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Synthesis, Structure, and Magnetic Properties of a
Reactive Complex Containing a Nearly Linear
Mn"-0-Mn!!! Core, [Mn,0(5-NO,saldien),]!

Oxo-bridged manganese complexes have attracted much at-
tention recently,? principally because of their potential relevance
to active sites in enzymes such as the Lactobacillus plantarum
manganese catalase® and the oxygen-evolving complex in photo-
system 11 (PSI1 OEC).* Among structurally characterized bi-
nuclear manganese oxo complexes, the [Mn(u-Q),Mn}2+/3+/4+
core has become relatively common in the last several years.’
There are also examples of the following oxo-bridged binuclear
structural types: [Mn{u-0)(u-O,CR),Mn}?*/3*6 [Mn(u-O),(u-
0,CR)]*/2*” and [Mn(u-0);Mn]?* % On the other hand, bi-
nuclear complexes in which manganese(I1I) atoms are bridged
by only a single oxo group are quite rare,>"'! and in the known
cases, the terminal ligands are not relevant to the biological systems
mentioned above.!> Reported herein are the notable structural,
magnetic, and reactivity properties of a single oxo-bridged species
with biologically relevant donors, [Mn,O(5-NOjsaldien),] (1).

(1) Abbreviations used: 5-NO,saldien = N,N"-bis(5-nitrosalicylidene)-
1,7-diamino-3-azapentane; PSIT OEC = photosystem II oxygen-evolving
complex; HB(pz), = hydridotris(pyrazol-1-yl)borate; tacn = 1,4,7-
triazacyclononane; bpy = 2,2’-bipyridine. phthal = phthalocyanine;
tphpn = tetrakis(2-methylpyridyl)-2-hydroxypropane-1,3-diamine; py
= pyridine.
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Figure 1. Molecular structure of {Mn,0(5-NO,saldien),] (1) showing
anisotropic thermal ellipsoids and atom-labeling scheme. Hydrogen at-
oms are omitted for clarity. Selected interatomic distances (A) and
angles (deg) are as follows: Mn(1)--Mn(2) = 3.490 (2), Mn(1)-O(1)
= 1.757 (4), Mn(1)-0O(2) = 1.914 (2), Mn(1)-O(4) = 2.040 (4), Mn-
(1)-N(2) = 2.140 (4), Mn(1)-N(4) = 2.223 (5), Mn(1)=N(5) = 2.182
(5), Mn(2)-0(1) = 1.751 (4), Mn(2)-O(3) = 2.088 (6), Mn(2)-0O(5)
= 1917 (4), Mn(2)-N(1) = 2.253 (5), Mn(2)-N(3) 2.125 (6), Mn-
(2)-N(6) = 2.105 (7); Mn(1)-O(1)~-Mn(2) = 168.4 (2).

Although the oxidation of Mn"! Schiff base complexes has been
studied extensively,'? including the system examined here,'* only
in a few cases have oxo- or hydroxo-bridged products been
structurally characterized.!* The synthesis of compound 1 was
achieved by oxidation of [Mn,(5-NQ,saldien);] (2)'¥!5 with
dioxygen. Dry O, was bubbled through a stirred solution of 1.0
g (1.08 mmol) of 2 in 3 L of CH,CN for approximately 1 h. After
storage of the resulting orange-brown solution at ~14 °C for several
days, 0.55 g (54% yield) of 1 as a brown crystalline solid was
collected by filtration. A single crystal suitable for X-ray dif-
fraction experiments'® and bulk material for magnetic measure-
ments were obtained directly from the reaction mixture.

The structure of 1, shown in Figure 1, features two Mn!! atoms
bridged by a single oxo group and an unusual binucleating binding
mode for the pentadentate ligand 5-NO,saldien. It is interesting
to note that while the {M(u-O)M}** core is common for iron in
a variety of ligand environments,'” it is very rarely observed for
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manganese coordination complexes.”'® The Mn'".O,, bond
distances in 1 (1.751 (4), 1.757 (4) A) can be compared to the
corresponding lengths in [Mn,0(0,CCH,),(HB(pz),),] (3) (1.773
(2) A)2 [Mn,0(0,CCH,),(tacn),)** (4) (1.80 (1) A)*®

Mn,0(0,CCH,),(bpy),(H,0),] (5) (1.777 (12) A, 1.788 (11)

)% [Mn,O(phthal)(py)2] (6) (1.71 (1) A),'® [Mny(u-0)-
(CN)yol® (T (1.723 (4) A).? and [Mn,(u-O)(u-O,CCHy),-
(H,0),(tphpn),]** (8) (1.766 (1), 1.777 (2) A).}* Bent Mn-
O-Mn bridges are observed for complexes that contain carboxylate
bridging groups in addition to the bridging oxo atom (3-5) whereas
linear Mn-O—-Mn bridges are observed in complexes that lack
additional bridging groups (6-8). However, unlike these latter
complexes, the angle at the bridging oxo group in 1 is nonlinear
(168.4 (2)°), presumably in order to reduce strain on the bridging
Schiff base ligand. By inspection of the bond distances to Mn(1)
and Mn(2) (Figure 1 caption) it is evident that compression along
the Mn-(u-O) axes is accompanied by elongation perpendicular
to these axes.'?

Preliminary magnetic susceptibility data for a powdered sample
of 1 were collected at a field strength of S kG in the temperature
range 6-280 K. The data were fitted well by the theoretical
expression derived from an isotropic spin exchange Hamiltonian
H = -2J§,-5,° where S| = S, = 2, using the following param-
eters: J=-120cm™; g, = g, = 2.0; p = 3.0%.2' The magnitude
and sign of the magnetic exchange constant J are comparable to
values determined for compounds that contain the Fel'-O-Fe!!l
core.'” Molar magnetic moments are substantially less for 6
(kegr/Mn = 0.71 pg at 298 K) and 7 (uegr/Mn = 0.41 pp at 298
K) than for 1 (u/Mn = 1.44 pug at 280 K), owing to the likelihood
that 6 and 7 have exchange-coupled low-spin manganese centers
(S, =8, = 1).222 By comparison to 1, magnetic interactions
for compounds that possess the [Mn(u-0)(u-O,CCH;);Mn]?* core
are much weaker. For example the J values for 3 and 4 are -0.5
and +9 cm™', respectively. Weak magnetic interactions for these
latter complexes, which have smaller Mn—-O~Mn angles (125 and
118°, respectively), have been attributed to the lack of a d.—d %
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superexchange pathway. For compound 1 the d,»-d,: pathway
is inoperative since these orbitals are vacant. Furthermore, with
a nearly linear geometry, the “crossed” d,—d,, interaction is not
likely to be an important contributor to antiferromagnetic ex-
change. This leaves the d,—p,~d, (d,,~d,, or d,,~d,,) superex-
change pathway as the probable dominating antiferromagnetic
pathway for 1.

Interestingly, in the solid state, compound 1 can be converted
back to the Mn! starting material (2) with heating under vacuum,
according to infrared and EPR spectroscopic results. In DMF
solution, 1 will revert to compound 2 at room temperature within
17 h. However, neither the above solid-state process nor the
solution process is accompanied by evolution of dioxygen,? and
thus the fate of the bridging oxo atom has not been determined.
Similar observations have been reported for other iron?? and
manganese!* compounds, and dioxygen loss has been postulated,
but not verified experimentally. An intermediate in the solution
decomposition of 1 displays a 16-line EPR spectrum that is nearly
identical with spectra reported for a bis(u-oxo) Mn"Mn!V com-
plex* and a compound that was postulated to be a
(Mn'Mn!") (u-peroxo)(Mn""Mn!) species.’® Further charac-
terization of the solution chemistry of 1 is under way.

In conclusion, a novel binuclear Mn!"! complex with biologically
relevant donors and a single oxo bridge has been isolated. A
further understanding of the magnetic behavior and unusual re-
activity properties of 1 may provide insight into both structural
and functional aspects of the active sites of manganese-containing
enzymes.
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