssigned to NS⁺. ^fCounterion is AsF₆⁻.

solvent mixture extracted a yellow solid identified as 2,1,3-benzothiadiazole-AsF₅ (0.79 g, 2.6 mmol) by comparison of the IR spectrum with that of an authentic sample prepared from 2,1,3-benzothiadiazole and AsF₅.²² The green solid residue was tentatively identified as [2,1,3-benzothiadiazole-NS][AsF₆] (0.88 g, 2.4 mmol) by comparison of the IR and ¹³C NMR data with those of [2,1,3-benzothiadiazole-NS]-[CF₃SO₃]. IR (Nujol, cm⁻¹): 1609 m, 1551 s, 1502 m, 1412 s [ν (NS⁺)], 1294 vs, 1170 s, 930 m, 868 m, 811 m, 759 s, 700 vs (AsF₆⁻), 580 s, 525 s, 514 s, 495 m, 411 m, 395 vs (AsF₆⁻). ¹³C NMR spectrum in CD₃NO₂ (δ , ppm): 150.6, 133.9, 119.8.

Reaction of 1,2,3-Benzothiadiazole with [NS][AsF₆]. The reaction of 1,2,3-benzothiadiazole (0.68 g, 5 mmol) and [NS][AsF₆] was carried out by using the procedure described above for 2,1,3-benzothiadiazole. The products were colorless crystals of 1,2,3-benzothiadiazole-AsF₅ (0.49 g, 1.6 mmol), which were characterized by comparison of the IR spectrum with that of an authentic sample prepared from 1,2,3-benzothiadiazole and AsF₅,²² and a dark purple solid tentatively identified as [1,2,3-benzothiadiazole-NS][AsF₆] (1.18 g, 3.2 mmol). Satisfactory elemental analysis could not be obtained for this product due to ready hydrolysis. IR (Nujol, cm⁻¹): 1592 m, 1550 s, 1455 vs, 1424 vs [ν (NS⁺)], 1345 s, 1294 vs, 1222 s, 1166 s, 1141 m, 1121 m, 1077 m, 1012 s, 898 vs, 775 vs, (AsF₆⁻). ¹³C and ¹⁴N NMR data are given in Table I.

Reaction of 3,5-Dimethyl-1,2,4-thiadiazole with [NS][AlCl₄]. A solution of 3,5-dimethyl-1,2,4-thiadiazole (0.29 g, 2.5 mmol) in CH₂Cl₂ (1 mL) was added by syringe to a solution of [NS][AlCl₄] (0.54 g, 2.5 mmol) in methylene chloride (2 mL). An immediate reaction occurred to give a pale brown solution. The ¹⁴N NMR spectrum of this solution showed signals at +328 ppm, $\nu_{1/2}$ 190 Hz,¹⁶ assigned to NSCl [lit.¹⁷ δ (¹⁴N) +323 ppm, $\nu_{1/2}$ 60 Hz, for NSCl in SO₂] and at -89 ($\nu_{1/2}$ 1060) and -164 ppm ($\nu_{1/2}$ 725 Hz) attributed to 3,5-dimethyl-1,2,4-thiadiazole (AlCl₃ plus a minor unidentified product at -123 ppm. The identity of the AlCl₃ adduct was confirmed by the preparation of an authentic sample [δ (¹⁴N) -89, -165 ppm] from 3,5-dimethyl-1,2,4-thiadiazole (0.29 g, 2.5 mmol) and AlCl₃ (0.33 g, 2.4 mmol) in methylene dichloride (3 mL).

Reaction of 3,5-Dimethyl-1,2,4-thiadiazole with [NS][CF₃SO₃]. 3,5-Dimethyl-1,2,4-thiadiazole (0.57 g, 5.0 mmol) was added to a stirred solution of [NS][CF₃SO₃] (0.98 g, 5.0 mmol) in methylene dichloride (10 mL). After 3 h a reddish black color had developed. After 24 h the ¹⁴N NMR spectrum of the solution showed the complete absence of the signals for the reactants and the appearance of two new signals at -107 (very broad) and -170 ppm ($\nu_{1/2}$ 220 Hz). The solvent was removed under vacuum, and the black solid residue was extracted with chloroform to give a pale red solution from which colorless crystals of [3,5-dimethyl-1,2,4-thiadiazole-H][CF₃SO₃] (0.49 g, 1.9 mmol) were obtained. Anal. Calcd for $C_5H_7F_3N_2O_3S_2$: C, 22.73; H, 2.67; N, 10.60. Found: C, 22.79; H, 2.42; N, 10.91. IR (Nujol, cm⁻¹): 1625 s, 1597 vs, 1293 vs, 1238 vs, 1221 m, 1158 vs, 1029 s, 967 s, 813 s, 759 m, 732 s, 638 vs, 574 m, 533 m, 516 m. An authentic sample of [3,5-dimethyl-1,2,4thiadiazole·H][CF₃SO₃] [δ (¹⁴N) -106, -168 ppm] was prepared from the thiadiazole and HSO₃CF₃ in CH₂Cl₂ for comparison of spectroscopic data

Reaction of PhSeCl with [NS][AlCl₄]. A solution of benzeneselenyl chloride (1.92 g, 10 mmol) in methylene dichloride (20 mL) was added dropwise to a stirred solution of [NS][AlCl₄] (2.15 g, 10 mmol) in

Table II. Crystallographic Data for [N₂S₂SeCl][AlCl₄]

chem formula AlCl ₅ N ₂ S ₂ Se	fw 375.34
a = 9.237 (1) Å	space group $P2_1/n$
b = 10.685 (2) Å	$T = 23 (2) ^{\circ}\mathrm{C}$
c = 11.332 (2) Å	$\lambda = 0.71069 \text{ Å}$
$\beta = 92.65 (1)^{\circ}$	$\rho_{calcd} = 2.23 \text{ g cm}^{-3}$
V = 1117.2 (2) Å ³	$\mu = 48.14 \text{ cm}^{-1}$
Z = 4	R = 0.049
	$R_{\rm m} = 0.045$

methylene dichloride (20 mL). An immediate reaction occurred to give a dark green solution. Removal of the solvent under vacuum and recrystallization of the residue (3.68 g, 9.1 mmol) from $CHCl_3/CH_2Cl_2$ (1:1) gave [PhSeCl-NS][AlCl₄] as a dark green solid. Anal. Calcd for $C_6H_5AlCl_5NSSe: C, 17.23; H, 1.24; N, 3.45.$ Found: C, 16.94; H, 1.33; N, 3.72. IR (Nujol, cm⁻¹): 1652 m, 1412 s [ν (NS⁺)], 1090 s, 971 m, 805 s, 571 m, 491 vs, br. NMR spectra in CH_2Cl_2 (δ , ppm): ¹⁴N -137; ¹³C 143.7, 140.8, 134.1, 132.6; ⁷⁷Se 1052.

Reaction of Ethylselenium Chloride with [NS][AlCl₄]. A solution of ethylselenium chloride [prepared from diethyl diselenide (0.54 g, 2.5 mmol) and SO₂Cl₂ (0.34 g, 2.5 mmol)] in methylene dichloride (10 mL) was transferred dropwise via a stainless steel cannula into a solution of [NS][AlCl₄] (1.08 g, 5.0 mmol) in methylene dichloride (10 mL) at -78 °C. An immediate reaction occurred to give a red solution and a yellow precipitate. The solution was isolated by filtration and identified as [N₂S₂SeCl][AlCl₄] (0.74 g, 2.0 mmol) by X-ray crystallography. IR (Nujol, cm⁻¹): 917 s, 722 s, 635 s, 508 s, 488 vs, 471 vs, 354 vs. NMR (δ , ppm): ¹⁴N (in CH₂Cl₂) -49 ($\nu_{1/2}$ 500 Hz), -137 ($\nu_{1/2}$ 550 Hz); [lit.¹⁸ ¹⁵N NMR (δ , ppm) -51.7 (d, ²J_{NN} = 5.6 Hz)]; ⁷⁷Se (in CH₂Cl₂) 328. In a separate experiment this reaction was monitored by ¹⁴N NMR spectroscopy and shown to proceed via a thermally unstable intermediate [δ (¹⁴N) -124 ppm ($\nu_{1/2}$ 725 Hz)]. **Reaction of [NS][AlCl₄] with Selenium**. Selenium (0.16 g, 2.0 g atom)

Reaction of [NS][AlCl₄] with Selenium. Selenium (0.16 g, 2.0 g atom) was added to a solution of [NS][AlCl₄] (0.43 g, 2.0 mmol) in methylene dichloride (10 mL) in a 10 mm o.d. glass tube, which was placed in an ultrasonic bath for 4 h. Some unreacted selenium was still evident, but the ¹⁴N NMR spectrum of the reaction mixture showed that NS⁺ had been completely consumed. The yellow precipitate was isolated by filtration and identified as [N₂₂₂SeC1][AlCl₄] (0.26 g, 0.70 mmol) by comparison of the IR spectrum with that of an authentic sample.

X-ray Structural Analysis. A suitable pale orange transparent blockshaped crystal (0.54 × 0.53 × 0.68 mm) was wedged in a Lindemann glass capillary, which was mounted on an Enraf-Nonius CAD4 diffractometer. Unit cell parameters and their standard deviations were derived from the setting angles of 25 reflections in the range 10.23° < θ < 16.63°. Reduced cell calculations did not indicate any higher metric symmetry. Data were collected by using $\theta/2\theta$ scans with variable scan speeds from 0.7 to 6.7°/min. Crystal and instrumental instability were monitored through the measurement of 3 standard reflections every 1 h of X-ray exposure time; there was a small amount of crystal decomposition. The net intensities of the data were corrected for reflection width, scale variation, Lorentz, and polarization effects. Variance $\sigma^2(I)$ was calculated on the basis of counting statistics. Crystal data and experimental details of the structure determination are compiled in Table II.

The selenium was located in an E map with phases derived from symbolic addition.²³ The remaining atoms were located in difference maps after refining the scale and thermal parameters. All atoms were refined with anisotropic temperature factors. Convergence was reached at R = 0.049. The final values of the refined positional parameters are presented in Table III. Tables of thermal parameters, comprehensive lists of bond distances and angles, and tables of F_0 , F_c , and $\sigma(F)$ are available as supplementary material for this paper. Neutral-atom scattering factors were used with anomalous dispersion corrections applied.²⁴ No corrections for absorption or extinction were made. All calculations were carried out on a Zenith 386 computer at the University of Calgary with the program package XTAL.²⁵

Results and Discussion

Preparation of [NSJAICI₄] and [NSJCF₃SO₃]. Previous detailed studies of the reaction of (NSCI)₃ with Lewis acids, e.g. SbCl₅,

Table III. Atom Coordinates for [S2N2SeCI][AlCl4]

7	10377 82
-	10°U _{eq} , A°
0.11075 (4)	39.8
0) 0.31104 (9)	35.5
0.07608 (11)	56.4
) 0.18613 (11)	47.4
0.3050 (3)	46.2
0.0808 (3)	44.2
2) 0.31196 (10)	33.7
2) 0.170 08 (9)	46.9
) 0.40072 (10)	50.1
) 0.241 63 (10)	43.6
2) 0.42564 (11)	52.1
	$\begin{array}{c} 2\\ \hline 0.110\ 75\ (4)\\ 0\ 0.311\ 04\ (9)\\)\ 0.076\ 08\ (11)\\)\ 0.186\ 13\ (11)\\ 0.305\ 0\ (3)\\ 0.080\ 8\ (3)\\ c)\ 0.311\ 96\ (10)\\ c)\ 0.170\ 08\ (9)\\ 0\ 0.400\ 72\ (10)\\)\ 0.241\ 63\ (10)\\ c)\ 0.425\ 64\ (11)\\ \end{array}$

have shown that a variety of products are formed depending on the solvent.^{4,26} The initial product is [S₃N₃Cl₂][SbCl₆], which, in CH_2Cl_2 or SO_2 , subsequently decomposes to $[S_5N_5][SbCl_6]$, [S₄N₄][SbCl₆]₂, S₄N₄·SbCl₅, and other unidentified compounds.²⁶ In this work we found that the ¹⁴N NMR spectrum of a solution of (NSCl)₃ plus 3 molar equiv of AlCl₃ in 1,2-dichloroethane at 25 °C shows a small resonance attributed to $[NS]^+[AlCl_4]^-[\delta$ -(¹⁴N) 185 ppm; cf. 202 ppm for $[NS]^+[AsF_6]^-$]¹⁷ in addition to much stronger signals for $[S_3N_3Cl_2]^+[AlCl_4]^-$ at -118 ($\nu_{1/2}$ 675 Hz) and -291 ppm ($\nu_{1/2}$ 1300 Hz). When this solution was heated at 80 °C for 1 h, the latter cation was converted to NS⁺ and $N(SCl)_2^+ [\delta(^{14}N) \ 19 \text{ ppm}; \text{ cf. 19 ppm for } [N(SCl)_2][AsF_6] \text{ in }$ SO_2^{16} in a ratio of ca. 2:1. It was difficult to completely remove the solvent from [NS][AlCl₄], so the reaction was performed without solvent. A mixture of (NSCl)₃ and 3 molar equiv of AlCl₃ was subjected to ultrasound for 2 h to give a yellow-orange semisolid. The temperature of the mixture reached ca. 50 °C during this process, and [NS][AlCl₄] was obtained as moisture-sensitive, yellow crystals in 71% yield by sublimation of the melt. The thiazyl salt can also be obtained by simply heating the (NSCI)₃/AlCl₃ mixture to ca. 60 °C, but the yields are lower than when ultrasound is used due to an increase in the amount of $N(SCl)_2^+$ that is formed.

$$(NSCI)_3 + 3AICI_3 \qquad \underbrace{((l)}_{50 \circ C} 3[NS][AICI_4] \qquad (1)$$

Spectroscopic evidence indicates significant anion-cation contacts in [NS][AlCl₄] both in the solid state and in solution. The S=N stretching frequency is observed at 1405 cm⁻¹ in the IR spectrum of solid samples compared to a value of 1437 cm⁻¹ for [NS][AsF₆].¹ The ¹⁴N chemical shift of [NS][AlCl₄] in 1,2-C₂H₄Cl₂ occurs at 196 ppm compared to 202 ppm for [NS]⁺-[AsF₆]⁻ in SO₂.¹⁷ The shielding of the signal observed for [N-S][AlCl₄] generated in solution [δ (¹⁴N) 185 ppm] may result from the presence of excess AlCl₃. The ²⁷Al NMR signal for [NS]-[AlCl₄] in 1,2-C₂H₄Cl₂ is considerably broadened [δ (²⁷Al) 98 ppm, $\nu_{1/2}$ 435 Hz] compared to that observed for Na[AlCl₄] in 1:1 CH₂Cl₂/CH₃NO₂ [δ (²⁷Al) 101 ppm, $\nu_{1/2}$ 25 Hz].

For reactions with substrates containing Lewis base sites it was desirable to have a thiazyl salt with a noncoordinating anion. For this reason we prepared [NS][CF₃SO₃] by the silver(I) salt method. When (NSCl)₃ was heated with 3 molar equiv of AgSO₃CF₃ in 1,2-C₂H₄Cl₂ at 80 °C, [NS][CF₃SO₃] was produced almost quantitatively, as indicated by the ¹⁴N NMR spectrum of the solution [$\delta(^{14}N)$ 204 ppm]. This method provides a convenient in situ preparation of [NS][CF₃SO₃]. However, attempts to isolate pure [NS][CF₃SO₃] by sublimation failed due to difficulties in removing the last traces of solvent. Furthermore, we found that NS⁺ reacts with 1,2-C₂H₄Cl₂ on heating at 80 °C for 24 h to give ethylenediiminium tetrachloroaluminate, $[(NH_2)H_2]$ CCH(NH)₂[AlCl₄]₂, which was identified on the basis of elemental analyses and the following spectroscopic data. The ¹Hcoupled ¹⁴N NMR spectrum of this product showed a triplet at -190 ppm ($J_{\rm NH}$ = 67 Hz), indicating the presence of an NH₂ group. This assignment was confirmed by the observation of bands

⁽²³⁾ Schenk, H.; Hall, S. R. SIMPEL, XTAL 2.4 User's Manual. Hall, S. R., Stewart, J. M., Eds; Universities of Western Australia and Maryland, 1988.

⁽²⁴⁾ International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV.

⁽²⁵⁾ Hall, R.; Stewart, J. M., Eds. XTAL 2.4 User's Manual. Universities of Western Australia and Maryland, 1988.

⁽²⁶⁾ Gillespie, R. J.; Sawyer, J. F.; Slim, D. R.; Tyrer, J. D. Inorg. Chem. 1982, 21, 1296.

in the IR spectrum at 3278 and 3146 cm⁻¹ attributed to $\nu_{as}(NH_2)$ and $v_s(NH_2)$, respectively. The IR spectrum also exhibited bands at 1659 $[\nu(C=N)]$ and 481 cm⁻¹ $[\nu_3(A|C|_4)]$. Finally, the ¹H and ¹³C NMR spectra showed singlets at 5.34 and 168.9 ppm, respectively, for the CH groups, consistent with a symmetrical structure.

¹⁴N NMR Spectra of Arene-NS⁺ Charge-Transfer (CT) Complexes. Brownstein et al. have prepared CT complexes of various NS⁺ salts with arenes.¹⁴ These complexes were characterized by IR, ¹H and ¹³C NMR, and UV-visible spectroscopy. A shift to lower frequency of ca. 40 cm⁻¹ was noted for $\nu(N=S)$, and the ¹H and ¹³C NMR signals were dishielded relative to the uncomplexed arene. A weak, broad CT band was observed at 310-400 nm.

Several reactions of NS⁺ that we have studied involve substrates with aromatic rings. These reactions were monitored by ¹⁴N NMR spectroscopy, so the ¹⁴N NMR spectra of some typical arene-NS⁺ complexes were obtained for comparison. The salt [NS][CF₃SO₃] was chosen in order to obtain solutions that are reasonably stable at room temperature.²⁷ There is a dramatic upfield shift (300-400 ppm) of the ¹⁴N NMR resonance of NS⁺ upon complexation to an arene. The values for Ar·NS⁺ are -103 ppm, $\nu_{1/2} = 935$ Hz (Ar = benzene), -145 ppm, $\nu_{1/2} = 990$ Hz (Ar = toluene), and -200 ppm, $v_{1/2} = 250$ Hz (Ar = hexamethylbenzene, HMB) [cf. $\delta(^{14}N)$ +204 ppm, $\nu_{1/2}$ 250 Hz, for [NS][CF₃SO₃]}. No structural data are available for arene-NS⁺ complexes,¹⁴ but this large shift indicates that the nitrogen atom is held within the shielding region of the aromatic ring. The smaller differences in chemical shift among the arene-NS⁺ complexes can be attributed to the increasing donor ability of the arenes along the series benzene < toluene < HMB

The [arene-NS][CF₃SO₃] complexes, once formed, were found by ¹⁴N NMR spectroscopy to be stable for several days at room temperature in CH₂Cl₂. However, the ¹⁴N NMR spectra indicated that the CT complexes are not formed cleanly. Several minor products are also produced as a result of the reaction of NS⁺ with alkyl groups²⁸ and/or electrophilic aromatic substitution.

Reactions of Thiazyl Salts with Thiadiazoles. The insertion reaction of NS⁺ with S_4N_4 to give $S_5N_5^{+6,11,12}$ is potentially capable of extension to other S-N heterocycles. In connection with our interest in eight- π -electron ring systems^{29,30} we have attempted to prepare the unknown dithiatriazepinium cation, $C_2N_3S_2^{+,31}$ by the reaction of NS⁺ with thiadiazoles. 2,1,3-Benzothiadiazole (1) behaved as a Lewis base toward [NS][AlCl₄] to produce NSCI and the AlCl₃ adduct of 1.

By contrast, the reaction of 1 with $[NS][AsF_6]$ in SO₂ produced a bright green complex in addition to 1.AsF₅. The ¹³C NMR spectrum of this green complex showed only three signals indicative of C_2 symmetry, and the mass spectrum exhibited a fragmentation pattern similar to that of 1 with an additional strong peak at m/e

- (27) Brownstein and Louie report in ref 14 that solutions of [arene-NS]-[MF_n] (M = B, n = 4; M = As, Sb, n = 6) at ambient temperatures decompose via fluorination of the aromatic ring.
- We have also observed that thiazyl salts react vigorously with alkanes. [NS][AlCl₄] undergoes a rapid exothermic reaction with pentane at 0 °C to give a red solution and a white precipitate. The major product is an alkylammonium salt, [RNH₃][AlCl₄], δ (¹⁴N) -355 ppm (q, J_{NH}) : 55 Hz)
- (29) Burford, N.; Chivers, T.; Cordes, A. W.; Laidlaw, W. G.; Noble, M.; Oakley, R. T.; Swepston, P. N. J. Am. Chem. Soc. 1982, 104, 1282.
 (30) Chivers, T.; Edelmann, F.; Richardson, J. F.; Smith, N. R. M.; Treu, O., Jr.; Trsic, M. Inorg. Chem. 1986, 25, 2119.
- (31) The corresponding anion C₂N₃S₂, a 10-π-electron system, has been proposed as a component of a CNS heterocycle base on the phenazulene system: Codding, P. W.; Koenig, H.; Oakley, R. T. Can. J. Chem. 1983, 61, 1562.

Figure 1. ¹⁴N NMR spectrum of the reaction of [NS][AlCl₄] with selenium in CH_2Cl_2 : (a) $[N_2S_2SeCl][AlCl_4]$; (b) dissolved N_2 ; (c) S_2N^+ .

46 (NS⁺). On the basis of ¹³C and ¹⁴N NMR spectra (Table I), the same green species is obtained from 1 and [NS][CF₃SO₃], and elemental analysis of this adduct is consistent with a stoichiometry of 1 mol of [NS][CF₃SO₃]/thiadiazole. The intense color of these adducts is indicative of a CT complex rather than an insertion product. There are two possible sites for complex formation between 1 and NS⁺: the C_6 ring or the C_2N_2S ring. The small changes in the ¹³C NMR chemical shifts of 1 upon complexation compared to that observed for HMB (Table I) and the fact that there is not a uniform deshielding of the ¹³C resonances of 1 indicate that NS⁺ is bound to the heterocyclic ring.³²

The reaction of 1,2,3-benzothiadiazole (2) with $[NS][AsF_6]$ produced a mixture of the AsF₅ adduct of 2^{22} and a bright purple complex. A CT interaction with the heterocyclic ring is also likely for this complex, since the ¹³C NMR chemical shifts (Table I) are not uniformly deshielded compared to those of 2.

In order to avoid an arene-NS⁺ interaction, we also investigated the reaction of thiazyl salts with 2,5-dimethyl-1,2,4-thiadiazole (3). Treatment of 3 with $[NS][AlCl_4]$ resulted in the adduct formation shown in eq 3.

$$\underbrace{\overset{Me}{\underset{N-S}{\overset{N-S}{\longrightarrow}}}}_{3} \underbrace{\overset{Me}{\underset{N-S}{\overset{N-S}{\longrightarrow}}}}_{AlCl_{3}} \underbrace{\overset{Me}{\underset{N-S}{\overset{N-S}{\longrightarrow}}}_{AlCl_{3}} \underbrace{\overset{Me}{\underset{N-S}{\overset{N-S}{\overset{N-S}{\longrightarrow}}}_{ALCl_{3}} \underbrace{\overset{Me}{\underset{N-S}{\overset{N-S}{\longrightarrow}}}_{ALCl_{3}} \underbrace{\overset{Me}{\underset{N-S}{\overset{N-S}{\overset{N-S}{\overset{N-S}{\overset{N-S}{\overset{N-S}{\overset{N-S}{\overset{N-S}{\overset{$$

The addition of 3 to a solution of $[NS][CF_3SO_3]$ in methylene dichloride produced a dark red solution from which an amorphous black product, presumably polymeric, and colorless crystals were isolated. The latter were identified as the protonated triflate salt of 3. Thus, the insertion of NS⁺ into the S-N bond of 3 does not occur. Instead the reaction appears to involve a methyl group, leading to the production of HSO₃CF₃ and subsequent protonation of 3.28

Reactions of [NS][AlCl₄] with Organoselenium Chlorides. Previous reports of the insertion of NS⁺ into the S-Cl bonds of $SCl_2^{5,7,12}$ or RSCl (R = CF₃, (CF₃)₂C=N)¹² prompted us to investigate the reactions of [NS][AlCl₄] with compounds containing Se-Cl bonds.

The reaction of ethylselenium chloride with [NS][AlCl₄] in methylene chloride produced a thermally unstable intermediate, possibly EtSeNSCl⁺, which decomposed to give [N₂S₂SeCl]-[AlCl₄] (4) identified by X-ray crystallography (vide infra), in 79% yield.³³ The chloride salt of 4 has been prepared (in 85% yield) by the reaction of $(NSCl)_3$ with Se_2Cl_2 in SO_2 ,¹⁸ and this

⁽³²⁾ The observation of only three ¹³C NMR resonances for [2,1,3-benzothiadiazole-NS]⁺ implies that these CT complexes are fluxional. A propeller-like rotation of NS⁺ could account for this observation. On the basis of ¹⁴N NMR spectroscopy, the same product is formed in the reactions of [NS][AlCl₄] with ⁿBuSeCl or CF₃SeBr.

⁽³³⁾

Figure 2. ORTEP plot (50% probability ellipsoids) for [N₂S₂SeCl][AlCl₄] (4).

Table IV. Dihedral Angles (deg) for [N₂S₂SeCl][AlCl₄]

Cl(5)-Se(1)-S(1)-N(1)	-97.7 (1)
N(2)-Se(1)-S(1)-N(1)	6.8 (2)
S(1)-Se(1)-N(2)-S(2)	-8.6 (2)
Cl(5)-Se(1)-N(2)-S(2)	93.9 (2)
Se(1)-S(1)-N(1)-S(2)	-4.3 (3)
N(2)-S(2)-N(1)-S(1)	-0.5 (3)
N(1)-S(2)-N(2)-Se(1)	7.5 (3)

method is certainly preferable for the synthesis of the N₂S₂SeCl⁺ cation. However, the possible in situ generation of the hitherto unknown selenathianitronium ion, SeNS⁺, (eqs 4 and 5) is an

$$RSeCl + [NS][AlCl_4] \rightarrow [RSeNSCl][AlCl_4]$$
(4)

$$[RSeNSCI][AICl_4] \xrightarrow{-RCl} "[SeNS][AICl_4]" \xrightarrow{NSCI} 4 (5)$$
$$R = alkvl$$

interesting feature of the route to 4 reported here. The subsequent reaction of this cation with NSCl, followed by chloride migration to Se, could account for the formation of 4; cf. the formation of $S_3N_2X^+AsF_6^-$ from $NS_2^+AsF_6^-$ and $NSX (X = F^{34} Cl^{16})$.

In an attempt to provide evidence for the proposed formation of SeNS⁺, the reaction of [NS][AlCl₄] with selenium (1:1 molar ratio) in CH₂Cl₂ was monitored by ¹⁴N NMR spectroscopy. The selenium was not completely consumed, and the major product was 4, which was isolated in 35% yield based on selenium. The formation of a small amount of $[NS_2][AlCl_4][\delta({}^{14}N) 87 \text{ ppm}, \nu_{1/2} 30 \text{ Hz}]$ was readily detected by ${}^{14}N$ NMR spectroscopy (Figure 1).¹⁷ By contrast, the reaction of the thiazyl cation with elemental sulfur is known to produce the corresponding NS_2^+ salts in good yields.^{8,17} In the present work it was shown by ¹⁴N NMR spectroscopy that a solution of [NS][AlCl₄] in methylene dichloride is converted quantitatively to [NS₂][AlCl₄] upon addition of sulfur.35

In contrast to the reactions with alkylselenium chlorides, the treatment of [NS][AlCl₄] with benzeneselenenyl chloride in methylene dichloride produced a thermally stable dark green solid with the composition [PhSeCl-NS][AlCl₄]. The intense color of this material is indicative of a CT complex, and the $\delta(^{14}N)$ value of -123 ppm, $\nu_{1/2} = 2310$ Hz, is in the observed range for an arene-NS⁺ complex.

Crystal and Molecular Structures of [N2S2SeCI][AlCl4] (4). An ORTEP drawing of 4 with the atomic numbering scheme is displayed in Figure 2. The cation is an almost planar five-membered ring with chlorine attached to selenium. The dihedral angles are given in Table IV; the selenium atom is 0.187 (5) Å out of the plane formed by the S_2N_2 moiety. The other structural parameters for the cation in 4 are compared in Table V with those for the same cation in $[N_2S_2SeCl]Cl^{.18}$ The structure of the cation in the latter

Table V.	Bond	Lengths	(Å)	and	Bond	Angles	(deg)	for
[N2S2SeC	21]X							

	Distances	
	$X = AlCl_4^-$	$X = Cl^{-a}$
Se(1)-S(1)	2.293 (1)	2.277 (2)
S(1)-N(1)	1.630 (4)	1.653 (7)
N(1)-S(2)	1.545 (4)	1.569 (8)
S(2)-N(2)	1.578 (4)	1.561 (6)
N(2)-Se(1)	1.741 (4)	1.788 (7)
Se(1)-Cl(5)	2.191 (1)	2.249 (3)
Al(1)-Cl(1)	2.128 (2)	
Al(1)-Cl(2)	2.131 (2)	
Al(1)-Cl(3)	2.148 (2)	
Al(1)-Cl(4)	2.108 (2)	
	Angles	
	$X = AlCl_4^-$	$X = Cl^{-a}$
S(1)-Se(1)-Cl(5)	101.46 (5)	98.29 (9)
N(2)-Se(1)-Cl(5)	103.7 (1)	100.4 (2)
N(2)-Se(1)-S(1)	92.7 (1)	92.9 (2)
Se(1)-S(1)-N(1)	96.1 (1)	97.2 (2)
S(1)-N(1)-S(2)	121.6 (2)	120.4 (4)
N(1)-S(2)-N(2)	110.2 (2)	110.0 (4)
S(2)-N(2)-Se(1)	118.6 (2)	118.3 (4)
CI(1)-AI(1)-CI(2)	108.81 (7)	
Cl(1)-Al(1)-Cl(3)	109.13 (7)	
Cl(1)-Al(1)-Cl(4)	109.53 (7)	
Cl(2)-Al(1)-Cl(3)	106.84 (7)	
Cl(2)-Al(1)-Cl(4)	112.26 (7)	
Cl(3)-Al(1)-Cl(4)	110.19 (7)	

^aData taken from ref 18.

salt has been discussed thoroughly, and in view of the similarity of the structural trends with those of the cation in 4, further consideration is not warranted. As with $[S_3N_2Cl]X$ salts (X = Cl,³⁶ FeCl₄,³⁷ SbCl₆³⁸), several anion-cation contacts in 4 are significantly less than van der Waals distances. The primary interaction is between the Cl(3) atom of the anion and the S-Se bond of the cation $\{d[Se(1)-Cl(3)] = 3.124(1), d[S(1)-Cl(3)]\}$ = 3.190 (2) Å; cf. 2.917 (2) and 3.056 (2) Å for the corresponding interactions in [N₂S₂SeCl]Cl].¹⁸ This contact results in an Al-Cl(3) bond length of 2.148 (2) Å compared to an average value of 2.129 (2) Å for d(Al-Cl) in the anion.

Conclusions

[NS][AlCl₄] is readily obtained from the reaction of (NSCl)₃ with AlCl₃ in the absence of a solvent, and spectroscopic investigations indicate significant anion-cation interactions in this compound. This reagent forms AlCl₃ adducts with substrates containing Lewis base sites, and the use of a thiazyl salt with a noncoordinating anion, e.g. in situ generated $[NS][CF_3SO_3]$, is necessary to avoid this reaction pathway. The formation of CT complexes between NS⁺ and arenes is accompanied by very strong shielding of the thiazyl moiety, as indicated by ¹⁴N NMR chemical shifts, and NMR data indicate preferential attachment to the C₆ ring in the reactions of NS⁺ with benzothiadiazoles. An X-ray structural determination of an [arene-NS]⁺ CT complex would be of considerable interest, but the formation of such complexes is often accompanied by side reactions, e.g. with alkyl substituents. The reactivity of NS⁺ toward alkanes or chlorohydrocarbons imposes limitations on studies of the interaction of NS⁺ with organic or organometallic substrates.³⁹ In contrast to the simple

- (36) Zalkin, A.; Hopkins, T. E.; Templeton, D. H. Inorg. Chem. 1966, 5, 1767.
- (37) Shearer, H. M. M.; Banister, A. J.; Halfpenny, J.; Whitehead, G.
- Polyhedron 1983, 2, 149. Isenberg, W.; Homsy, N. K.; Anhaus, J.; Roesky, H. W.; Sheldrick, G. M. Z. Naturforsch. 1983, 38B, 808. (38)
- The reaction of CpCr(NO)₂Me with in situ generated [NS][PF₆] has (39)The backdown of CpCr(NO)₂₁(NSH)CH₂₁[PF_6] on the basis of spectroscopic evidence; Legzdins, P.; Richter-Addo, G. B.; Wassink, B.; Einstein, F. W. B.; Jones, R. H.; Willis, A. C. J. Am. Chem. Soc. 1989, 111, 2097.

⁽³⁴⁾ Padma, P. K.; Mews, R. Z. Naturforsch. 1987, 42B, 699

^{(35) [}NS₂][AlCl₄] has been prepared previously in unspecified yield by the reaction of S₄N₄ with AlCl₃ in CH₂Cl₂, and the X-ray structure was determined: Thewalt, U; Berhalter, K.; Müller, P. Acta Crystallogr., Sect. B 1982, B38, 1280.

synthesis of NS_2^+ from thiazyl salts and sulfur, the corresponding reaction with selenium produces the five-membered ring $N_2S_2SeCl^+$. This cation is also formed from NS⁺ and alkylselenium chlorides. The instability of the Se=N double bond in selenodiimides, RN=Se=NR,40 is well documented, and the current work indicates that this functionality is not stabilized in

(40) See, for example: (a) Sharpless, K. B.; Hori, T.; Truesdale, L. K.; Dietrich, C. O. J. Am. Chem. Soc. 1975, 98, 269. (b) Roesky, H. W.; Weber, K.-L.; Seseke, U.; Pinkert, W.; Noltemeyer, M.; Clegg, W.; Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1985, 565. (c) Thrasher, J. S.; Bauknight, C. W., Jr.; DesMarteau, D. D. Inorg. Chem. 1985, 24, 1598. (d) Fockenberg, F.; Haas, A. Z. Naturforsch. 1986, 41B, 413. (e) Herberhold, M.; Jellen, W. Z. Naturforsch. 1986, 41B, 144.

the $[Se=N=S]^+$ cation (as the AlCl₄⁻ salt).

Acknowledgment. We are grateful to Professor R. J. Gillespie for a preprint of ref 18. The financial support of the NSERC (Canada) in the form of operating and infrastructure grants and of the Alberta Heritage Scholarship Fund, and Killam Foundation (The University of Calgary), and the NSERC for postgraduate awards to A.A. is also acknowledged. We also acknowledge helpful discussions with Professor R. Mews.

Supplementary Material Available: Listings of thermal parameters, contact distances (<3.6 Å), and crystallographic parameters and a figure showing a stereoscopic view of the packing in [N₂S₂SeCl][AlCl₄] (4 pages); a table of observed and calculated structure factors (24 pages). Ordering information is given on any current masthead page.

Synthesis, X-ray Structures, and Spectroscopic and Magnetic Properties of a Series of Isomeric Binuclear Molybdenum(III) Complexes of General Formula $Mo_2Cl_6L_3$ (L = Thioether): Large Structural Influence of Bridging Ligands in Confacial Bioctahedral Complexes

Kelly J. Moynihan,^{1a} Xiaoliang Gao,^{1a} P. Michael Boorman,^{*,1a} James F. Fait,^{1a} Gavin K. W. Freeman,^{1a} Peter Thornton,^{1b} and David J. Ironmonger^{1b}

Received August 8, 1989

The syntheses, spectroscopic characterization, and X-ray crystal structures of two isomeric forms of $Mo_2Cl_6(THT)_3$ (THT = C_4H_8S , tetrahydrothiophene) are reported and compared with those of $(Me_2S)Cl_2Mo(\mu-Me_2S)(\mu-Cl)_2MoCl_2(Me_2S)$ and the anion $[(Me_2S)Cl_2Mo(\mu-Cl)_3MoCl_2(Me_2S)]^-$. The most notable feature of these structures, which have a confacial bioctahedral framework, is that those which have the core structure $Mo(\mu-Cl)_3Mo$ have relatively long Mo-Mo bond lengths and display antiferromagnetic behavior, while those with one μ -Cl replaced by a μ -thioether have much shorter Mo-Mo bonds, in the range expected for Mo=Mo bonding, and are diamagnetic. By following the interconversion of two isomers of Mo₂Cl₆(Me₅S)₃ in C₂D₂Cl₄ solution at 70 °C by ¹H NMR spectroscopy, it was inferred that the process is intramolecular, likely involving ligand exchange between terminal and bridging sites. The complex $(THT)Cl_2Mo(\mu-THT)(\mu-Cl)_2MoCl_2(THT)$ (4) crystallizes with 1 mol of CH_2Cl_2 in the triclinic space group PI with Z = 2 in a cell of dimensions a = 8.595 (1) Å, b = 11.165 (4) Å, c = 15.143 (3) Å, $\alpha = 70.60$ (2)°, $\beta = 73.94$ (1)°, and $\gamma = 77.33$ (2)°. The least-squares refinement, with anisotropic thermal parameters for all non-hydrogen atoms, converged at R = 0.071 and $R_w = 0.050$ for 5583 unique observed reflections. The complex meso-(THT)Cl₂Mo(μ - $Cl_{3}MoCl(THT)_{2}$ (5a) crystallized in the monoclinic space group $P2_{1}/n$ with Z = 4 in a cell of dimensions a = 10.522 (2) Å, b = 12.124 (2) Å, c = 18.262 (3) Å, and $\beta = 98.91$ (1)°. The least-squares refinement, with anisotropic thermal parameters for all non-hydrogen atoms, converged at R = 0.083 and $R_w = 0.043$ for 7938 unique observed reflections.

Introduction

There is currently renewed interest in confacial bioctahedral molybdenum(III) and tungsten(III) chemistry, both from the point of view of structural variations²⁻⁴ and potential catalytic properties.⁵ Earlier, we reported⁶ on the syntheses and structures of two such complexes, $(Me_2S)Cl_2Mo(\mu-Me_2S)(\mu-Cl)_2MoCl_2(Me_2S)$ (1) $(C_{2\nu})$ and $[PPh_4][(Me_2S)Cl_2Mo(\mu-Cl)_3MoCl_2(Me_2S)]$ (2) the latter complex being derived from the structural isomer of 1, $[(Me_2S)Cl_2Mo(\mu-Cl)_3MoCl(Me_2S)_2]$ (3). This complex (3) was shown, on the basis of spectroscopic data, to exist as two stereoisomers, namely a C, isomer, which we termed the meso isomer, **3a**, and an enantiomeric pair ((+)/(-)) of C_1 isomers, **3b** (Figure 1; $L = Me_2S$). The surprising feature of the structural analysis of these complexes was that by replacing the μ -Me₂S ligand in

- (a) University of Calgary. (b) Queen Mary College.
 (2) Chisholm, M. H.; Eichorn, B. W.; Folting, K.; Huffman, J. C.; On-tiveros, C. D.; Streib, W. E.; Van Der Sluys, W. G. Inorg. Chem. 1987, 26. 3182.
- (3) Chacon, S. T.; Chisholm, M. H.; Streib, W. E.; Van Der Sluys, W. G. Inorg. Chem. 1989, 28, 5.
- Cotton, F. A.; Luck, R. L. Inorg. Chem. 1989, 28, 182. Bott, S. G.; Clark, D. L.; Green, M. L. H.; Mountford, P. J. Chem. Soc., Chem. Commun. 1989, 418.
- (6) Boorman, P. M.; Moynihan, K. J.; Oakley, R. T. J. Chem. Soc., Chem. Commun. 1982, 899

1 by a μ -Cl to give the anion of 2, the Mo-Mo bond length increased from 2.462 (2) to 2.746 (9) Å. An accompanying change in the magnetic properties, as detected from ¹H NMR measurements at different temperatures, suggested that whereas 1 was diamagnetic, the anion of 2 and its precursor 3 were antiferromagnetic.

We now report on the synthesis of the tetrahydrothiophene (THT) analogues of 1 (4) and 3a (meso isomer, 5a), their crystal structures, and solution behavior and provide a more detailed analysis of the magnetic properties of 2 and 3 and the interconversion of the various isomers in solution. Complete experimental details of the synthetic procedures for making 1, 2, and 3 and their spectroscopic characterization are provided, to supplement the preliminary report of their syntheses and structures.⁶

The facile synthesis of the C_{2v} isomer of $[(C_4H_8S)Cl_2Mo(\mu C_4H_8S(\mu-Cl)_2MoCl_2(C_4H_8S)$] (4) will enable its chemistry to be compared with that of the analogous complexes of niobium and tantalum, which have been shown to be highly reactive toward alkynes.^{7,8} Preliminary results suggest that this comparison will prove to be of considerable interest and potential catalytic significance.

Contribution from the Departments of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4, and Queen Mary College, University of London, Mile End Road, London, El 4NS U.K.

Cotton, F. A.; Hall, W. T. Inorg. Chem. 1980, 19, 2352. (8) Cotton, F. A.; Hall, W. T. Inorg. Chem. 1980, 19, 2354.