Contribution from the Departments of Chemistry, University of California, Davis, California 95616, and University of California, Berkeley, California 94720, and Center for Computational Quantum Chemistry," School of Chemical Sciences, University of Georgia, Athens, Georgia 30602

Theoretical Studies of Borylphosphine, Its Conjugate Base, and the Lithium Salt of Its Conjugate Base. The Use of Orbital Kinetic Energies To Determine the Origin of the Driving Force for Changes in Molecular Geometry

Thomas L. Allen,*,[†] Andrew C. Scheiner,^{1,§} and Henry F. Schaefer III^{1,§}

Receioed August 17, 1989

We have studied the ground states of BH₂PH₂, BH₂PH⁻, and BH₂PHLi by the methods of ab initio molecular electronic structure theory using a basis set of high quality. While almost nothing is known experimentally about these molecules, they provide useful models for extensive recent experimental work on a series of organic derivatives. For each molecule, we have predicted its molecular geometry, energy, dipole moment, net atomic charges, bond orders, normal vibrational modes, and harmonic vibrational frequencies. The BH_2PH_2 molecule is nonplanar with a 70° out-of-plane angle at phosphorus and an energy 5.9 kcal/mol below the planar form. On going from the planar to the nonplanar form, the B-P bond order of BH₂PH₂ drops from 1.46 to 1.15 (Mayer method) or from 1.64 to 1.35 (Natiello and Medrano method). **A** study of orbital kinetic energies shows that a shift of one pair of electrons from a weak B-P *7* bond to a much more stable lone pair on phosphorus provides the main driving force for distortion from planarity. The BH₂PH⁻ anion is planar with a small BPH angle (100°) and a proton affinity of 15.2 eV. Nonplanar BH₂PHLi lies in a very shallow potential well, 2.1 kcal/mol below the planar form. It may be described as an approximately planar BH₂PH⁻ anion with an Li⁺ cation at an out-of-plane angle of 56°. Our results for these molecules are compared with experimental data for their derivatives with alkyl and aryl substituents and for the $BH₂NH₂$ molecule.

Introduction

Inorganic analogues of the ethylene molecule are important in chemistry both for their intrinsic interest and for the insights they provide into the nature of the double bond. While boranamine (also called aminoborane), $BH₂NH₂$, has been extensively studied, except for several theoretical investigations' nothing seems to be known of the phosphorus analogue borylphosphine (also called phosphinoborane), $BH₂PH₂$.

There have been several studies of its organic derivatives. Evidence for formation of the compound Me₂BPH₂ was obtained by Burg and Wagner.² Coates and Livingstone³ have synthesized several compounds with aryl substituents, such as $Ph₂BPPh₂$, and characterized them as to dipole moment, B-P stretching frequency, solubility, and degree of association in aromatic solvents. Recently the crystal structure of an organic derivative, Mes₂BPPh₂, was determined by Feng, Olmstead, and Power.⁴ Bartlett, Feng, Dias, and Power⁵ also determined the crystal structures of ion pairs containing the Mes₂BPR⁻ anion (which may be viewed as a derivative of borylphosphine's conjugate base, $BH₂PH⁻$) as well as complexes of this anion and related anions with the cation Li- $(Et₂O)₂$ ⁺. These compounds exhibit several interesting stereochemical features.

To understand the chemical bonding and molecular geometries of compounds of these types, we have undertaken a detailed and comprehensive theoretical inquiry into the "parent" molecule with hydrogen atoms in place of the organic groups, using a basis set of high quality. In spite of the enormous differences in size, we find a remarkably close similarity in many aspects of the stereochemistry of $BH₂PH₂$ and its organic derivatives. Of course, it would be of interest to compare our results with experimental measurements on the hydrogen compounds, but as far as we can determine, these compounds have yet to be synthesized.

Method

With use of the restricted self-consistent-field (SCF) method, the molecular geometry was optimized by an analytic gradient method⁶ until the magnitude of each force (Cartesian and internal coordinate) was less than 1×10^{-7} hartree/bohr. The following basis sets were used: (a) The DZ set is the contracted double- ζ Gaussian basis set of Huzinaga, Dunning, and Hay^{7-9} with the hydrogen functions scaled by a factor of 1.2. (b) The $DZ + P$ set was formed by adding to the DZ set six d functions (α = 0.7) for B, six d functions (α = 0.5) for P, and three p functions $(\alpha = 0.75)$ for each H, and for Li, the 10s/4s basis set of

Dunning¹⁰ combined with 4p/2p functions consisting of one contracted set of Gaussian functions (exponents 1.488, 0.2667, and 0.07201 with corresponding coefficients of 0.03877, 0.236257, and 0.830448) and one set of Gaussians with exponent 0.0237 was used. This basis set is designated B(9s5pld/4s2pld), P(lls7pld/6s4pld), H(4slp/2slp), Li- $(10s4p/4s2p)$. (c) The DZ + 2P + diff set was formed by adding to the DZ basis set one *s* function (α = 0.019), one set of p functions (α = 0.019), and two sets of d functions (α = 0.45 and 0.95) for B and one **s** function $(\alpha = 0.035)$, one set of p functions $(\alpha = 0.035)$, and two sets of d functions $(\alpha = 0.25$ and 0.75) for P and using the DZ + P basis set for H. Analytic second derivatives $11-13$ were used to determine the harmonic vibrational frequencies and the corresponding normal modes. **In** determining configuration interaction (CI) wave functions, we froze the filled inner-shell molecular orbitals. Except for this feature, all singly and doubly excited configurations were included (CISD). The Davidson correction¹⁴ was used to estimate the effect of unlinked quadruple excitations on the molecular energy. (In the following text all energies are Davidson-corrected energies.) The total number of configurations varied from 3284 for planar BH_2PH_2 with the DZ basis set to 42 531 for nonplanar $BH₂PH₂$ with the $DZ + 2P + diff$ basis set.

The BH,PH, Molecule

On optimizing the structure of planar BH₂PH₂ (1) (restricted to C_{2v} symmetry), we obtained the bond lengths, bond angles, and other properties shown in Table **I.** Perhaps the most interesting feature of this structure is its imaginary PH_2 wagging frequency, indicating a preference for a nonplanar geometry. (Justification for the double bond in **1** and the lone pair in **2** will be given later.)

- Burg, A. B.; Wagner, R. I. *J. Am. Chem. SOC.* **1953, 75,** 3872. Coates. *G.* E.: Livingstone, J. *G. J. Chem. Sac.* **1961,** 1000.
-
- Feng, **X.:** Olmstead, M. M.; Power, P. P. *Inorg. Chem.* **1986,25,4615.** (a) Bartlett, R. **A.;** Feng, **X.;** Power, P. P. *J. Am. Chem. Soc.* **1986,** *108,* 6817. (b) Bartlett, R. A.; Dias, H. V. R.; Feng, X.; Power, P. P. J. Am.
Chem. Soc. 1989, 111, 1306. See also (c) Arif, A. M.; Boggs, J. E.; Cowley, A. H.; i.e., J. O. Takulski, M.; i.e., J. M. J. Am. Chem.
Soc. 1986, 108,
- Pulay, P. **In** *Modern Theoretical Chemistry;* Schaefer, **H.** F., **111,** Ed.; Plenum Press: New York, 1977; Vol. **4,** pp 53-183. Huzinaga, S. *J. Chem. Phys.* **1965, 42,** 1293. Dunning, T. H., Jr. *J. Chem. Phys.* **1970,** *53,* 2823.
-
-
-
-
- Dunning, T. H., Jr.; Hay, P. J. In ref 6, Vol. 3, pp 1–27.
Dunning, T. H., Jr. *J. Chem. Phys*. **1971**, 55, 716.
Saxe, P.; Yamaguchi, Y.; Schaefer, H. F., III. *J. Chem. Phys.* **1982**,
77, 5647.
- Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Vincent, M. A.; Gaw, J. F.;
Schaefer, H. F., III. *Chem. Phys.* 1982, 72, 131.
Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Fox, D. J.; Vincent, M. A.;
Schaefer, H. F., III. J. Mol. Struct. 1
-
- (14) Davidson, E. R. **In** *The World of Quantum Chemistry:* Daudel, R., Pullman, B., **Eds.:** Reidel: Dordrecht, 1974: p 17.

^{&#}x27;University of California, Davis.

[‡]University of California, Berkeley.
[§]University of Georgia.
『Contribution CCQC No. 18.

⁽a) Gropen, 0. *J. Mol. Srrucr.* **1977,** *36,* 111. (b) Magnusson, E. *Tetrahedron* **1985, 41,** 5235. (c) Magnusson, E. *Aust. J. Chem.* **1986,** (1) 39,735. (d) Baban, J. **A,:** Roberts, B. P. *J. Chem. Soc.. Perkin Trans.* **2 1987,** 491.

Relaxation of the symmetry to C_s leads to a structure of lower energy, **2,** with a highly pyramidal phosphorus atom in opposition to a slightly pyramidal boron atom. Its properties are also listed in Table I. With the $DZ + 2P +$ diff basis set, the out-of-plane angles are **70.0'** at phosphorus and 6.0' at boron.

In spite of the rather striking difference between the two structures, the energy difference is only 5.9 kcal/mol. The orbital occupation of the planar molecule is $1a_1^22a_1^23a_1^2$ - $1b_2^24a_1^21b_1^25a_1^26a_1^22b_2^23b_2^27a_1^22b_1^2$ while that of the nonplanar molecule is $1a'^22a'^23a'^21a''^24a'^25a'^26a'^27a'^22a''^23a'^28a'^29a'^2$. The lowest unoccupied molecular orbitals (LUMOs) are $3b_1$ and $10a'$, respectively. For the planar molecule the HOMO and LUMO are assigned to π and π^* orbitals, respectively. For the nonplanar molecule they are assigned, respectively, to a lone pair orbital and to an unsymmetrical π^* orbital that is mainly localized on boron. The reason why this molecule is nonplanar is discussed in a later section.

The BH2PH- Anion

Removal of one of the protons bonded to phosphorus leads to the planar anion **3.** Its properties are summarized in Table **11.**

Compared to planar BH₂PH₂, the most striking difference is the anion's strong preference for planarity. Not surprisingly, the anion has a high proton affinity (15.2 eV with the $DZ + 2P +$ diff basis set).

Addition of diffuse functions to the basis set has relatively little effect on the structural parameters or the vibrational frequencies. The most sensitive property studied here is the dipole moment, decreasing from 0.84 to 0.64 D. The reason why this molecule is planar, in contrast to the nonplanar neutral species, is discussed in a later section.

The BH,PHLi Molecule

Substitution of one of the phosphorus hydrogens of BH_2PH_2 by lithium produces the salt $BH₂PHLi$, whose geometry was first optimized by assuming planarity, as in structure **4.** With the

 $DZ + P$ basis set, the Li wag frequency is imaginary (94*i* cm⁻¹), and thus it was necessary to study the nonplanar structure **5.** An energy minimum was found having the lithium ion at an angle of 56.1 \degree relative to the H₁BP plane. The H₂ and H₃ atoms are slightly depressed and raised, respectively, relative to the H_1BP plane (H₂ down 2.6°, H₃ up 9.7°), so that the Li⁺ cation is sharply inclined to an approximately planar $BH₂PH⁻$ anion. This structure lies only 2.1 kcal mol⁻¹ below the planar structure, and thus the P-Li bond is an example of a "polytopic bond", a structural type first identified by Clementi, Kistenmacher, and Popkie in the LiCN-LiNC system.¹⁵ The properties of the planar and non-

Table I. Properties of Nonplanar and Planar BH₂PH₂^a

nonplanar, ¹ A'	planar, ¹ A ₁
1.901 (1.899)	1.807
1.190 (1.190)	1.187
1.403 (1.402)	1.384
119.8 (119.7)	118.2
120.0 (120.3)	123.6
102.7 (102.7)	124.8
99.4 (99.5)	110.3
6.1(6.0)	0.0
70.1 (70.0)	0.0
0.0	8.6
0.0	6.3
0.0	5.9
0.82(0.85)	1.21
2794 (2780), A"	2824, B ₂
2698 (2687), A'	2715, A_i
2584 (2573), A"	2724, B ₂
2576 (2567), A'	2696, A_1
	1254, A_1
1222 (1215), A'	$1162, A_1$
1024 (1021), A'	990, B_1
964 (957), A"	889, B_2 ^e
746 (736), A'	827, A_1
	491, B ₂ ^e
554 (546), A'	497 <i>i</i> , B_1
429 (424), A"	723, A ₂
	1268 (1275), A' 588 (581), A"

^a Results with the $DZ + 2P +$ diff basis set are listed in parentheses; other results are obtained with the $DZ + P$ basis set. Bond lengths are in \hat{A} , angles are in deg, vibrational frequencies are in cm⁻¹ for ^{11}B , ^{31}P . and ¹H isotopes, and dipole moments are in D. For C_{2v} symmetry, the molecular plane is taken as the yz plane (σ_v') . ^b The out-of-plane angle at B is defined as the angle between the BP axis and the H_2B plane. That at P is the angle between the BP axis and the PH_2 plane. Energies are in kcal mol-' relative to the nonplanar structure. Where motion of more than one internal coordinate makes a significant contribution to the normal mode, they are listed in order of decreasing importance. Plus and minus signs indicate relative phases. The rocking (asymmetric bending) motions are considered in phase if two H atoms move toward each other. 'For the planar molecule, the order of importance is reversed.

Table II. Properties of the Planar BH₂PH⁻ Anion^a

	$^1A'$
$r_c(BP)$	1.825 (1.829)
$r_{\rm e}$ (BH ₁)	1.212 (1.210)
$r_{\rm s}$ (BH ₂)	1.214 (1.212)
$r_{\rm s}(PH_{\rm b})$	1.428 (1.424)
θ (PBH)	125.2 (124.5)
θ .(PBH ₂)	119.3 (119.1)
θ . (BPH ₃)	100.0 (100.3)
proton affinity, SCF ^b	15.63 (15.37)
proton affinity, CISD ^b	15.60 (15.25)
proton affinity, Davidson cor ^b	15.56 (15.18)
dipole moment ^c	0.84(0.64)
vibrational freq, ν .	
asym BH str	2564 (2563), A'
sym BH str	2527 (2525), A'
PH str	2396 (2391), A'
sym BH ₂ bend	1269 (1269), A'
BPH bend - BH ₂ rock	977 (965), A'
$BH2$ wag	956 (958), A"
BP str	$836(815)$, A'
torsion	747 (718), A"
BPH bend + $BH2$ rock	646 (647), A'

^{*a*} Results with the $DZ + 2P +$ diff basis set are listed in parentheses; other results were obtained with the $DZ + P$ basis set. See footnote in Table I for units, etc. ^b The proton affinity is the energy in eV relative to nonplanar BH_2PH_2 with the same basis set. ϵ The dipole moment is taken with respect to the center of mass.

planar structures are listed in Table 111.

Justification for describing this molecule in terms of a Li⁺ cation and a BH,PH- anion rests **on** several criteria. These include the low frequencies of those normal coordinates that involve angular

Table III. Properties of the BH₂PHLi Molecule^a

	planar, ¹ A'	nonplanar, ¹ A
r(SP)	1.838	1.855
$r_e(BH_1)$	1.194	1.196
r_{e} (BH ₂)	1.198	1.202
$r_{e}(\overline{PH}_{3})$	1.402	1.410
r_{e} (PLi)	2.306	2.355
$\theta_e(PBH_1)$	122.4	123.3
θ .(PBH ₂)	118.2	118.4
$\theta_c(BPH_3)$	108.5	103.3
θ_c (BPLi)	125.5	98.0
$\theta_e(H_1BH_2)$	119.4	118.3
θ . (H ₃ PLi)	126.0	111.3
θ_e (out of plane of H ₂ at B) ^b	0.0	2.6 down
θ_c (out of plane of H ₃ at P) ^b	0.0	9.7 up
θ_e (out of plane of Li at P) ^b	0.0	56.1 up
energy, SCF ^c	1.0	0.0
energy, CISD ^c	1.8	0.0
energy, Davidson cor ^c	2.1	0.0
dipole moment	7.93	7.60
vibrational freq. ν .		
asym BH str	2729. A'	2709, A
sym BH str	2641. A'	2621. A
PH str	2577. A'	2521. A
sym BH ₂ bend	1262, A'	1268, A
$BH2$ wag	988. A"	998. A
BPH bend $-BH$, rock	962. A'	960, A^d
BP stretch	805, A'	787, A
BH, rock + BPH bend	664, A'	632. A^e
torsion	646, A''	700. A
PLi str	524, A'	494, A
BPLi bend	121. A'	85, A
Li wag	94i. A″	207. A

 A ll results were obtained with the DZ + P basis set. See footnote *a* in Table I for units, etc. $\frac{b}{b}$ The out-of-plane angle of H₂ at B is defined as the angle between the $BH₂$ axis and the $H₁BP$ plane, with corresponding definitions for the other out-of-plane angles. 'Energies
are in kcal mol⁻¹ relative to the nonplanar structure. ^dBPH bend -
BH₂ rock - BH₂ wag. 'BH₂ rock + BPH bend - torsion.

Table IV. Energies of Boron-Phosphorus Molecules^a

	energy			
molecule	SCF	CISD	Davidson cor	
nonplanar BH ₂ PH ₂	-367.71103	-367.93880	-367.96103	
	(-367.71793)	(-367.95969)	(-367.98513)	
planar BH, PH,	-367.69727	-367.92872	-367.95164	
planar BH ₂ PH ⁻	-367.13664	-367.36545	-367.38934	
	(-367.15310)	(-367.39945)	(-367.42738)	
nonplanar BH ₂ PHLi	-374.59918	-374.82553	-374.84881	
planar BH ₂ PHLi	-374.59760	-374.82273	-374.84555	

 P Results with the DZ + 2P + diff basis set are listed in parentheses; other results were obtained with the $DZ + P$ basis set. Energies are in hartrees.

motion of lithium, and the shallow potential energy surface. Both of these results indicate that we have a spherical Li+ ion that is rather indifferent to its angular position relative to an approximately spherical $BH₂PH⁻$ ion. Other criteria include the traditional view of lithium, with its low electronegativity, as forming ionic compounds with atoms of higher electronegativity, the very similar structures of the free BH₂PH⁻ anion (Table II) and the BH₂PH part of this molecule, and the very large dipole moments of this molecule in its two forms.

Energy data for all of the molecules reported in this paper are summarized in Table IV.

Bond Order of the Boron-Phosphorus Bond

An interesting question regarding $BH₂PH₂$ and its derivatives is, Do any of these molecules have a boron-phosphorus double bond? The classical approach to this question is through a study of bond lengths. Data on covalent bond radii lead to estimates of 1.94-1.98 **A** for the B-P single-bond length and 1.79-1.84 **A** for the double bond.⁴ Comparing the results in Tables I-III with these estimates, we see that the planar molecules all have B-P bond lengths that fall within the estimated range of values for

Table V. Bond Orders"

molecule	B-P	B-H	P-H	P-Li
		$DZ + P$ Basis Set		
planar BH ₂ PH ₂	1.46(1.64)	0.99(0.97)	0.96(0.96)	
nonplanar BH ₂ PH ₂		$1.15(1.35)$ 0.99 (0.98)	0.97(0.97)	
planar BH ₂ PH ⁻		$1.83(2.01)$ 0.98 $(0.98)^b$	0.94(0.99)	
planar BH ₂ PHLj		$1.42(1.62)$ 0.99 $(0.96)^{b}$		$0.97(0.96)$ $0.77(0.90)$
nonplanar BH ₂ PHLi	1.35 (1.59)	$0.99(0.96)^{b}$	0.96(0.96)	0.75(0.83)
		$DZ + 2P + diff$ Basis Set		
nonplanar BH ₂ PH ₂		$1.14(1.41)$ 0.99 (0.92)	0.99(0.94)	
planar BH ₂ PH ⁻		$1.61(2.02)$ 0.99 $(0.92)^b$	0.99(0.98)	

"All bond orders are based **on SCF** wave functions. The first number is calculated by Mayer's method; the **number** in parentheses, by the method of Natiello and Medrano. b Differences between B-H₁ and B-H₂ are slight.

a double bond. Nonplanar BH₂PHLi (with its almost planar BH2PH moiety) has a B-P bond length that is **only** slightly longer. On the other hand, nonplanar BH₂PH₂ has a B-P bond length about halfway between the single-bond and double-bond estimates.

Methods of evaluating bond orders from wave functions have a long and troubled history. Recently two new methods, one proposed by Mayer¹⁶ and one proposed by Natiello and Medrano,¹⁷ have gained attention. **A** recent paper by Baker compares **results** obtained by using these two methods.¹⁸ (He refers to the two methods as the "Mulliken" analysis and the "Löwdin" analysis, respectively.)

We have applied these methods to our wave functions, and the results are presented in Table V. They indicate substantial B-P double-bond character in all of the planar molecules, with the highest bond order being 2.02 for planar $BH₂PH⁻$ with the Natiello-Medrano method and the $DZ + 2P +$ diff basis set. Nonplanar $BH₂PH₂$ has B-P bond orders that indicate much less double-bond character (1.15 and 1.35 by the Mayer and Natiello-Medrano methods, respectively, with the $DZ + P$ basis set). These bond order data are consistent with the decreases in B-P stretching frequency (827 to 746 cm⁻¹) and torsion frequency (723 to 429 cm⁻¹) on going from planar to nonplanar BH₂PH₂. In all cases the B-H and P-H bond orders are pleasingly close to 1. The lower bond order of the P-Li bond is to be expected for partially ionic bonding.

For two molecules, the data in Table V show the effect on calculated bond orders of expanding the basis set to include diffuse functions on boron and phosphorus. The largest change is a drop in the B-P bond order of planar $BH₂PH⁻$ from 1.83 to 1.61 with the Mayer method. But these changes are not nearly so drastic as those found by Baker for bond orders by the Mayer ("Mulliken") method on going from the 3-21G basis to the 3-21 $+$ G basis.¹⁸

For the $BH₂PH⁻$ anion, other criteria that support the assignment of a double bond between boron and phosphorus are (a) its planarity and (b) the relatively high frequency of its out-ofplane bending modes $(BH₂$ wag and torsion), as shown in Table 11. If one accepts this argument, then the fact that the BP stretching frequencies in planar BH_2PH_2 and planar BH_2PHLi are comparable to that of the $BH₂PH⁻$ anion indicates that we have a double bond in these other molecules as well. And of **course** this conclusion is consistent with the arguments based on bond lengths and calculated bond orders discussed earlier.

We are then faced with the question: Why do BH_2PH_2 and $BH₂PHLi$ favor nonplanar structures? In the case of $BH₂PH₂$, we suggest that it is energetically favorable for the π -bonding pair of electrons to move, at least partially, to a lone-pair position on the phosphorus atom. This point will be explored in more detail in a later section. In the case of BH₂PHLi, the BH₂PH part of the molecule retains its planarity to a high degree. It appears

(I 8) Baker, J. *Theor. Chim. Acta* **1985,** *68,* 221.

⁽¹⁶⁾ Mayer, **1.** *Chem. Phys. Lett.* **1983, 97, 270 1984,** *110.* **440;** *Int. J. Quantum Chem.* **1986,** *29,* **73. (17)** Natiello, **M. A.;** Medrano, J. **A.** *Chem. Phys. Lett.* **1984,** *105,* 180; **1984,**

^{110,} **445.**

Figure 1. Net atomic charges from Mulliken population analysis of the wave functions for planar and nonplanar BH₂PH₂, planar BH₂PH⁻ anion, and nonplanar BH₂PHL_i. Results with the DZ + 2P + diff basis set are shown in parentheses; other results were obtained with the $DZ + P$ basis set.

that the Li' ion is moving well out of plane to a point of higher electron density. At this point, the out-of-plane angle is so large that this structure may be regarded as a distorted π complex.

Net Atomic Charges and Dipole Moments

Net atomic charges were computed by a Mulliken population analysis,¹⁹ and the results are shown in Figure 1. It is rather striking that, in both planar and nonplanar $BH₂PH₂$, boron is more negative than phosphorus, even though phosphorus is considered to be slightly more electronegative than boron.²⁰ We suggest that this charge distribution reflects the influence of the B-P double bond, which imparts a negative formal charge to boron and a positive formal charge to phosphorus, as in structure *6.* When

the planar structure relaxes to a single-bonded nonplanar structure, **7,** or, as seems more likely, to a resonance hybrid of structures with single and double **bonds,** there is a reduction in the magnitude of the formal charges. Correspondingly there is a reduction in the difference between the net atomic charges of boron and phosphorus: **B** is more negative than P by 0.26 e in the planar structure, and by only 0.13 e in the nonplanar structure ($DZ +$ P basis set). At the same time the dipole moment drops, in spite of the lengthening of the 9-P bond.

Use of the more extensive $DZ + 2P + \text{diff}$ basis set gives results for nonplanar $BH₂PH₂$ that are very similar to the $DZ + P$ results. However, for the $BH₂PH⁻$ anion the differences are rather large, *so* much **so** that the polarity of the molecule changes from a more negative $BH₂$ end of the molecule with a $DZ + P$ basis to a more negative PH end of the molecule with the extended basis. As a result, the component of the total dipole moment along the B-P

Table VI. Orbital Kinetic Energies of the BH₂PH₂ Molecule[®]

	planar ^b		nonplanar ^b	change		
core	la,	106.21976	1a'	106.21981	0.00005	
core	2a,	10.91039	2a'	10.91132	0.00093	
core	3а,	15.84348	3a'	15.85108	0.00760	
core	4а.	14.76398	4a'	14.76470	0.00072	
core	ıb,	14.78273	5a'	14.78164	-0.00109	
$\sigma(PH)_+$	5а.	1.50324	6a'	1.444 49	-0.05875	
$\sigma(BH)$.	6а.	1.01673	7a'	0.97106	-0.04567	
$\sigma(BP)$	7а,	1.17816	8a'	1.152.77	-0.02539	
π	2b,	1.10269	9a'	1.25735c	0.15466	
core	Ib,	14.75572	1a''	14.75788	0.00216	
$\sigma(PH)$	2b,	1.00481	2a''	0.89602	-0.10879	
$\sigma(BH)$.	3b,	0.76695	3a''	0.84742	0.08047	
$2 \times$ total		367.697.28 ^d		367.711 08 ^d	0.01380^{d}	

 $P^2DZ + P$ basis set. Energies in hartrees. P^2C Corrected to satisfy virial theorem by multiplication by 1.000 247 23 (planar) and 1.000 23070 (nonplanar). CThe 9a' orbital is assigned to a lone pair **on** phosphorus. Other assignments for the nonplanar structure are similar to those of the planar structure. $\frac{d}{dx}$ Roundoff errors are 1×10^{-5} (planar), 5×10^{-5} (nonplanar), and 5×10^{-5} (change).

axis changes sign, going from **+0.76** to -0.09 D. This is yet another example of the importance of using diffuse functions for anions.

As expected, the lithium salt has a rather large positive charge on lithium. (Planar BH₂PHLi has atomic net charges that are almost identical with the nonplanar distribution shown in Figure 1.) Comparing this molecule with planar $BH₂PH₂$, we see that replacing H by Li releases -0.49 e of negative charge, and that the bulk of this (-0.35 e) goes to phosphorus. The large net atomic charges of the lithium salt are reflected in its high dipole moment (planar, **7.93** D; nonplanar, **7.60** D).

Orbital Kinetic Energies

In trying to understand why one particular molecular structure is more stable than another, an important quantitative approach has been to study the changes in the energies of SCF orbitals, as summarized by Walsh's rules.²¹ This method suffers from the fact that the sum of orbital energies differs from the total energy of the molecule, leading to a number of notable exceptions to Walsh's rules. One way of improving the correlation between equilibrium bond angle and the sum of orbital energies is to use internally consistent SCF orbital energies in place of canonical orbital energies. 22

An alternative method, based **on** the quantum-mechanical virial theorem, is to partition the total energy into a sum of kinetic energies for the various chemical bonds, lone pairs, and inner shells.²³ While this method was originally formulated for a wave function constructed from geminals, we decided to look at orbital kinetic energies as a method of partitioning the total SCF energy. Attractive features of this approach are the fact that the virial theorem guarantees additivity of orbital kinetic energies for any molecular structure at a stationary point on the potential energy surface and also the relative ease of construction of SCF wave functions. (Note that with the kinetic energy method one avoids making any assumption about partitioning of the potential energy or the orbital energies.) **A** possible disadvantage is the fact that the SCF wave function is invariant under a unitary transformation; hence, the kinetic energies of the canonical SCF orbitals would be expected to differ from, for example, the kinetic energies of localized orbitals. Nevertheless, the success of Walsh's **rules,** which are also based **on** the canonical SCF orbitals, encouraged us to look at this approach.

The specific case we examined was the deformation of planar $BH₂PH₂$ to a nonplanar geometry. What features of the nonplanar form make it more stable than the planar form? To answer this question, we calculated the orbital kinetic energies for each

(22) Stenkamp, L. **Z.;** Davidson, E. **R.** *Theor. Chim. Acra* **1973,** *30,* 283.

[~]___ (19) Mulliken, **R. S.** *J. Chem. Phys.* **1955, 23,** 1833, 1841, 2338, 2343. **(20)** Huheey, **J.** E. *Inorgunie Chemisfry,* 3rd *ed.;* Harper and **Row: New** York, 1983; p 146.

⁽²¹⁾ Walsh, **A.** D. *J. Chem. Soc.* **1953,** 2260.

⁽²³⁾ **Allen,** T. **L.;** Shull, H. *J. Chem. Phys.* **1961. 35,** 1644.

Figure 2. Valence orbital energies of BH_2PH_2 as a function of distortion from planarity. The 0% and 100% distortions refer to the planar and nonplanar structures, respectively, listed in Table I, except that a DZ basis set was used here. Intermediate structures were obtained by interpolation of bond lengths, bond angles, and out-of-plane angles at boron and phosphorus.

Figure 3. Orbital kinetic energies of BH₂PH₂ as a function of distortion from planarity. For clarity the $7a_1-8a'$ correlation is shown as a dashed curve.

structure, and the results are shown in Table VI. These data were obtained from the $DZ + P$ wave function; similar results were obtained with the DZ wave function. Because of slight imperfections in the wave functions, the total kinetic energies differed slightly from the negative of the total energies. To bring the data into conformity with the virial theorem, we multiplied the orbital kinetic energies by the factors listed in Table **VI.**

To determine the correlation pattern between orbitals for the two forms, we constructed SCF functions for intermediate structures with deformations of 20,40, 60, and 80%. The valence orbital energies are shown in Figure **2.** The order of valence orbital energies is unaffected by deformation, producing the correlation shown **in** Table VI.

Figure 3 illustrates the effect of deformation on the orbital kinetic energies. The only orbital that undergoes a major change is the π orbital of the planar structure. As it changes into a phosphorus lone pair $(2b_1 \rightarrow 9a')$, it is enormously stabilized. For two electrons, the change in orbital kinetic energy of 0.1 5466 hartree amounts to twice that or 0.30932 hartree (194 kcal mol⁻¹). In addition, the $\sigma(BH)$ - orbital is stabilized by about half this amount. These changes are largely offset by changes in the opposite direction for the $\sigma(PH)_+$, $\sigma(PH)_-$, $\sigma(BH)_+$, and $\sigma(BP)$ orbitals. As expected the core orbitals are relatively unaffected. The sum of the various changes then amounts to a relatively modest total of only 0.01380 hartree **(8.7** kcal mol-').

In describing these energy changes, we take the point of view (justified by the virial theorem) that any increase in kinetic energy implies a corresponding decrease of exactly the same magnitude

Figure 4. Planar BH₂PH₂: contour diagram in a plane passing through the B and P nuclei and perpendicular to the molecular plane for the $2b_1$
(" π ") molecular orbital probability density. B and P are left and right $+$, respectively. Projections of protons are left and right **□** and **A**. Contours are from 0.01 to 0.10 e **A-'** at 0.01 e **A-3** intervals. **DZ** basis set was used.

Figure 5. Nonplanar BH₂PH₂: contour diagram in the symmetry plane of the molecule for the 9a' ("lone pair") molecular orbital probability density. B and P are left and right +, respectively. Projections of protons are upper left and lower right *⁰*and **A.** Contours are from 0.01 to 0.10 e **A-'** at 0.01 e **A-3** interval. **DZ** basis set was used.

in total energy. Conversely, any increase in molecular stability, as evidenced by a decrease in total energy, must be accompanied by an increase in kinetic energy of exactly the same magnitude.

Contour diagrams for the π molecular orbital of the planar molecule and the lone-pair molecular orbital of the nonplanar molecule are shown in Figures 4 and 5. It is clear from Figure 4 that the π bond is concentrated on the phosphorus atom, which interacts rather weakly with the boron atom, explaining the relatively low bond order of the B-P bond (Table **V).**

Figure *5* shows that the lone pair on phosphorus is indeed the dominant feature of the 9a' orbital, but its formation is actually accompanied by a strengthening of the π bond on the underside of the molecule. **In** effect, the phosphorus p orbital tilts in such a way that its upper lobe moves away from boron to accommodate the bulk of a lone pair's probability density, while the lower lobe

Theoretical Studies of Borylphosphine

moves toward boron to strengthen that part of the π bond. The fact that there is still some residual π bonding is reflected in the calculated B-P bond order (Table V).

To put the argument in its simplest form, we are led by the orbital kinetic energy data to the conclusion that the shift of one pair of electrons from a weak $B-P \pi$ bond to a much more stable lone pair on phosphorus provides the main driving force for distortion from planarity and that this effect is largely offset by changes in other orbitals, such that the net energy change is relatively small.

The large changes in orbital kinetic energy observed here are consistent with the results of Murdoch and Magnoli.^{24,25} They find that, when a substituent is introduced into a molecule, there are compensating large changes in electron density and in the spatial distribution of kinetic energy, even in cases where energy additivity is obeyed to a high degree.

Finally, we note that the reason for the planarity of the $BH₂PH$ anion, in spite of the large out-of-plane angle at P in the neutral BH₂PH₂ molecule, is evident from a simple VSEPR argument. With nonplanar $BH₂PH₂$, there is a single lone pair. But planar $BH₂PH⁻$ already has one lone pair, which occupies an extensive region centered approximately about a line from P to the position previously occupied by the missing proton. Formation of a second lone pair from the B-P π bond would compete for space with this first lone pair, and the repulsion between adjacent lone pairs is sufficiently great to tip the precarious energy balance in favor of planarity.

Other factors to be considered are the different σ and π interactions in the neutral molecule and the anion. For the valence isoelectronic species $BH₂NH₂$ and $BH₂NH₋$, it has been shown by Hinde, Pross, and Radom²⁶ that the NH⁻group interacts more favorably with $BH₂$ than does the $NH₂$ group, owing to an enhanced π interaction as well as to a diminished unfavorable σ interaction. That PH^- and PH_2 behave similarly in their interaction with $BH₂$ is indicated by the results of Magnusson,^{1b} by the planarity of the anion compared to the nonplanarity of the neutral molecule, and by the bond orders listed in Table IV for $BH₂PH⁻$ and planar $BH₂PH₂$.

Comparison with Experimental Data for Substituted Compounds

Our results for the $BH₂PH₂$ molecule may be compared with crystal structure data for the organic derivative $Mes_2 BPPh_2.4$ Both exhibit a large out-of-plane angle at phosphorus, 70.0° for $\overline{B}H_2PH_2$ and 39.8° for the organic derivative (dihedral angle 140.2°). The B-P bond length is somewhat longer in BH_2PH_2 , 1.899 versus 1.859 **A.** However, if one supposes that this distance depends on the out-of-plane angle at P in a linear fashion, then a linear interpolation of our planar and nonplanar results gives 1.859 **A** for a 39.8' out-of-plane angle, identical with experiment for the organic derivative.

To compare other bond lengths, we examine the differences between bond lengths to phosphorus and **boron,** which would of course be the same if covalent radii were additive. These differences are indeed very similar: $r_e(H) - r_e(BH) = 0.212 \text{ Å}$; $r_e(PC) - r_e(BC) = 0.231$ Å. (Averages were used in the latter case.)

The organic derivative has a small twist angle of 1.6°. This is **no** doubt caused by the influence of neighboring molecules. For an isolated BH2PH2 molecule we find **no** twist.

For BH2PH2 the bond angles at **boron** are all very close to 120' $(HBH = 120.3^{\circ}; PBH = 119.7^{\circ})$, whereas in the organic derivative the CBC angle is 125.2' and the other angles are 116.2 and **117.9'.** The sum **of** bond angles at B is **359.7'** in the parent compound and 359.3° in the organic derivative, and thus in each case the boron atom is nearly planar.

For the anion $BH₂PH₋$, we may compare our data with crystal structure data for ion pairs containing the $Mes₂BPMes⁻ anion.⁵$

Of greatest importance is the fact that the former is planar and in the latter the atoms C_2 BPC are "virtually coplanar". The B-P bond lengths are closely similar, 1.829 **A** in the parent anion and 1.835 **A** in the organic derivative. The bond length differences are $r_e(PH) - r_e(BH) = 0.215$ Å and $r_e(PC) - r_e(BC) = 0.262$ Å.

The bond angle at phosphorus is in each case significantly less than 120° : it is 100.3° in BH₂PH⁻ and 108.2° in the organic derivative. In each case the PBX bond angle trans to the BPX angle is less than 120° (119.1° in the parent anion, 116.7° in the organic anion), while the other PBX angle is greater than 120' $(124.5 \text{ and } 126.0^{\circ}).$

For the lithium salt $BH₂PHLi$, we may compare our results with crystal structure data for three compounds of the type $R_2BPR'Li(Et_2O)_2$, where R is Mes, Mes, or Trip, and R' is Mes, Cy, or t -Bu.⁵ Here the differences are much greater than in the preceding examples. Instead of an approximately planar BH₂PH⁻ fragment with the $Li⁺$ cation very far out of plane, the organic derivatives have planar C_2BP and planar BPCLi fragments, twisted at angles with respect to one another of 11.7, 3.8, or 33.3°. The B-P bond lengths are 1.823, 1.832, or 1.836 **A,** not far from our planar value of 1.838 Å. But the P-Li bond lengths are signifour 2.306 **A** (planar) and 2.355 **A** (nonplanar). icantly longer than ours: 2.451 , 2.454 , or 2.460 Å, compared to

Likely factors responsible for these differences include complexing of the Li+ cation by two ethyl ether molecules in the organic derivatives and the fact that nonplanar $BH₂PHLi$ has an extremely shallow potential energy well, which apparently disappears when organic groups replace the hydrogen atoms.

Our B-P stretching frequency of 736 cm⁻¹ for nonplanar BH_2PH_2 is much lower than the range of values 1412-1487 cm⁻¹ observed in the infrared spectra of a series of phosphinodiarylboranes $R_2BPR'_2$ (R = aryl, R' = alkyl or aryl).³ In view of the excellent agreement previously observed for the P-P stretching frequencies of *trans*-HPPH and two substituted diphosphenes, 27 it seems unlikely that substitution of organic groups for hydrogen atoms would have such a large effect. Also, it is very likely that in the crystalline state, as well as in concentrated solution, these organic derivatives exist in oligomeric form.28 Thus we are forced to question the assignment of the observed absorption band in the $1400-1500\text{-cm}^{-1}$ region to the B-P stretching frequency of a monomeric phosphinoborane.

Comparison with Boron-Nitrogen Compounds

The boranamine molecule, $BH₂NH₂$, has been the subject of several investigations, both theoretical and experimental.^{26,29-33} Experimental study is difficult because this substance is an unstable gas that slowly polymerizes, but there is general agreement that it has an ethylene-like planar structure with a boron-nitrogen double bond. From its microwave spectrum, the B-N bond length has been found to be 1.39 **8,** and the bond angles are near 120° (NBH angle = 118.9°; BNH angle = 122.9°).³³ We find a qualitatively similar picture for the unstable planar form of $BH₂PH₂$: a PBH angle less than 120 $^{\circ}$ (118.2 $^{\circ}$) and a BPH angle greater than 120' (124.8'). The B-H bond lengths are about the same (1.195 Å in BH_2NH_2 and 1.187 Å in BH_2PH_2).

Using a 4-31 G basis set, Hinde, Pross, and Radom found that the $BH₂NH⁻$ anion is also planar with a somewhat shorter B-N bond (1.360 Å) and a much smaller BNH angle, 115.1^o.²⁶ The NBH angles are 121.2° (trans) and 126.4° (cis). Although the BH₂PH⁻ anion bond angles show a rough similarity [BPH angle $= 100.3^{\circ}$; PBH angles = 119.1° (trans) and 124.5° (cis)], the

-
- (29) Gerry, M. C. L.; Lewis-Bevan, W.; **Merer,** A. J.; Westwood, N. P. C. *J. Mol. Spectrosc.* **1985,** *110,* 153.
- **(30)** Ha, **T.-K.** J. *Mol. Srrucr.: THEOCHEM* **1986,** *136.* 165.
- **(31)** Westwood, N. P. C.; Werstiuk, N. H. J. *Am. Chem. SOC.* **1986,** *108,* 891.
- (32) Kingsmill, C. A.; Werstiuk, N. H.; Westwood, N. P. C. *J. Am. Chem. SOC.* **1987,** *109,* 2870.
- (33) Sugie, M.; Takeo, H.; Matsumura, C. J. Mol. *Spectrosc.* **1987,** *123,* 286.

⁽²⁴⁾ Murdoch, J. R. *J. Am. Chem. SOC.* **1982,** 104, 588.

⁽²⁵⁾ Murdoch, J. R.; Magnoli, D. E. J. *Am. Chem. SOC.* **1982,** *104,* 2782.

⁽²⁶⁾ Hinde, A. **L.;** Pross, **A.;** Radom, L. J. *Compur. Chem.* **1980,** *I,* 118.

⁽²⁷⁾ Allen, T. L.; Scheiner, A. C.; Yamaguchi, Y.; Schaefer, H. F., **111.** J. *Am. Chem. SOC.* **1986,** *108,* 7579. (28) Power, P. P. Private communication.

decrease in BPH angle as compared to that in the planar form of the neutral molecule is much more extreme than the change in BNH angle. Furthermore, the B-P bond length is longer in the anion than in the planar form of the neutral molecule (1.829 and 1.807 **A,** respectively), while in the nitrogen compounds the B-N bond length is shorter in the anion. The B-H bond lengths are slightly shorter in BH_2PH^- than in BH_2NH^- , while the proton affinity of $BH₂PH⁻$ is substantially lower than that of $BH₂NH⁻$ $(15.2$ and 18.0 eV, respectively).

All 12 vibrational frequencies have been measured experimentally for the $BH₂NH₂$ molecule.²⁹ When these results are compared with our data in Table I for planar $BH₂PH₂$, the most striking difference is of course the imaginary PH_2 wagging frequency versus 1005 cm⁻¹ for the NH_2 wag. The BP stretching frequency of 827 cm⁻¹ is much smaller than the BN stretch, 1337 cm^{-1} , but the torsion frequencies are about the same (723 cm⁻¹) for the phosphorus-containing molecule and 763 cm^{-1} for the

nitrogen-containing molecule). Of the remaining nine frequencies, the four that primarily involve P or N are smaller for the phosphorus-containing molecule, averaging about 76% of the nitrogen-containing molecule's frequencies. **On** the other hand, four of the five frequencies that primarily involve B are larger in planar $BH₂PH₂$. The largest difference is found with the $BH₂$ wag: 990 cm-' for the phosphorus-containing molecule and **670** cm-l for the nitrogen-containing molecule. However, the latter value as well as two other frequencies are estimates based on perturbations in another frequency.

Acknowledgment. We wish to express **our** thanks to Wesley D. Allen, Roger L. DeKock, William H. Fink, Philip P. Power, Gustavo E. Scuseria, and Yukio Yamaguchi for helpful discussions and to William H. Fink for the orbital contour diagrams. The research was supported by the US. Air Force Office of Scientific Research (AFOSR) under Grant AFOSR-87-0182.

Contribution from the Institut de Chimie Minérale et Analytique, Université de Lausanne, 3, Place du Château, CH-1005 Lausanne, Switzerland

Tetrasolventoberyllium(11): High-pressure Evidence for a Sterically Controlled Solvent-Exchange-Mechanism Crossover^{1,2}

Pierre-Andre Pittet, Gilles **Elbaze,** Lothar Helm, and Andre **E.** Merbach*

Received September 25, 1989

The kinetics of solvent S exchanges **on** tetrasolventoberyllium(I1) have been studied by variable-temperature and -pressure **'H** NMR spectroscopy with S = dimethyl sulfoxide (DMSO), trimethyl phosphate (TMPA), N,N-dimethylformamide (DMF), tetramethylurea (TMU), dimethylpropyleneurea (DMPU) or *''0* NMR spectroscopy with S = **H20.** The nonaqueous solventexchange reactions were studied in the inert diluent nitromethane to allow the determination of the k_1 and k_2 terms contributing to the observed rate k_{obs} , according to $k_{obs} = k_1 + k_2[S]$. For DMSO and TMPA the second-order rate law $(k_1 = 0)$ implies an interchange I or associative A mechanism, whereas for TMU and DMPU the first-order rate law $(k_2 = 0)$ indicates a dissociative D mechanism. For DMF both k_1 and k_2 terms contribute to k_{obs} . The pseudo-first-order rate constant k_{ex} for water exchange in neat H_2O was obtained from measurements of the bound-water transverse relaxation rate in the presence of Mn²⁺ as a relaxation agent. The results were $k_{ex}^{298} = 733 \pm 56 \text{ s}^{-1}$, $\Delta H^* = 59.2 \pm 1.5 \text{ kJ}$ mol⁻¹, $\Delta S^* = +8.4 \pm 4.5 \text{ J K}^{-1}$ mol⁻¹, and $\Delta V^* = -13.6 \pm 1.5 \text{ kJ}$ 0.5 cm³ mol⁻¹. In the absence of a rate law, the very negative value of the activation volume ΔV^* is interpreted in terms of an A mechanism. The negative values of ΔV^* for the k_2 path (-2.5, -4.1, and -3.1 cm³ mol⁻¹ for S = DMSO, TMPA, and DMF) support evidence of an I_a or A mechanism, whereas the positive values of ΔV^* for the k_1 path (+10.5 and +10.3 cm³ mol⁻¹ for S = TMU and DMPU) confirm the operation of a D mechanism. These data suggest together that a mechanism crossover is taking place, from associative A for the smallest H₂O to dissociative D for the bulky TMU and DMPU.

Introduction

It is apparent from previous nonaqueous studies, $3-10$ mainly from Lincoln's group, that the mode of activation for solvent exchange (eq **1)** on the small tetrahedrally coordinated beryllium(I1) ion

$$
[BeS_4]^{2+} + 4S^* \xleftarrow{\kappa_{\alpha}} [BeS^*_{4}]^{2+} + 4S \tag{1}
$$

can vary from dissociative to associative depending upon the nature of the exchanging solvent. The mechanistic assignments⁸ were based on correlations between both the stereochemistry and the electron-donating power of the solvent **S** and its propensity to exchange through a first- and/or second-order pathway in non-

- (1) High-Pressure NMR Kinetics. 44. For part 43, see ref 2. Taken, in part, from the Ph.D. thesis of P.-A. P. Turin-Rossier, M.; Hugi-Cleary, D.; Frey, **U.;** Merbach, A. E. *Inorg.* (2)
- *Chem.* **1990,** *29,* 1374. Lincoln. S. F.; Tkaczuk. M. N. *Ber. Bunsen-Ges. Phvs. Chem.* **1981,**
- *85,* 433. Fiildner, H. H.; Devia, D. H.; Strehlow, H. *Ber. Bunsen-Ges. Phys. Chem.* **1978,82,** 499.
- Delpuech, **J. J.;** PEguy, A.; Rubini, **P.;** Steinmetz, J. *Now. J. Chim.* **1917,** *1,* 133.
- Crea, **J.;** Lincoln, S. **F.** *J. Cfiem. SOC., Dolton Trons.* **1973,** *2075.* Tkaczuk. M. N.; Lincoln, **S.** F. *Ber. Bunsen-Ges. Pkys. Chem.* **1982,**
- *86,* 147. (8) Lincoln, **S. F.;** Tkaczuk, M. N. *Eer. Bunsen-Ges. Phys. Chem.* **1982,**
- *86,* 221.
- Tkaczuk, M. N.; Lincoln, S. **F.** *Aust. J. Chem.* **1982,** *35,* **1555.** Matwiyoff, N. A.; Movius, **W.** G. *J. Am. Chem SOC.* **1967,89,** 6077
-

coordinating high-dielectric diluents, like nitromethane. **Con**sidering the success of high-pressure NMR spectroscopy in the elucidation of the mechanisms of solvent-exchange reactions **on** metal ions, in particular in showing a gradual mechanism changeover¹¹ along both series of divalent and trivalent high-spin first-row hexasolvated transition-metal ions, we have complemented the beryllium(l1) nonaqueous solvent-exchange work by a high-pressure proton NMR study in the diluent nitromethane.

Further, the available variable-temperature data $12,13$ for water exchange on beryllium(I1) are still subject to criticism. The recourse to manganese(I1) as relaxation agent for the bulk-water oxygen-I7 **NMR** signal, successfully used in the case of [Al- $(H_2O)_6]$ ^{3+,14} $[Ga(H_2O)_6]$ ^{3+,15} and $[\text{Pd}(H_2O)_4]$ ^{2+,16} will be very helpful in obtaining accurate exchange rates in dilute solutions. Moreover, in this case where no rate law is available due to the lack of a suitable diluent for water, the determination of the activation volume is essential for the assignment of the water-

-
- (I 1) Merbach, A. E. *Pure Appl. Cfiem.* **1987,** *59,* **161.** (12) Neely, **J. W.** Ph.D. Thesis, University of California, Berkeley, 1971; Report UCRL-20580.
- Report UCRL-20580.

(13) Frahm, J.; Füldner, H. H. *Ber. Bunsen-Ges. Phys. Chem.* **1980**, 84, 173.

(14) Hugi-Cleary, D.; Helm, L.; Merbach, A. E. *Helv. Chim. Acta* **1985**, 68,

(14) Hugi-Cleary, D.; Helm, L.; Merbach, A 545.
- (15) Hugi-Cleary, D.; Helm, L.; Merbach, A. E. *J. Am. Cfiem. SOC.* **1987,** *109,* 4444.
- (16) Helm, L.; Elding, L. **1.;** Merbach, A. E. *Helu. Cfiim. Acta* **1984,** *67,* 1453.