(5) the three isotopically shifted imidazole proton NH signals due to the coordinated histidines in the zinc site of $Cu¹_{2}Co¹¹_{2}SOD^{51,52}$ and $Cu¹₂Ni^{II}₂SOD, ⁵³$ where one of the NH signals is due to the protonated formerly bridging His-61, and (6) the similarity of the X-ray absorption edge spectra of Zn^H in both oxidized and reduced $Cu₂Zn₂SOD$, suggesting that the imidazole ring of histidine-61 is coordinated to zinc in both species. 32.54

The configuration of the Cu binding site in $Cu^I₂Zn^{II}₂SOD$ is still not known. In general, cuprous ion can form either linear, trigonal, or tetrahedral complexes.55 It seems likely from 'H NMR studies of reduced native protein that histidine-44, -46 and -118 remain coordinated to $Cu^{1,20,30,36}$ It was previously proposed that there was a coordination site available on Cu' in the reduced native protein and that this was thought to be the site that bound anions as well as the substrate, superoxide. $8.9.11$ It was therefore proposed⁸ that reduction of superoxide by $Cu^I₂Zn^{II}₂SOD$ requires binding of O_2^- to the Cu^I ion prior to electron transfer. This mechanism avoids the formation of the energetically unstable O_2^2 . ion, since a proton can be readily donated by histidine-61 to the coordinated O_2^2 ion and the imidazolate bridge reformed. In this paper, we show evidence suggesting that Arg-141 plays a major role in enhancing chloride binding to the active-site region in reduced native $Cu₂Zn₂SOD$, and therefore we propose that electrostatic interactions between the substrate O_2^- and the positively charged side chain of Arg-141 are present not only in

the oxidized form $6,7,13-16$ but also in the reduced form of native $Cu₂Zn₂SOD$. This anion binding scheme for the reduced protein is in agreement with that proposed in two recent theoretical studies. 56.57 In these two studies, it was suggested that the close proximity of Arg-141 to the metal center leads to the formation of a stable superoxide-Cu^{II} intermediate that can oxidize another superoxide to oxygen with a simultaneous reduction of the Cu center. According to the mechanism proposed by Osman and Basch,⁵⁶ the resulting reduced form of the complex accepts a proton from Arg-141 and undergoes a charge distribution that leads to a new complex between Cu^{II} and a hydroperoxide anion. Addition of a second proton from the bridging histidine residue leads to release of the hydroperoxide anion in the form of hydrogen peroxide. Bertini's proposed mechanism⁵⁷ for superoxide reduction is different in that two protons (one from Arg-141 and the other from the bridging histidine residue) are added to the reduced form of the superoxide-enzyme complex causing an increase in the Cu-0 distance prior to electron transfer. Both of these models of enzyme action suggest the importance of Arg-141 in the reduced form of native Cu₂Zn₂SOD. Our NMR data provide direct evidence that anion, and presumably substrate, binding to reduced $Cu₂Zn₂SOD$ involves the Arg-141 residue.

Acknowledgment. This **work** was supported by USPHS Grant GM 28222 (J.S.V.).

Registry No. SOD, 9054-89-1; CI⁻, 16887-00-6; PO₄³⁻, 14265-44-2; **Arg,** 74-79-3; Lys, 56-87-1; Cu, 7440-50-8; His, 71-00-1.

(57) Rosi, M.; Sgamelloti, A.; Taranteli, F.; Bertini, I.; Luchinat, C. *Inorg. Chem.* **1986, 25, 1005.**

> Contribution from the Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

Activation of the BCO Unit in the Ketenylidene Analogue $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO) by **Electrophiles: Syntheses of Vinylidene and Alkyne Analogues**

David **P.** Workman, Deng-Yang Jan, and Sheldon G. Shore*

Received February 20, 1990

The Lewis acids BX₃ (X = Cl, Br), BH₃, B-Cl-9-BBN, and PhBCl₂ react with $(\mu \cdot H)$ ₁Os₁(CO)₉(μ ₁-BCO) (I), a ketenylidene analogue, apparently through electrophilic attack at the oxygen of the unique carbonyl. Reactions of I with $BX_3 (X = CI, Br)$ result in an exchange of B and C atom positions in the BCO unit to form a vinylidene analogue, $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBX₂). Boron- IO-labeling experiments indicate that this transformation occurs through an intramolecular interchange of the boron and carbon atom positions. The ketenylidene analogue $(\mu-H)$, $Os_3(CO)$, $(PPh_3)(\mu_3-BCO)$ reacts similarly with BCl₃ to produce $(\mu-H)$, $Os_3(CO)$, $(PPh_3)(\mu_3-CBCI_2)$. The nucleophiles PMe₃, PPh₃, and NMe₃ add to the trico $(CO)_9(\mu_3-CBCI_2)$. Above -10 °C the NMe₃ adduct is converted to the salt $[NMe_3H]$ [(μ -H)₂Os₃(CO)₉(μ_3 -CBCl₂)] and the PMe₃ adduct dissociates. The PPh₃ adduct decomposes above 30 °C. The reaction of $(\mu \cdot H)_3O_{33}(CO)_9(\mu_3 \cdot BCO)$ with THF·BH₃ produces **(p-H),Os3(C0),(p,-BCH2),** a second type of vinylidene analogue. **In** this case the boron and carbon atoms do not change positions. Alkyne analogues, $(\mu$ -H)₃Os₃(CO)₉[μ ₃- π ²-C(OBC₈H₁₄)B(CI)] and $(\mu$ -H)₃Os₃(CO)₉[μ ₃- π ²-C{OB(Ph)Cl}B(Cl)] are obtained from reactions of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO) with B-Cl-9-BBN and PhBCl₂. These compounds react with BCl₃ to produce (μ -H)₃Os₃(CO)₉(μ ₃-CBCl₂). They also react with HCl to produce (μ -H)₃Os₃(CO)₉(μ ₃-CH).

Introduction

Metal ketenylidene clusters **possess** a rich and diverse chemistry. Cationic,^{1,2} [Co₃(CO)₉(μ_3 -CCO)],⁺ [CpMoCo₂(CO)₉(μ_3 -CCO)]⁺, and neutral,^{3,4} (μ -H)₂M₃(CO)₉(μ ₃-CCO) (M = Ru, Os), ketenylidenes react with nucleophilic reagents. The most extensively

- (I) (a) Seyferth, D. *Ado. Organomet. Chem.* **1976,** *14,* **97.** (b) Hallgren, **J.** E.; Eschbach, C. **S.;** Seyferth, D. *J. Am. Chem. SOC.* **1972,** *94,* 2547. (c) Seyferth, D.; Hallgren, J. E.; Eschbach, *C. S. 16id.* **1974,** 96, **1730.**
- (2) Mlekuz, M.; D'Agostino, M. F.; Kolis, J. W.; McGlinchey, M. J. J.
Organomet. Chem. 1986, 303, 361.
(3) (a) Holmgren, J. S.; Shapley, J. R. *Organometallics* 1985, 4, 793. (b)
Holmgren, J. S.; Shapley, J. R. *Ibid*. 1
-
- (4) (a) Shapley, J. R.; Strickland, D. S.; St. George, G. M.; Churchill, M.
R.; Bueno, C. *Organometallics* 1983, 2, 185. (b) Sievert, A. C.;
Strickland, D. S.; Shapley, J. R.; Steinmetz, G. R.; Geoffroy, G. L. *Ibid*. **1982,** *1,* **214.**

studied of these clusters, $[Co_3(CO)_9(\mu_3-CCO)]^+$, has been shown by Seyferth and co-workers¹ to undergo nucleophilic attack exclusively at the β -carbon atom of the CCO unit. Monoanionic ketenylidenes, $[Fe₂Co(CO)₉(\mu₃-CCO)]$ ⁻ and $[(\mu$ -H)Ru₃(CO)₉- $(\mu_3$ -CCO)]⁻, exhibit similar reactivity.

Shriver and co-workers⁶⁻⁹ have demonstrated that the group VIII dianionic ketenylidenes $[M_3(CO)_9(\mu_3-CCO)]^{2-}$ (M = Fe,

- *(5)* Ching, *S.;* Holt, E. M.; Kolis, J. W.; Shriver, D. F. *Organometallics* **1988,** *7,* **892.**
- *(6)* (a) Sailor, M. J.; Brock, C. P.; Shriver, D. F. *J. Am. Chem.* **Soc. 1987, 109, 6015.** (b) Sailor, M. J.; Shriver, D. F. *Organometal1ics* **1985,** *4,* 1476.
- (7) (a) Hriljac, **J.** A.; Shriver, D. F. *J. Am. Chem. SOC.* **1987,** *109,* **6010.** (b) Hriljac, J. **A.;** Shriver, D. F. *Organometalics* **1985,** *4,* **2225.**
- **(8)** Went, M. **J.;** Sailor, M. J.; Bogdan, P. L.; Brock, C. P.; Shriver, D. F. *J. Am. Chem.* **SOC. 1987,** *109,* **6134.**
- **(9)** Shriver, **D.** F.; Sailor, M. J. *Acc. Chem. Res.* **1988, 2, 374.**

⁽⁵³⁾ Ming, L.-J.; Valentine, J. S. *J. Am. Chem. SOC.* **1987, 109, 4426.** (54) Blumberg, W. E.; Peisach, J.; Eisenberger, P.; Fee, J. A. *Biochemistry*

^{1978,} *17,* **1842. (55)** Cotton, **F.** A.; Wilkinson, *G.* **In** *Advanced Inorganic Chemistry,* 5th *ed.;* Wiley Interscience: New York, 1988.

⁽⁵⁶⁾ ~I Osman. R.: Basch. H. *J. Am. Chem. SOC.* **1984.** *106.* **5710.**

Figure 1. Molecular structure of $(\mu-H)_3Os_3(CO)_9(\mu_3-BCO)$ (I).¹⁰

Ru, Os) react with protons and carbon-based electrophiles. Electrophilic attack can occur at the α -carbon or the oxygen atom of the CCO unit or at the metal atom, depending **upon** the specific metal ketenylidene and electrophile used. For the Fe- and **Os**based clusters, bulky carbocations attack the oxygen of the CCO unit to give acetylide complexes, while the methyl cation appears to attack the α -carbon, resulting in scission of the carbon-carbon bond to form $CH₃$ and CO ligands. Protonic acids also appear to attack the α -carbon of the CCO unit of the Fe-based ketenylidene dianions to produce CH and CO ligands.

The triosmium carbonyl borylidyne $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO)¹⁰ **(I)** (Figure 1) is an analogue of $(\mu$ -H)₂Os₃(CO)₉(μ ₃-CCO) in which the α -carbon atom of the CCO fragment is replaced by a **boron** atom and a hydrogen atom. The boron atom occupies the capping μ_3 -site on the triosmium framework, and on the basis of Os-Os distances¹⁰ and NMR spectra,¹⁸ the hydrogen atom bridges two osmium atoms. The BCO unit in **I** is nearly linear $(\angle B-C-O = 178 \ (2)^{\circ})$; it is tilted only 6.4° from being perpendicular to the triosmium plane. Photoelectron spectroscopy combined with Fenske-Hall molecular orbital calculations¹¹ indicates that the electronic structure and bonding of **I** are similar to those of $(\mu$ -H)₂Os₃(CO)₉(μ ₃-CCO). These calculations indicate that the oxygen of the unique carbonyl has the largest negative Mulliken atomic charge $(-0.246e)$ of any of the oxygens in the molecule. Preliminary communications from this laboratory describe reactions of electrophilic reagents with **II2-I4** which indicate that electrophilic attack occurs at this oxygen. We report herein details of this work and provide results that represent extensions of our earlier studies.

Results and Discussion

Although the acid-catalyzed reaction of $(\mu$ -H)₂Os₃(CO)₉- $(\mu_3$ -CCO) with H₂O produces the cluster carboxylic acid $[(\mu_3 H$ ₃Os₃(CO)₉(μ_3 -CCOOH)]₂,¹⁵ an analogous reaction involving

- (10) Shore, *S.* **G.;** Jan, D.-Y.; Hsu, L.-Y.; **Hsu,** W.-L. *J. Am. Chem. SOC.* **1983,** *105,* 5923.
- (11) Barreto, R. D.; Fehlner, T. **P.;** Hsu, L.-Y.; Jan, D.-Y.; Shore, **S.** G. *Inorg. Chem.* **1986,** *25,* 3572.
- (12) Jan, D.-Y.; **Hsu,** L.-Y.; Workman, D. P.; Shore, *S.* G. *Organometallics* **1987, 6,** 1984.
- (13) Workman, **D.** P.; **Deng, H.-6.;** Shore, **S.** G. *AnRew. Chem., Int. Ed. Engl.,* in press. (14) Jan, D.-Y.; Shore, **S.** G. *Organometallics* **1987,** *6,* 428.
-
- (15) Krause, J. K.; Jan, D.-Y.; Shore, **S.** G. *J. Am. Chem. SOC.* **1987,** *109,* 4416.
- (16) (a) Knowles, D. J.; Buchanan, **A. S.** *Inorg. Chem.* **1965,4,** 1799. (b) Gobeau, J.; Keller, H. *2. Z. Anorg. Allg. Chem.* **1951,** *267,* I. (c) Gobeau, J.; Keller, H. *2. Ibid.* **1951,** *265,* 73.
- (17) Shore, **S.** *G.;* Jan, D.-Y.; Hsu, W.-L.; Hsu, L.-Y.; Kennedy, **S.;** Hoffman, J. C.; Lin Wang, T.-C.; Marshall, **A.** G. *J. Chem. SOC., Chem. Commun.* **1984,** 392.
- **(18)** Jan, D.-Y. Ph.D. Dissertation, The Ohio State University, 1985.

 a In CD₂Cl₂.

Figure 2. Molecular structure of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBX₂) (II).¹²

I does not appear to take place. **In** general, **I** does not seem to react with proton sources or methylating agents $(CH₃OSO₂CF₃)$ or CH₃OSO₂F). It does react, however, with molecular Lewis acids as described below.

Formation of Vinylidene Analogues. Boron trihalides react with I to produce the vinylidene analogues $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBX₂) **(X** = CI, Br) **(11)** and a trihaloboroxine *(eq* 1). Removal of excess

$$
(1)^{-H}3^{OS}3^{(CO)}9^{(\mu_3 - BCO) + BX_3} \longrightarrow
$$

\nI\n
$$
(1)^{-H}3^{OS}3^{(CO)}9^{(\mu_3 - CBX_2) + \frac{1}{3}B_3X_3O_3}
$$
\n(1)

BX₃ results in disproportionation of the trihaloboroxine $B_3X_3O_3$ to BX_3 and B_2O_3 .¹⁶ Chemical confirmation of the Os₃C core of **II** is provided by hydrolysis to $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CH) and boric acid. NMR data from **I1** are presented in Table **I.**

The molecular structure of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBCl₂) has been determined by means of a single-crystal X-ray analysis (Figure 2).¹² Its Os₃C core is structurally similar to that of the methylidyne clusters $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CX) (X = H, Cl, Br, Ph).¹⁷⁻¹⁹ The B-C vector is tilted 15[°] from being perpendicular to the triosmium plane. The two CI-B-C bond angles (1 **23** (l), 121 (1)^o) and the Cl-B-Cl bond angle $(116 (1)$ ^o) around the tricoordinate boron atom are consistent with its being $sp²$ hybridized. The B-C distance, **1.47 (2) A,** is intermediate between

⁽¹⁹⁾ Orpen, A. G.; Koetzle, T. F. *Acra Crystallogr.* **1984,** *40B,* 606.

 $X = Cl$, Br

the observed boron-carbon double-bond distance, 1.361 **(5)** and observed boron-carbon single-bond distances (ca. 1.6 Å).^{20b,c} It is indicative of partial double-bond character, which could reflect π -interaction between the empty p orbital on the boron and the filled e set of cluster orbitals centered on the capping carbon atom.2i Similar bonding interaction between the carbido carbon and the tricoordinate boron in $HFe_4(CO)_{12}CBH_2$ has been proposed by Fehlner and co-workers.²²

The vinylidene analogues, $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBX₂) (X = Cl, Br), produce simple NMR spectra (Table I). Proton NMR spectra consist of a singlet at high field corresponding to equivalent hydrogen atoms that bridge osmium-osmium bonds. Boron- **1** 1 NMR spectra show a broad singlet. The three axial carbonyl ligands give rise to a single singlet in the 13 C NMR spectra, while the six radial carbonyls produce a single doublet. The doublet character of the radial carbonyls' signal and its magnitude $(J_{CH} \sim 10 \text{ Hz})$ indicate that they are trans to the hydrogen bridges. **A** broad singlet in each spectrum is assigned to the capping **carbon** of the cluster. It falls in the range reported for other methylidyne clusters.23

The formation of I1 from the reaction of I with BCI, (eq **2)** involves interchange of the boron and **carbon** atom positions. This transformation was studied by examining the products of the synthesis using ${}^{10}B$ -labeled reactants. From the reaction of ${}^{10}BCI_3$ with I (normal boron isotopic abundance), the ¹¹B NMR spectrum exhibits a signal of normal intensity for I1 **(57.4** ppm), while no signal is observed for B₃Cl₃O₃ or its decomposition products. On

- **(20) (a)** Boese, **R.; Paetzold, P.; Tapper, A.; Ziembinski, R.** *Chem. Ber.* **1989,** *122,* **1057. (b) Satumino, D. J.; Yamauchi, M.; Clayton, W. R.; Nelson, W. R.; Shore, S.** *G. J. Am. Chem.* **Soc.** *1975,97,6063.* **(c) Hsu, L.-Y.; Mariategui, J. F.; Niedenzu, K.; Shore, S.** *G. Inorg. Chem.* **1987,** *26,* **143.**
-
- (21) (a) Sherwood, D. E., Jr.; Hall, M. B. Organometallics 1982, 1, 1519.

(b) Chesky, P. T.; Hall, M. B. *Inorg. Chem.* 1981, 20, 4419. (c)

DeKock, R. L.; Wong, K. S.; Fehlner, T. P. *Ibid.* 1982, 21, 3203.

(22) (a) Me **Society: Washington, DC, 1989; INOR 275.**
- **(23) Kneuper, H. J.; Strickland, D. S.; Shapley, J. R.** *Inorg. Chem.* **1988,** *27,* **1110.**

Scheme I Table II. NMR Data for $(\mu-H)_{3}O_{53}(CO)_{9}(\mu_{3} \cdot BCI_{2}(L))^{a}$

$$
{}^{1}H NMR
$$

\nL = NMe₃ (-40 °C)
\n3.18 (9 H, s)
\n-18.98 (3 Os-H-Os, s)
\nL = PMe₃ (-40 °C)
\n1.62 (9 H, d, J_{PH} = 105 Hz) 13.1 (br s)
\n-19.07 (3 Os-H-Os, s)
\nL = PPh₃ (30 °C)
\n7.32 (3 H, m)
\n7.11 (6 H, d, J_{HH} = 5.0 Hz)
\n6.99 (6 H, d, J_{HH} = 5.2 Hz)
\n-19.00 (3 Os-H-Os, s)
\n² In CD₂Cl₂.

the other hand, the ¹¹B NMR spectrum from the reaction of I (log labeled) with BCl, (normal **boron** isotopic distribution) **reveals** only the presence of $B_3Cl_3O_3$. These observations indicate that there is no detectable interchange between the boron in $BCI₃$ and the boron of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO) in the formation of (μ - H ₃Os₃(CO)₉(μ ₃-CBCl₂). Thus the formation of II appears to occur through intramolecular exchange of the **boron** and carbon atoms of I. However, **on** a much slower time scale than that of the formation of II (10 min vs 2 days), ¹⁰BCl₃ reacts with II to noticeably enrich II with the ¹⁰B isotope.

A proposed reaction pathway for the formation of **I1** is given in Scheme I. This scheme is similar to but differs in detail from that proposed in a preliminary communication¹² and is influenced by the structure of $(\mu - H)_{3}Os_{3}(CO)_{9}[\mu^{3} - \eta^{2} - C(OC_{8}H_{14})BC]$, which is described later in this report. **In** Scheme I the formation of II is initiated through electrophilic attack of BX_3 at the oxygen of the unique carbonyl. The resulting reduction of the CO bond order induces a shift of this carbonyl from the terminal position to a bridging site.24 Movement of the carbonyl ligand into the μ_3 -site exposes the boron vertex and results in successive halogen atom transfer from the reagent boron to the cluster **boron.** With the elimination of X-B-O as trihaloboroxine, $B_3X_3O_3$, cluster II is produced.

A triphenylphosphine derivative of I has been prepared:¹⁸ $(\mu$ -H)₃Os₃(CO)₈(PPh₃)(μ ₃-BCO). Its structure, determined from a single-crystal X-ray analysis,²⁵ is like that of I (Figure 1) except that an axial carbonyl group bound to an osmium atom is replaced by an axial PPh₃ group. The reaction of this cluster with $BCI₃$ was studied in order to determine if an analogue of a vinylidene cluster would be formed or whether the $BCI₃$ would abstract the PPh₃ group from the cluster. The observed reaction (equation 2) produced the vinylidene analogue $(\mu$ -H)₃Os₃(CO)₈-

 $(PPh₃)(\mu₃-CBCl₂)$ (III), similar to II. There was no indication of abstraction of PPh₃ to form Ph₃PBCl₃. The ¹¹B NMR spectrum, a broad singlet at **53.4** ppm, correlates well with that of **11.** The proton NMR spectrum in CD₂Cl₂ at 30 °C (7.42 (m, is consistent with a structure in which the PPh, ligand is in an axial position cis to the bridging hydrogens. The P-H coupling constant observed is in accord with previously reported values for 15 H), **-18.41** (d, **2** H, **JpH** = 10.8 Hz), -19.63 ppm **(s, 1** H))

⁽²⁴⁾ The ability of **a Lewis acid to induce a structural shift** of **acarbonyl** ligand was first observed by Shriver and co-workers: (a) Horwitz, C.
P.; Shriver, D. F. *Adv. Organomet*. Chem. 1984, 23, 129. (b) Kristoff,
J. S.; Shriver, D. F. *Inorg. Chem.* 1974, 13, 499. (c) Alich, A.; Nelson,
N. J.; **Nelson, N. J.; Shriver, D. F.** *J. Chem. Soc., Chem. Commun.* **1971, 254.**

⁽²⁵⁾ Krause, J. A. K. Ph.D. Dissertation, The Ohio State Universt, 1989.

cis P-H coupling26 between an axial phosphorus and a bridge proton. This compound is very sensitive to moisture; it is hydrolyzed quantitatively to $(\mu$ -H)₃Os₃(CO)₈(PPh₃)(μ ₃-CH) and boric acid.

Reactions of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBCl₂) with **Nucleophiles.** The Lewis bases NMe₃, PMe₃, and PPh₃ add to the tricoordinate boron of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBCl₂) (II) (equation 3a). NMR data

from the adducts are given in Table 11. Boron-1 **1** chemical shifts of the adducts are 30-50 ppm upfield of the chemical shift of I1 (57.4 ppm). Above -10 °C the NMe₃ adduct is converted to the salt $[NMe₃H] $(\mu-H)₂Os₃(CO)₉(\mu₃-CBC)₁$ through deprotonation$ of II by the amine (equation 3b). NMR spectra in CD_2Cl_2 at 30 "C are as follows. [NMe,H]+: 6('H) 11.79 (br s, **1** H), 2.87 ppm (s, 9 H). $[(\mu - H)_2Os_3(CO)_9(\mu_3-CBCl_2)]$: $\delta(^1H)$ –19.23 ppm $(s, 2 H)$; $\delta(^{11}B)$ 45.0 ppm (br s). Similarly HFe₄(CO)₁₂CBH₂, a cluster-substituted monoborane, was shown by Fehlner and co-workers^{22b} to be deprotonated by $NMe₃$ to form $[NMe₃H]$ - $[Fe_4(CO)_{12}CBH_2]$.

Above -10 °C, the PMe₃ adduct is unstable. The PPh₃ adduct is sufficiently stable at 30 \degree C to obtain its NMR spectrum. Above this temperature, the presence of free PPh₃ is noted in the $31P$ NMR spectrum.

Formation of Alkyne Analogues. In an attempt to isolate compounds that would relate to proposed intermediates in the reaction of I with BX_3 (Scheme I) to produce II (equation 2), reactions of I with the mono- and dichloroborane reagents *B***chloro-9-borabicyclo(3.3.1)nonane** (B-CI-9-BBN)27 and phenylboron dichloride were studied.

B-CI-9-BBN reacts with I to produce $(\mu$ -H)₃Os₃(CO)₉[μ ₃- η^2 -C(OBC₈H₁₄)B(Cl)] (IV) (eq 4). The molecular structure of

IV has **been** determined by means of a single-crystal X-ray analysis (Figure 3).13 **In** the formation of IV, the unique carbonyl of **I** is shifted to a μ_3 -site capping two osmiums and the boron atom,

- (26) (a) Shapley, J. R.; Richter, S. I.; Churchill, M. R.; Lashewycz, R. A.

J. Am. Chem. Soc. 1977, 99, 2384. (b) Fox, J. R.; Gladfelter, W. L.;

Wood, T. G.; Smegal, J. A.; Foreman, T. K.; Geoffroy, G. L.; Tava-

naiepo
-

Figure 3. Molecular structure of $(\mu-H)_3Os_3(CO)_9[\mu_3-\eta^2-C(OBC_8H_{14})B-$ (ci)] **(1v).13**

while the chlorine atom of B-Cl-9-BBN is transferred to the μ_3 -boron of the cluster.

Compound IV is considered to be an alkyne analogue, having a carbon atom replaced by a BH group. The B-C unit along with the H atom bridging Os-B donates **4** electrons to the cluster through a π -interaction with an Os atom, an Os-C σ -bond, and a hydrogen-bridged Os-H-B bond. The B-C unit adopts the μ_3 - η^2 bonding mode observed for the C-C bond in alkyne analogues.²⁸ It is oriented nearly parallel, within 10° , to an Os-Os bond. Analogously, alkyne products result from electrophilic attack at the oxygen atom of the CCO unit of iron and osmium ketenylidene dianions^{7,8} and a mononuclear tungsten complex.²⁹ The B-C distance in IV, 1.46 (2) **A,** is comparable to B-C distances observed in $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO) (I),¹⁰ (μ -H)₃Os₃(CO)₉(μ ₃- $CBCl₂$) (II),¹² and the ditungsten alkyne analogue $W₂$ [μ - $MeCB(H)Et(CO)₄(\eta^5-C_5H_5)2^{30}$ (1.469 (15), 1.47 (2), and 1.46 (1) **A** respectively).

Phenylboron dichloride, PhBCI₂, reacts with I to produce the alkyne analogue $(\mu$ -H)₃Os₃(CO)₉[μ ₃- η ²-C{OB(Ph)Cl}B(Cl)] (V) (equation 4). This complex is slowly converted to $(\mu$ -H)₃Os₃- $(CO)_{9}(\mu_{3}-CBC1_{2})$ (II) at room temperature. The proposed structure of V is related to that of IV. Infrared spectra of **IV** and V (Figure 4) show strong similarities. NMR data (Table 111) from the cluster components of IV and V are also very similar.

Boron-11 NMR spectra of IV and V consist of a broad downfield resonance due to the oxygen-substituted borons and a sharper upfield signal for the cluster borons. Assignment of the oxygen-substituted borons is based **upon** reported values for 9-BBN phenylboron alkoxide derivatives.³¹ Proton NMR spectra from IV and V have downfield signals for the organic fragments and three distinct hydride signals. Broad singlets at -11.75 ppm from IV and -1 1.69 ppm from V sharpen with IIB decoupling or **upon** reducing the temperature (-30 \textdegree C) and are attributed to Os-H-B interactions. The remaining hydride resonances are assigned to hydrogen atoms bridging along the osmium framework.

The ¹³C $\{H\}$ NMR spectrum at 30 °C from IV has signals for the bicyclic ring carbons and the nine terminal carbonyl ligands.

- Chem. Radiochem. 1985, 29, 169.
(a) Kriessl, F. R.; Sieber, W.; Wolfgruber, M. *Angew. Chem., Int. Ed.*
Engl. 1983, 22, 493. (b) Kriessl, F. R.; Sieber, W.; Wolfgruber, M. Z. (29) *Naturforsch.* **1983. 388. 1419.**
- (a) Carriendo, G. A.; Elliott, G. P.; Howard, J. A. K.; Lewis, D. B.;
Stone, F. G. A. *J. Am. Chem. Soc., Chem. Commun*. **1984**, 1585. (b)
Barratt, D.; Davies, S. J.; Elliot, G. P.; Howard, J. A. K.; Lewis, D. B.; **Stone, F.** *G.* **A.** *J. Orgunomel. Chem.* **1987, 325, 105.**
- (31) **Noth, H.; Wrackmeyer, B.** *Nuclear Mugneric Resonance Spectroscopy of Boron Compounds;* **Springer-Verlag: New York, 1978.**

^{(28) (}a) Sappa, E.; Tiripicchio, A,; Braunstein, P. *Chem. Reu.* **1983,83,** *203* and references therein. (b) Raithby, P. R.; Rosales, M. J. *Adv. Inorg.*

a In CD₂Cl₂.

Figure 4. Infrared spectra of $(\mu-H)_3Os_3(CO)_{9}[\mu_3-\eta^2-C(OBC_8H_{14})B(CI)]$ $(I\bar{V})$ and $(\mu$ -H)₃Os₃(CO)₉ $[\mu_3$ - η^2 -C{OB(Ph)Cl}B(Cl)] *(V)*.

Figure 5. Molecular structure of $(\mu - H)_{3}Os_{3}(CO)_{9}(\mu_{3} - \eta^{2}-CCH_{2})$ (VI).¹⁴

The alkyne carbon signal occurs as a broad singlet at **138.03** ppm. The **13C{'HJ NMR (30 "C)** spectrum from **V** has signals for the phenyl group and the carbonyl ligands but not the two carbons bonded to boron atoms (alkyne carbon and phenyl ipso carbon).

Scheme II

However, two new broad signals at **13 1.68** and **129.74** ppm are observed in the low-temperature **(-85** "C) **13C{lH) NMR** spectrum. Low-temperature **NMR** spectroscopy has been used previously to obtain ¹³C NMR data for phenylboron derivatives.³² Since the cluster carbons are I3C enriched **(30-35%)** while the phenyl carbons are not, the signal of higher intensity, **129.74** ppm, is assigned to the alkyne carbon.

The reaction of $(\mu$ -H)₃Os₃(CO)₉[μ ₃- η ²-C(OBC₈H₁₄)B(Cl)] with BCI₃ produces $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBCI₂) (II), while the reaction with **BBr,** gives evidence **for** the formation of the mixed-halo complex $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBClBr) (equation 5). Boron-11 **NMR** studies of this reaction show rapid formation of **B-X-9- BBN.** Initial coordination **of BX,** to the oxygen atom of the **C-0-B** unit (Scheme **11)** followed by halogen atom transfer to the **9-BBN** boron could cause rupture of the **B-0** bond with elimination of **B-X-9-BBN** to produce the proposed intermediate for the reaction of $(\mu-H)_3Os_3(CO)_9(\mu_3-BCO)$ with BX_3 (Scheme I). A similar step has been proposed for the reaction of BX_3 (X

^{(32) (}a) Odom, J. D.; Moore, T. F.; Goetze, R.; Noth, H.; Wrackmeyer, B.
J. Organomet. Chem. 1979, 103, 15. (b) Gragg, B. R.; Layton, W. J.; Niedenzu, K. *Ibid.* 1977, 132, 29.

 $=$ Cl, Br) with the boroxin-supported methylidyne cluster $[(\mu H$ ₃Os₃(CO)₉(μ ₃-C)]₃[O₃B₃O₃]¹⁷ and for the reaction of BX₃ (X = Cl, Br) with the methylidyne clusters $(\mu$ -H)₃M₃(CO)₉(μ ₃-COMe) $(M = Ru, Os)^{33}$ In a reaction analogous to that given by eq 5, V reacts with BCI_3 to form II, $PhBCI_2$, and $B_3CI_3O_3$.

The methylidyne complex $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CH) is formed in nearly quantitative yield in the reaction of IV with HCI (eq 6). It is formed in reduced yield (25%) in the reaction of **V** with

HCI.

Reduction of the Unique Carbonyl in $(\mu$ **-H)₃Os₃(CO)₉(** μ **₃-BCO)** with BH_3 ^{THF.} The unique carbonyl of I is reduced to a CH_2 group by THF $-BH_3$ to produce the vinylidene analogue (μ - H)₃Os₃(CO)₉(μ ₃- η ²-BCH₂) (VI)¹⁴ (eq 7), a process that could

occur through initial coordination of $BH₃$ to the oxygen atom of the carbonyl to give $(\mu$ -H)₃(CO)₉Os₃(μ ₃-BCOBH₃) followed by transfer of two BH hydrogens to the carbon atom. Elimination of H-B-O as the boroxine trimer, $B_3H_3O_3$, would then result in the formation of VI. The boroxine trimer decomposes into B_2O_3 and $B_2H_6^{34}$ Deuterium-labeling experiments indicate that reduction of the CO occurs with no apparent scrambling of B-H and $Os-H-Os$ hydrogen atoms. Reaction of $(\mu-H)_3 Os_3(CO)_9$ - $(\mu_3$ -BCO) with BD₃.THF gives $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3 - \eta^2$ -BCD₂), while reaction of $(\mu$ -D)₃Os₃(CO)₉(μ ₃-BCO) with BH₃.THF gives $(\mu$ -D)₃Os₃(CO)₉(μ ₃- η ²-BCH₂). The electrophile BH₃ is a weaker Lewis acid toward oxygen bases than the trihaloboranes, $BX_3(X)$ $=$ F, Cl, Br).³⁵ It is probably not sufficiently electrophilic to induce a shift of the unique carbonyl ligand from its terminal position to a bridging site,²⁴ which would account for the fact that interchange of boron and carbon atom positions does not occur as in the formation of II from the reaction of I with $BCI₃$.

The molecular structure of VI has been determined by a single-crystal X-ray analysis (Figure *5).14* The basic structure resembles that of $(\mu - H)_2Os_3(CO)_9(\mu_3 - \eta^2- CCH_2),^{36}$ a vinylidene cluster. The B-C distance, 1.498 (15) Å, is approximately 0.1 Å shorter than observed B-C single-bond distances.^{20b,c} The BCH₂ fragment can be considered to be bound to the triosmium framework through two hydrogen-bridged bonds between *Os* and B atoms and through interaction of the $B-CH_2 \pi$ -system with an Os atom. This π -interaction results in a tilt of the BCH₂ unit toward the Os atom. The tilt (60° from the perpendicular) is significantly larger than observed in structurally characterized vinylidene clusters (40-50°).³⁷ The two B-H-Os bridges in the structure probably force the $BCH₂$ unit to an extreme tilt angle compared to the vinylidene complexes. While the extreme tilt angle implies that the compound could also be described as a methylene-bridged complex, the "short" B-C distance and the relatively long Os-C distance, 2.325 **(1** 7) **A,** favor the vinylidene analogy.

The proton NMR spectrum of VI (Table I) indicates that VI is an asymmetric molecule. Five signals are observed. Two signals are assigned to the $CH₂$ protons, and three signals are assigned to the bridging hydrides. Two of the bridge signals are broad; they sharpen upon ¹¹B decoupling and also upon decreasing the temperature $(-30 \degree C)$. These signals are assigned to Os-H-B interactions. The remaining bridge signal is assigned to the proton in the **Os-13-0s** bridge. The IH NMR spectrum of IV gives no evidence for fluxional character, up to the decomposition temperature of 90 °C in toluene. On the other hand the analogue $(\mu$ -H)₂Os₃(CO)₉(μ ₃- η ²-CCH₂) is fluxional above room temperature; singlets due to the $CH₂$ protons coalesce to a single signal at 72 oC.36a

The ¹¹B NMR spectrum of VI consists of a broad singlet at 53.5 ppm. **A** boron-carbon coupling constant of 51 Hz was obtained from the boron-11 NMR spectrum of a ¹³C-enriched (30-35%) sample of VI. The ¹³C NMR spectrum (Table I) of VI also implies that the molecule is asymmetric. Upon proton decoupling, the nine terminal carbonyl ligands produce eight singlets and a doublet $(J_{\text{CC}} = 15.6 \text{ Hz})$. The doublet is attributed to coupling of the methylene carbon with the carbonyl ligand trans to it. **A** broad singlet at 47.7 ppm is assigned to the methylene carbon.

Experimental Section

General Data. All manipulations were performed with standard high-vacuum-line techniques or in a drybox under an atmosphere of prepurified N_2 . All solvents were dried, degassed, and then distilled into storage bulbs equipped with 4-mm Kontes Teflon stopcocks. Methylene chloride was dried over P_2O_5 , while hexanes, pentanes, and toluene were dried over sodium benzophenone ketyl. BBr, (Aldrich Chemical Co.) and BCI, (Matheson Scientific Products) were fractionated on a high-vacuum line to remove any HBr or HCl impurities. $^{10}BF_3$ (92% ^{10}B) was obtained by heating the ${}^{10}BF_3$ ·Ca F_2 adduct (Eagle-Pitcher Industries Inc.) to 200 °C for 4 h. The ¹⁰BF₃ was collected at -196 °C and fractionated through a -140 °C trap (low-boiling petroleum ether/liquid N₂) to remove any impurities. B₂H₆ was prepared through published methods.^{38,39} B₂D₆ impurities. B_2H_6 was prepared through published methods.^{38,39} B_2D_6 was prepared by using LIAID₄ instead of LiAIH₄, while ¹⁰B₂H₆ was prepared by using ${}^{10}BF_3$ ³⁸ LiAlH₄, LiAlD₄ (95% d_4), and borabicyclo-(3.3.l)nonane (9-BBN) were obtained from Aldrich Chemical Co. and used as received. B-CI-9-BBN was prepared by the published procedure and was purified by sublimation.²⁷ A 10-g sample of $PhBCI₂$ (Alfa Products) was dissolved in 100 mL of hexanes in a volumetric flask equipped with a 9-mm Fisher-Porter solv-seal joint and stored until use. PPh_3 (Alfa Products) was recrystallized from hot C_2H_5OH and dried under high vacuum. $Os₃(CO)₁₂$ (Strem Inc.) was used as received. (μ - H ₃Os₃(CO)₉(μ ₃-BCO) was prepared by hydroboration of (μ -H)₂Os₃- $(CO)_{10}^{10}$ $(\mu$ -H)₃Os₃(CO)₉(μ ₃-¹⁰BCO) was prepared by using ¹⁰B₂H₆¹⁰ as the ¹⁰B source. $(\mu$ -H)₃Os₃(CO)₈(PPh₃)(μ ₃-BCO) was prepared by

⁽³³⁾ Keister, J. B.; Horling, T. *Inorg. Chem.* 1980, *19*, 2308.
(34) Porter, R. F.; Gupta, S. K. *J. Phys. Chem.* 1964, 68, 280.
(35) Fratiello, A.; Onak, T. P.; Schuster, R. E. *J. Am. Chem. Soc.* 1968, 90,
1194.

⁽³⁶⁾ (a) Deeming, A.J.; Underhill, **M.** *J. Chem. SOC., Dalton Trans.* **1974,** 1415. **(b)** Deeming, A. **J.;** Underhill, **M.** *J. Chem. SOC., Chem. Commun.* **1973, 277.**

⁽³⁷⁾ (a) Dodsworth, R.; Dutton, T.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. *Acta Crystallogr.* **1989,** *C45, 707.* (b) Aradi, **A.** A.; Grevels, F. **W.;** Krueger, C.; Raabe, E. *Organometallics* 1988.7.812. **(c)** Seyferth, D.; Hoke, J. B.; Cowie, **M.;** Hunter, A. D. *J. Organomet. Chem.* **1988,** *346,* 91. (d) Albietz, T.; Bernhardt, **W.;** von Schnering, *C.;* Roland, **E.;** Bantel, H.; Vahrenkamp, H. *Chem. Ber.* **1987,** *120,* 141. (e) Roland, E.; Wolfgang, B.; Vahrenkamp, H. *Ibid.* **1985,** 118, 2858.

⁽³⁸⁾ Shapiro, I.; Weiss, H. G.; Schmich, M.; Skolnik, S.; Smith, G. B. L. J.
Am. Chem. Soc. 1952, 74, 901.
(39) Toft, M. A.; Leach, J. B.; Himpsl, F. L.; Shore, S. G. *Inorg. Chem.*

^{1982,} *21,* 1952.

hydroboration of $(\mu-H)_2Os_3(CO)_9(PPh_3).^{18}$

Boron-11 NMR $[\delta(\text{Et}_2O\text{-BF}_3) = 0.00 \text{ ppm}]$ and proton NMR spectra $[\delta(TMS) = 0.00$ ppm] were obtained on either a Bruker MSL-300 NMR spectrometer operating at 96.3 and 300 MHz or a Bruker **AM-250** NMR spectrometer operating at 80.2 and 250 MHz, respectively. Carbon-I **3** NMR spectra were obtained on either a Bruker AM-500 spectrometer (125.7 MHz) or a Bruker **AM-250** spectrometer (62.9 MHz). Infrared spectra were obtained with a Mattson Cygnus-25 FT spectrometer.

Attempted Reactions of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO) with Proton Sources and Methylating Agents. No change in the IR, ¹H NMR, and ¹¹B NMR spectra of $(\mu$ -H)₃Os₃(CO)₉(μ ³-BCO) was observed upon attempting reactions with proton sources (HCl, HBr, and CF₃COOH) or methylating agents $(CH_3OSO_2CF_3$ and CH_3OSO_2F) in CH_2Cl_2 and in toluene at 30-70 "C using 1-20 equiv of the electrophile.

Preparation of ¹⁰BCl₃. ¹⁰BF₃ (1 mmol) was condensed into a 250 flask containing AICI, (625 **mg,** 4.69 mmol). The mixture was heated to 200 °C for 2 h to produce $^{10}BCl_3$ and AIF₃. The $^{10}BCl_3$ was purified by fractionation through a series of traps at -45 , -110 , and -196 °C. It was collected in the -110 °C trap. Impurities and any unreacted ¹⁰BF₃ were collected in the remaining traps.

Preparation of $(\mu-H)_{3}Os_{3}(CO)_{9}(\mu_{3}-CBX_{2})$ **(X = Cl, Br).** Into a 25-mL reaction flask was condensed onto a CH_2Cl_2 solution (6 mL) of (μ -H)₃Os₃(CO)₉(μ ₃-BCO) (130 mg, 0.150 mmol) an excess amount of BX₃ (X = Cl, Br). The reaction mixture was allowed to warm to room The reaction mixture was allowed to warm to room temperature and stirred for 30 min. Volatile components were removed, and fresh CH_2Cl_2 was added to the reaction residue. The solution was filtered through a frit in an extractor, leaving an insoluble solid (B_2O_3) and a pale yellow solution. Solvent CH_2Cl_2 was pumped away from the filtrate, and the residue was washed with hexanes to produce white *(p-*H)₃Os₃(CO)₉(μ_3 -CBX₂). The yield is 93% for X = CI (120 mg, 0.140) mmol) and 87% for $X = Br(132 mg, 0.131 mmol)$. NMR data are listed in Table I. **IR** spectrum of $(\mu-H)_3Os_3(CO)_9(\mu_3-CBCl_2)$ $(\nu_{CO}; CH_2Cl_2;$ 2020 (s, br), 2089 cm⁻¹ (s). IR spectrum of (μ-H)₃Os₃(CO)₉(μ₃-CBBr₂) *(uc0;* CH2C12): 2029 (br, **s),** 2091 cm-' **(s).** Mass spectrum (El): calc for 1ZC io IH llB8lB **r2** ¹⁶*09'920s,, m/e* = 1016; obs, m/e(M - 1) = 1015. Anal. Calc for $C_{10}H_3B_1Br_2O_9Os_3$: C, 11.90; H, 0.30. Found: C, 11.75; H, 0.32.

Preparation of $(\mu - H)$ **,** $Os_3(CO)$ **₈** (PPh₃)(μ_3 -CBCl₂). BCl₃ (0.300) mmol) was condensed into a 25-mL flask containing a CH_2Cl_2 solution (8 mL) of $(\mu$ -H)₃Os₃(CO)₈(PPh₃)(μ ₃-BCO) (114.5 mg, 0.104 mmol). The reaction mixture was stirred at room temperature for 30 min, and then the volatile components were removed. Fresh $CH₂Cl₂$ was added and the solution was filtered through a frit on an extractor, leaving an insoluble white precipitate of B_2O_3 . The yellow solid, produced from the filtrate, was washed with hexanes to give $(\mu$ -H)₃Os₃(CO)₈(PPh₃)(μ ₃- $CBCl₂$) in 78% yield (90.9 mg, 0.078 mmol). NMR spectra $(CD₂Cl₂$, 30 "C): 6(lH) 7.42 (I5 H, **m),** -18.41 (2 H, d, **JpH** = 10.5 Hz), -19.63 ppm (1 H, s); $\delta(^{11}B)$ 53.4 ppm (br s); $\delta(^{31}P)$ -10.83 ppm (m). IR spectrum $(\nu_{CO}$; CH₂Cl₂): 1968 (w), 2013 (s), 2034 (s), 2082 (vs), 2101 cm^{-1} (w).

Hydrolysis of Vinylidene Analogues. (a) $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBX₂) $(X = CI, BT)$ To Produce $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CH). Complexes containing CI or Br were hydrolyzed by the following general procedure. Excess H_2O (ca. 2 mL) was condensed onto a CH_2Cl_2 solution (5 mL) of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBX₂) (ca. 0.050 mmol) at -78 °C. The reaction mixture was stirred for 24 h, and then the volatile components were pumped away to leave a light yellow residue. **In** an extractor the residue was treated with CH_2Cl_2 . Solvent was pumped from the extract, leaving behind solid $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CH) in 95% yield. It was identified by comparison with its reported ¹H NMR, ¹³C NMR, IR, and mass spectra.⁴⁰ The remaining white residue on the extractor frit was boric acid.

(b) $(\mu$ -H)₃Os₃(CO)₈(PPh₃)(μ ₃-CBCl₂) To Produce (μ -H)₃Os₃(CO)₈- $(PPh₁)(\mu₁-CH)$. Excess H₂O (ca. 2 mL) was condensed onto a solution of 48.5 mg (0.042 mmol) of $(\mu$ -H)₃Os₃(CO)₈(PPh₃)(μ ₃-CBCl₂) in 5 mL of **CH2C12** at **-78** *'C.* The reaction mixture was stirred for **24** h, and then the volatile components were removed to leave behind the yellow residue. In an extractor the residue was treated with $CH₂Cl₂$. Solvent was pumped from the extract to give $(\mu$ -H)₃Os₃(CO)₈(PPh₃)(μ ₃-CH) in 94% yield (41.8 mg, 0.039 mmol). NMR spectrum: 6(IH) 9.82 (1 H, **s), 7.33 (15 H, m), -18.42 (2 H, d,** J_{PH} **= 10.0 Hz), -19.58 ppm (1 H, s**). Mass spectrum: calc for ${}^{12}C_{27}{}^{1}H_{19}{}^{16}O_8{}^{31}P^{192}Os_3$, $m/e = 1078$; obs, $m/e = 1078$

Boron-10-Labeled Reactions. (a) Reaction of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO) with ¹⁰BCl₃. In a reaction flask equipped with an NMR tube side arm, ¹⁰BCl₃ (0.100 mmol) was condensed at -196 °C onto a CH_2Cl_2 solution (0.5 mL) of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO) (86.4 mg, 0.100 mmol). The reaction mixture was stirred for 10 min at room temperature, and then the volatiles were pumped away. The ¹¹B NMR spectrum of the reaction mixture revealed only the presence of the signal for *(p-* H)₃Os₃(CO)₉(μ ₃-CBCl₂), 57.4 ppm (br s).

(b) Reaction of $(\mu - H)$ **₃Os₃(CO)₉(** μ **₃-¹⁰BCO) with BCI₃. In an exper**iment carried out under the same conditions as above except that *(p-*H)₃Os₃(CO)₉(μ ₃-¹⁰BCO) was allowed to react with BCl₃, only ¹¹B signals for $B_3Cl_3O_3$, 26.6 ppm (s), and its decomposition product B_2O_3 , 32.3 ppm (br **s),** were observed.

 $\overline{(\mathbf{c})}$ ¹⁰B-¹¹B Exchange Reaction between $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBCl₂) and ¹⁰BCl₃. In a series of experiments, ¹⁰BCl₃ (0.2 mmol) was condensed onto a CD_2Cl_2 solution (0.5 mL) of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBCl₂) (65 mg, 0.070 mmol) in a reaction flask equipped with an NMR tube side arm. For each experiment, the reaction mixture was stirred at room temperature for a different period from 6 h to 2 days, after which the mixture was decanted into the NMR tube and sealed off at -196 °C. The ¹¹B NMR spectrum after 2 days was the only one that showed a significant amount of exchange by revealing the presence of a ¹¹BCl₃ signal at 46.8 PPm **(SI.**

Reaction of $(\mu$ **-H)₃Os₃(CO)₉(** μ **₃-CBCI₂) with Nucleophiles. The Lewis** bases studied react with $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBCl₂) in 1:1 molar ratios without evolution of CO. In order to obtain NMR data and to establish stabilities of adducts, 1 equiv of Lewis base was added to (PPh_3) or condensed into (NMe₃ and PMe₃) an NMR tube containing a CD_2Cl_2 (0.5 mL) solution of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBCl₂) (115 mg, 0.100 mmol) at -196 °C. The NMR tube was sealed off at -196 °C. To initiate the reactions, the contents of the NMR tube was thawed and shaken twice. The NMR tube was then placed into a precooled NMR probe and allowed to equilibrate for *5* min before spectra were collected. The NMR data from the adducts and their stabilities are reported in Table **I1** and under Results and Discussion.

The salt $[NMe₃H][(\mu-H)₂Os₃(CO)₉(\mu₃-CBCl₂)]$ was prepared and isolated as follows. NMe₃ (0.052 mmol) was condensed at -196 °C into a reaction flask that contained $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CBCl₂) (47.8 mg, 0.052 mmol) in CH_2Cl_2 (8 mL). The reaction mixture was stirred at room temperature for 1 h. Volatiles were then pumped away, leaving behind $[NMe₃H]$ [(μ -H)₂Os₃(CO)₉(μ ₃-CBCl₂)] as a white solid, which was washed with 2 mL of Et₂O. A 90% yield (38.7 mg, 0.047 mmol) was obtained. NMR spectra are reported under Results and Discussion. IR spectrum $(\nu_{\text{CO}}; \text{CH}_2\text{Cl}_2, 30 \text{ °C})$: 2013 (s), 2083 cm⁻¹ (br). The cation and anion were identified by comparison of the ¹H and ¹¹B NMR spectra of the product with the 'H NMR spectrum of [NMe,H]CI and the 'H NMR, ¹¹B NMR, and IR spectra of $K[(\mu-H)_2Os_3(CO)_9(\mu_3-CBCI_2)].$ $K[(\mu-H),Os_3(CO)_{9}(\mu,-CBCI_2)]$ was generated from the reaction of $(\mu$ - H ₃Os₃(CO)₉(μ ₃-CBCl₂) with excess KH in the presence of BMe₃ (10%) in THF at room temperature. The reaction gives off 1 mol of $H₂/mol$ of cluster. NMR spectra (CD₂Cl₂, 30 °C): $\delta(^1H)$ -19.42 ppm; $\delta(^{11}B)$ 46.2 ppm (br s). IR spectrum $(\gamma_{CO}; CH_2Cl_2, 30 \degree C)$: 2013 (s), 2083 cm^{-1} (br).

Preparation of $(\mu-H)_3Os_3(CO)g[\mu_3-\eta^2-C(OBC_8H_{14})B(CI)].$ **In the** drybox, B-CI-9-BBN (74.3 mg, 0.474 mmol) was weighed into a vial. The vial was rinsed with CH_2Cl_2 (6-8 mL) into a 25-mL reaction flask containing $(\mu - H)$ ₃Os₃(CO)₉(μ ₃-BCO) (82.1 mg, 0.0950 mmol). The reaction mixture was then degassed at -78 °C and stirred at ambient temperature for 1 h. Volatile components, including the excess B-CI-9-BBN, were removed resulting in an oily residue. Pentanes were added to the residue, and the mixture was stirred for 30 min, resulting in the formation of a pale yellow precipitate. Volatiles were removed and fresh pentanes added. The precipitate was filtered out, washed with additional pentanes, and isolated as $(\mu \cdot H)_3Os_3(CO)_{9}[\mu_3 \cdot \eta^2-C(OBC_8H_{14})B(CI)]$ in 75% yield (72.7 mg, 0.071 mmol). NMR data are listed in Table **11.** IR spectrum (ν_{CO} ; CH₂Cl₂): 2010 (m, sh), 2035 (s), 2075 (s), 2095 (s), 2117
cm⁻¹ (w). Mass spectrum (EI): calcd for ¹²C₁₈¹H₁₇¹¹B₂³⁷Cl¹⁶O₁₀¹⁹²Os₃, $m/e = 1028$; obs, $m/e(M - 1) - 1027$. Anal. Calc for $C_{18}H_{17}B_2Cl_1O_{10}Os_3$: C, 21.16; H, 1.67. Found: C, 20.90; H, 1.47.

Reaction of $(\mu \cdot H), Os_3(CO)g\mu_3 \cdot \eta^2 \cdot C(OBC_8H_{14})B(Cl)$ **with BX₃ (X =** C1, **Br).** Into a reaction flask equipped with an NMR tube side arm was condensed excess BX_3 (X = Cl, Br) onto a CD_2Cl_2 solution (0.5 mL) of **(p-H),0s,(CO)9[p,-q2-C(OBC8H14)B(Cl)]** (86.8 **mg,** 0.085 mmol). The reaction mixture was stirred at room temperature for 2 h, and then it was decanted into the NMR tube, which was cooled to -196 °C and sealed. ¹¹B NMR spectra (CD₂Cl₂, 30 °C): $X = C1$, 82.0 (s, *B*-Cl-9-BBN), 57.4 $(br s, (\mu-H)30s_3(CO)9(\mu_3-CBC1_2))$, 26.6 ppm (s, B₃Cl₃O₃); $X = Br$; (s, $B-Br-9-BBN$), 55.4 (br s, $(\mu-H)_3Os_3(CO)_9(\mu_3-CBClBr)$), 23.8 ppm (br s, $B_3Br_3O_3$).

Reaction of $(\mu - H)$ ₃Os₃(CO)₉ $[\mu_3 - \eta^2 - C(OBC_8H_{14})B(Cl)]$ with HCI. Anhydrous HCI (0.092 mmol) was condensed onto a CD_2Cl_2 solution (0.5 mL) of $(\mu$ -H)₃Os₃(CO)₉[μ ₃- η ²-C(OBC₈H₁₄)B(Cl)] (94.0 mg, 0.092 mmol) in a reaction flask equipped with an NMR tube side arm. The reaction mixture was stirred for 2 h at room temperature, and a small amount of a white precipitate formed. The mixture was then decanted into the NMR tube, which was cooled to -196 °C and then sealed. The product $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CH) was identified by its ¹H NMR, ¹³C NMR, IR, and mass spectra.⁴⁰

Preparation of $(\mu - H)$ **₃Os₃(CO)₉** $[\mu_3 - \eta^2 - C(OB(Ph)Cl)B(Cl)]$ **.** PhBCl₂ (100 mg (0.630 mmol) in I mL of hexane) was pipetted into a 30-mL reaction vessel containing $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO) (77.8 mg, 0.0900 mmol) in the drybox. The reaction mixture was degassed at -78 °C, and $CH₂Cl₂$ (8 mL) was added. The mixture was stirred for 1 h, resulting in a color change from bright yellow to colorless. After removal of the volatile components, the residue was washed with hexanes to give white $(\mu$ -H)₃Os₃(CO)₉[μ ₃- η ²-C{OB(Ph)Cl}B(Cl)] in 92% yield (84.7 mg, 0.083 mmol). NMR data are listed in Table II. IR spectrum $(\nu_{CO}$; CH₂Cl₂): 2010 (m), 2034 (vs, br), 2075 (s), 2097 (s), 2118 cm-I (w). Mass spectrum (E1): calc for ${}^{12}C_{16}{}^{1}H_8{}^{11}B_2{}^{37}Cl_2{}^{16}O_{10}{}^{192}Os_3$, $m/e = 1032$; obs, $m/e = 1032$.

Reaction of $(\mu$ -H)₃Os₃(CO)₉ $[\mu_3$ - η^2 -C{OB(Ph)Cl}B(Cl)] with BCl₃. Excess BCI, (0.235 mmol) was condensed into a reaction flask containing a CD₂Cl₂ solution (0.5 mL) of $(\mu$ -H)₃Os₃(CO)₉[μ ₃- η ²-C{OB(Ph)Cl}B-(Cl)] (79.6 mg, 0.778 mmol). The reaction vessel was equipped with an NMR tube side arm. The reaction mixture was stirred for 1 h, and then it was decanted into the NMR tube, which was cooled to -196 °C and then sealed. ¹¹B NMR spectrum: 57.4 (br s, $(\mu$ -H)₃Os₃(CO)₉(μ ₃- $CBCl₂$), 54.8 (PhBCl₂), 26.6 ppm (B₃Cl₃O₃).

Preparation of $(\mu-H)$ **,** $\text{Os}_3(\text{CO})_9(\mu_3-\eta^2-\text{BCH}_2)$ **.** Diborane (0.858) mmole) was condensed at -196 °C into a 25-mL reaction flask containing a THF solution (7 mL) of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-BCO) (93.3 mg, 0.108 **mmol).** The reaction mixture was warmed to room temperature and stirred for 30 min, with formation of a white precipitate. Volatiles were pumped away, and the residue was extracted with toluene, leaving behind solid B_2O_3 . Volatiles were pumped away from the extract to yield a light yellow solid. Recrystallization from diethyl ether produced $(\mu$ -H)₃Os₃- $(CO)_{9}(\mu_{3}-BCH_{2})$ in 80% yield (73.5 mg, 0.086 mmol) based on the cluster starting material. NMR data are listed in Table I. IR spectrum *(uc0;* C6H12): 1985 (m), 1993 (w), 2015 (s), 2034 (s), 2054 (s), 2076 (s) , 2107 cm⁻¹ (m).

Acknowledgment. This research was supported by the National Science Foundation through Grants CHE 88-00515 and CHE 84-1 1630. NMR and mass spectral data were obtained at The Ohio State University Campus Chemical Instrument Center (funded in part by NSF Grant 79-10019 and NIH Grant 1 SI0 PRO145 128-01 **A).**

> Contribution from the Department of Chemistry, University of Houston, Houston, Texas 77204-564 1

Preparation and Characterization of Tris(trimethylsily1)silyl Derivatives of Tin. X-ray Crystal Structure of Cl₂Sn[Si(Si(CH₃)₃)₃]₂

S. P. Mallela and R. **A.** Geanangel*

Received January 18, 1990

Six new [tris(trimethylsilyl)silyl]tin(IV) compounds, $R_{4-x}Sn[Si(SiMe₃)₃]$, (R = Me, x = 1, 2; R = n-Bu, x = 1, 2; R = Cl, x = I, 2) have been prepared and characterized, including 'H, lac, 29Si, and **'I9Sn** NMR spectra, which were consistent with the expected structures. An X-ray structure determination of Cl₂Sn[Si(SiMe₃)₃]₂ revealed a pronounced distortion of the tetrahedral geometry around tin induced by the large steric requirements of the $Si(SiM_{23})$, groups. Crystals of C₁₈H₅₄Cl₂Si₈Sn were monoclinic, *C2/c, with a* = 16.050 (4) \hat{A} , $b = 10.014$ (2) \hat{A} , $c = 47.289$ (10) a, $\beta = 90.17$ °, $V = 7600$ \hat{A} ³, and $\hat{Z} = 8$. The compound was more stable toward atmospheric moisture than comparable organotin dichlorides. Attempts to make the germanium analogue of the dichlorostannane via reaction of GeCl₄ with 2 equiv of (THF), LiSi(Si(CH₃),), gave the dimer $[C]_2$ GeSi(SiMe₃)₃]₂ instead.

Introduction

Several reports have described the preparation of metal compounds bearing the **tris(trimethylsilyl)methyl** and tris(trimethylsilyl)silyl substituents. Derivatives of the former involving Hg,¹ Au,¹ Ge,^{1,2} and Sn¹⁻⁴ have been described along with examples involving a number of d-block metal compounds⁵⁻¹⁰ and one tin compound¹¹ incorporating the latter. Our interest in these

- (1) Glocking, F.; Harriot, P.; Ng, **W.-K.** *J. Chem. Res., Synop.* **1979,** 12; *J. Chem. Res.. Miniorint* **1979.** 275 and references cited therein.
- (2) Cook, **M.** A.; **Eaborn:** C.; Jukes, A. E.; Walton, D. R. M. *J. Organomet. Chem.* **1970,** *24,* 529.
- (3) AI-Juaid, **S.** S.; Dhaher, **S. M.;** Eaborn, C.; Hitchcock. P. B.; Smith, J. D. J. *Orzanomet. Chem.* **1987. 325. I1 7.**
- (4) Dhaher, **S.k.;** Eaborn, C.; Smith, J. D. J. *Organomet. Chem.* **1988,** *355,* 33.
- *(5)* Roddick, D. M.; Tilley, T. D.; Rheingold, A. L.; Geib, **S.** J. *J. Am. Chem. Soc.* **1987,** 109,945. (6) Campion, B. K.; Falk, J.; Tilley, T. D. *J. Am. Chem. SOC.* **1987,** *109,* 2049.
- (7) Arnold, J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. *Inorg. Chem.*
- **1987, 26,** 2106. (8)
- Arnold, J.; Roddick, D. M.; Tilley, T. D.; Rheingold, A. L.; Geib, S.
J. *Inorg. Chem*. 1988, 27, 3510.
Elsner, F. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. *J. Organomet.*
Chem. 1988, 358, 169. (9)
- Heyn, R. H.; Tilley, T. D. *Inorg. Chem.* **1989,** *28,* 1769.

substituents derives from their exceptionally large steric demands, which, in some cases, appear to convey improved thermal stability to their compounds, compared to analogous trimethylsilyl-bearing structures.^{7,12} Except in the case of the linear MR_2 , compounds $(M = Zn, Cd, Hg; R = Si(SiMe₃)₃$, where steric interactions between substituents should be minimal, and $[(Me₃Si)Si]₂Sn(μ Cl$)Li(THF)₃, where the Si-Sn-Si bond angle is unusually large at **1** 14.2', there are **no** other structurally characterized examples of tris(trimethylsily1)silyl derivatives that contain more than one such group. It is not clear whether this is due to destabilizing intramolecular steric interactions when more than one large substituent is present or to other factors. Since the utility of bulky substituents in the stabilization of unusual structural and bonding features is well-known, we elected to attempt the synthesis of selected tris(trimethylsily1)silyl-tin compounds in order to better understand the effect of the bulky group **on** the behavior and thermal stability of such compounds. We wish to report here the preparation and characterization of new tin(1V) derivatives, $R_{4-x}Sn[Si(SiMe₃)₃]_x$ (R = Me, x = 1, 2; R = *n*-Bu, x = 1, 2; R $=$ Cl, $x = 1, 2$), and X-ray structure determination on Cl₂Sn-

⁽¹ I) Arif, A. M.; Cowley, A. H.; Elkins, T. M. *J. Organomet. Chem.* **1987, 325, CII.**

⁽¹²⁾ Huheey, J. E. *Inorganic Chemistry, Principles of Structure and Reactiuity,* 3rd Ed.; Harper and Row: New York, 1983.