There are errors in the NMR parameters reported' since the authors did not take into account the high symmetry of the cadmium.

The cadmium occupies one of the $\bar{3}$ (C_{3i}) special positions in the rhombohedral space group *R3,* **on** the 3-fold xis of the unit cell.² This *requires* that the NMR shift tensor be axially symmetric $(\sigma_{11} = \sigma_{22})$ with one axis of the tensor (σ_{33}) aligned along the 3-fold axis.³ The directions of the x and y axes are not uniquely defined when axial symmetry is present; any pair of orthogonal axes that are also orthogonal to the *z* axis will serve! The symmetry also requires that the NMR chemical shifts determined by rotations about the rhombohedral *a,* b, and **c** axes be identical. The fact that Kennedy, Ellis, and Jakobsen found that σ_{33} was 2.4° away from the 3-fold axis and that $\sigma_{11} = 414$ ppm while σ_{22} = 385 ppm actually represents a measure of the various errors associated with the experiment rather than any real differences in the σ_{11} and σ_{22} parameters.

The NMR measurements in this particular case can be greatly simplified by choosing an alignment based **on** hexagonal rather than rhombohedral axes.⁵ In the hexagonal setting, the *z* axis of the tensor is coincident with the *c* axis of the hexagonal unit cell, and the *x* and *y* components of the tensor are perpendicular to it. Thus only two measurements are necessary to obtain the tensor components, the chemical shifts when the **c** axis is parallel to the applied field and when it is perpendicular to it.

Acknowledgment. I thank Prof. J. S. Hartman for helpful discussions.

-
- (2) Paige, C. R.; Richardson, M. F. *Can. J. Chem.* 1984, 62, 332–335.
(3) Weil, J. A.; Buch, T.; Clapp, J. E. Adv. Magn. Reson. 1973, 6, 183–257.
(4) Sands, D. E. *Vectors and Tensors in Crystallography*; Addison-Wesley
- Publishing Co.: Reading, MA, 1982.
- *(5) International Tables for Crystallography. Volume A: Space Group Symmetry;* Hahn, T., Ed.; D. Reidel Publishing Co.: Dordrecht, Holland, and Boston, MA, 1983; pp 490-493.

Contribution from the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

A New Synthesis of Xenon Oxytetrafluoride, XeOF,

Jon **B.** Nielsen, Scott **A.** Kinkead,* and P. Gary Eller

Received June 23. *1989*

There has **been** continued interest in xenon fluorides to increase the knowledge of the bonding and reactivity of noble gas compounds. Reported syntheses of xenon fluorides and oxyfluorides can be less than safe and in some instances very hazardous. For example, one common preparation of $XeOF₄$ involves partial hydrolysis of XeF_6 in either a static or dynamic system. The dynamic method, a controlled hydrolysis, involves a complex setup to monitor the decrease in the XeF_6 concentration in a flow loop while air is bled into the system.¹ The static method, accomplished by reacting XeF₆ with either SiO₂ or H₂O, can be quite dangerous due to inadvertent formation of highly explosive $XeO₃$ ² Another method uses SeO₂F₂ as an oxygen source but suffers from the high toxicity and difficult preparation of $SeO₂F₂$.³ Recently, Christe and Wilson reported that $XeOF_4$ can be prepared in high yields from readily available reagents through the reaction of XeF_6 with

Experimental Section

Caution! The reaction of XeF_6 or $XeOF_4$ with an excess of $P(O)F_3$ can lead to the formation of explosive XeO_3 . Care must be used when performing this procedure to ensure that an excess of $P(O)F_3$ is not used. Small amounts of all reagents should be used in order to minimize risk of explosions and damage, and appropriate safety precautions should be taken. Xenon hexafluoride is a potent oxidizer that readily hydrolyzes to explosive XeO,.

Materials and Apparatus. Xenon (Matheson Corp.) was used as received. Xenon hexafluoride, XeF₆, was prepared by the method of Chernick and Malm from Xe and excess F_2 in the presence of NaF followed by vacuum pyrolysis of the adduct NaXeF₇.⁶ Phosphoryl followed by vacuum pyrolysis of the adduct $NaXeF₇$.⁶ fluoride, $P(O)F_3$, was prepared by the reaction of SbF_3 and $P(O)Cl_3$ and purified by vacuum distillation.⁷ Volatile materials were manipulated in a stainless steel vacuum line equipped with Kel-F and stainless steel traps, Autoclave Engineers valves, and MKS and Helicoid pressure gauges. Prior to use, the vacuum line was thoroughly passivated with CIF_3 and XeF_6 followed by overnight evacuation. Nonvolatile materials were handled in a dry He atmosphere glovebox. Infrared spectra of volatile materials were recorded **on** a Perkin-Elmer **1500** FTIR spectrometer using a IO-cm stainless steel cell fitted with AgCl windows.

Preparation of **XeOF,.** Xenon hexafluoride **(1.2** g, 4.9 mmol) followed by 0.52 g (4.9 mmol) of $P(O)F_3$ at -196 °C was condensed into a Kel-F reaction tube. The reaction vessel was allowed to warm slowly to room temperature, and within *5* min the solid XeF, began to evolve gas and liquefy. After 2 h at room temperature, the contents of the reactor were vacuum-transferred to a 30-mL stainless steel cylinder containing dried NaF to remove PF₅. After several hours at room temperature in contact with NaF, the volatile material was removed from the cylinder and identified as pure $XeOF₄$ (1.1 g, 4.9 mmol) by its infrared spectrum⁸ and room-temperature vapor pressure.' The NaF scrubber retained 0.59 g (4.7 mmol) of complexed PF_5 . Alternately, the PF_5 may be more rapidly removed by vacuum distillation from the mixture using a trap held at *-55* °C.

Results and Discussion

The reaction of $P(O)F_3$ and XeF_6 provides a very convenient, high-yield, fast synthesis of $XeOF₄$. The oxygenating agent (P- $(O)F_3$) is easily prepared in quantity from readily available materials, is anhydrous as prepared, and is easily handled in vacuum systems, allowing for precise and accurate measurement of small quantities. The only byproduct of the reaction (PF_5) is easily separated from XeOF, **on** the basis of either its greater volatility or its stronger Lewis acidity (toward NaF). It is not necessary to use a large excess of XeF_6 to avoid formation of significant amounts of treacherous $XeO₃$, since $XeOF₄$ reacts much more slowly with $P(O)F_3$ than does XeF_6 . This was demonstrated by the reaction of $P(O)F_3$ with $XeOF_4$ in a 1:1 ratio. After this reaction was allowed to proceed for **4** days followed by removal of volatiles (unreacted XeOF₄, P(O)F₃, and PF₅), only a small amount of white solid (less than **0.05** g) was recovered. During an attempt to identify this material, an explosion occurred and the material, **on** the basis of its detonability and lack of volatility, was presumed to be either XeO_2F_2 or XeO_3 . Explosions can be avoided if $P(O)F_3$ and XeF_6 are reacted in a ratio close to 1:1 and a short reaction time is used. Separation of the resulting products is simple. When the reaction is performed in the prescribed manner, the products are all gases or volatile liquids and fractional condensation through two traps kept at **-55** and -196 °C cleanly separates $XeOF_4$ from PF_5 and $P(O)F_3$ and gives spectroscopically pure $XeOF_4$ in quantitative yield. If a slight excess of XeF_6 is used, purification may be accomplished by placing the contents of the reaction over NaF to complex PF, and XeF_6 .

⁽I) Smith, D. F. *Science (Washington, D.C.)* **1963,** *140.* 899.

⁽²⁾ Chemick, C. L.; Classen, **H. H.;** Malm, J. G.; Plurien, P. L. *Noble Gas Compounds;* Hyman, H. H., Ed.; University of Chicago Ress: Chicago, **IL,** and London, 1963; p 287.

⁽³⁾ Seppelt, K.; Rupp, H. H. *Z. Anorg. Allg. Chem.* **1974,** *409,* 331. Seppelt, K. *Inorg. Synth.* **1980,** *20,* 36.

⁽⁴⁾ Christe, K. O.; Wilson, W. W. *Inorg. Chem.* 1988, 27, 1296.
(5) Christe, K. O.; Wilson, W. W. *Inorg. Chem.* 1988, 27, 3763.
(6) Chernick, C. L.; Malm, J. G. *Inorg. Synth.* 1966, 8, 258.
(7) Olah, G. A.; Oswald, A. A

Acknowledgment. We gratefully acknowledge support of this work by the **U.S.** Air Force, Air Force Astronautics Laboratory, Edwards Air Force **Base,** CA, and the **US.** Department of Energy. We also thank Dr. K. O. Christe for helpful discussions.

Registry No. XeOF₄, 13774-85-1; P(O)F₃, 13478-20-1; XeF₆, 13693-09-9,

> Contribution from the Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, Canada H3A 2K6, and Crystalytics Company, P.O. Box 82286, Lincoln, Nebraska 68501

The Novel Redox Reaction and Tbiolato Ligand Transfer between $\text{Cp}_2\text{Ti}(\text{SCMe}_3)_2$ and $\text{CpCo}(\text{CO})_2$. Preparation and **Structure of** $[CpCo(\mu\textrm{-}SCMe_3)]_2$

Alan Shaver,*,^{1a} Stephen Morris,^{1a} Riccardo Turrin,^{1a} and Victor W. Dayib

Received February 5, 1990

Introduction

Dimers of the type $[ChM(CO)_xSR]_2$ are an important class of molecules containing bridging thiolato ligands.² There are several geometric isomers possible for such complexes.^{2,3} Briefly, the Cp rings can be cis or trans with respect to the M-M vector and the R groups can be axial or equatorial with respect to a nonplanar M_2S_2 "butterfly" ring.⁴ Only a few complexes of the type $[CpCoSR]_2$ have been prepared, where $R = CH_3$ ⁵ Ph,⁵ CF₃⁶ and \dot{C}_6F_5 ⁶ however, they are unstable for R = Ph and CF₃. We report here the preparation and structural characterization of $[CpCoSCMe₃]$, the product of an unusual redox reaction between $CpCo(CO)₂$ and $CpTi(SCMe₃)₂$.

Results

UV irradiation of a solution of $CpCo(CO)_2$ and $Cp₂Ti(SCMe₃)$ in hexanes caused a color change from red to green and the precipitation of a red solid. The latter was identified as $[Cp_2TiSCMe_3]_2$ by elemental analysis, mass spectroscopy, and its NMR spectrum.⁷ Green crystals of $[CpCoSCMe₃]₂$ were isolated from the hexane solution and characterized by elemental analysis, mass spectroscopy, and its VT 'H NMR spectra. The NMR spectrum shows one peak for the Cp protons and a broad peak for the Me protons. Heating the sample causes the broad peak to sharpen, while cooling causes the peak to broaden even more, pass through a coalescence temperature, and reemerge as two sharp peaks of equal intensity at low temperature.*

On the basis of the NMR data, one would predict a structure for $[CpCoSCMe₃]$ ₂ wherein the Cp rings are mutually cis and the CMe₃ groups axial and equatorial with respect to the $Co₂S₂$ ring. The first X-ray structure of a cobalt complex of this type

- (a) McGill University. (b) Crystalytics Co.
- Shaver, A,; *So0* Lum, B.; Bird, P.; Livingstone, **E.;** Schweitzer, M. *Inorg. Chem.* **1990,** *29,* 1832. (a) Knox, **S.** A. R.; Killips, **S.** D. *J. Chem. SOC., Dalton Trans.* **1978,**
- (3) 1260. **(b)** Blower. P. J.; Dilworth, J. R. *Coord. Chem. Rev.* **1987, 76,** 121.
-
- Dahl, **L.** F.; Wei, C. H. *Inorg. Chem.* **1963,** *2,* 328. King, R. B.; Treichel, P. M.; Stone, F. G. **A.** J. *Am. Chem. Soc.* **1961, 83,** 3600.
- Davidson, J. L.; Sharp, D. W. A. *J. Chem. Soc., Dalton Trans.* **1975,** 813.
- (a) Lappert, M. F.; Sanger, A. R. *J. Chem. SOC. A* **1971,** 1314. (b) Fachinetti, G.; Floriani, C. *J. Chem. SOC., Dalton Trans.* **1974,** 2433. (7) The activation energy for this process was calculated⁹ to be 60 kJ mol⁻¹.
- The range observed for pyramidal inversion at the sulfur atom for a variety of dimers with bridging thiolato groups is 40–80 **kJ** mol^{-1,10} Sandstrom, J. Dynamic NMR Spectroscopy; Academic Press: Toronto,
- Sandstrom, J. *Dynamic NMR Specrroscopy;* Academic Press: Toronto, 1982; p 96.
- Abcl, E. W.; Bhargava, **S.** K.; Orrell, K. G. *Prog. Inorg. Chem.* **1984, 32.** I.

Figure 1. ORTEP view of [CpCoSCMe312 showing the numbering scheme.

Table I. Crystallographic Data for [CpCoSCMe₃]₂

chem formula: $C_{18}H_{28}Co_2S_2$	$Z = 4$
$fw = 456.64$	$T = 20 \pm 1$ °C
space group: $P2_1/n$	$\lambda = 0.71073 \text{ Å}$
$a = 14.770(3)$ Å	$p_{\text{caied}} = 1.539 \text{ g cm}^{-3}$
$b = 9.145(1)$ Å	$\mu(Mo K\alpha) = 2.72$ mm ⁻¹
$c = 15.483(2)$ Å	$R_1 = 0.037$
$\beta = 109.51(1)$ ° $V = 1971.4$ (5) Å ³	$R_2 = 0.047$

Table 11. Positional Parameters **(X** 10') and Isotropic Thermal Parameters $(\mathring{A}^2 \times 10^3)$ for $[CpCoSCMe_3]_2$

atom	x	у	z	U
Co(1)	1812(1)	2108(1)	4729 (1)	30(1)
Co(2)	2350 (1)	$-128(1)$	5649 (1)	27(1)
S(1)	3240 (1)	1126(1)	5035 (1)	30(1)
S(2)	1247(1)	$-92(1)$	4286 (1)	27(1)
C(11)	1563 (4)	3797 (5)	5516 (3)	61(2)
C(12)	698(3)	3146(5)	5016(3)	56(2)
C(13)	584 (3)	3298 (4)	4082 (3)	47 (1)
C(14)	1359 (3)	4050 (4)	3997 (3)	53 (1)
C(15)	1990 (4)	4341 (4)	4895 (4)	59 (2)
C(16)	4295 (3)	2113(5)	5848 (3)	42 (1)
C(17)	4632 (4)	3157(7)	5248 (3)	75 (2)
C(18)	5058 (3)	967(6)	6275 (3)	55 (1)
C(19)	4047(3)	2956 (5)	6589 (3)	51 (1)
C(21)	2254 (4)	112(5)	6956 (3)	57 (2)
C(22)	1524 (3)	$-793(5)$	6419 (3)	44 (1)
C(23)	1960 (3)	$-2011(4)$	6160(3)	44 (1)
C(24)	2943(3)	$-1866(5)$	6525 (3)	55 (2)
C(25)	3132(3)	$-538(6)$	7009 (3)	59 (2)
C(26)	1570 (2)	$-1017(4)$	3335(2)	32(1)
C(27)	1872 (3)	89 (5)	2764(3)	47(1)
C(28)	2363(3)	$-2121(4)$	3749(3)	45 (1)
C(29)	649 (3)	$-1797(5)$	2776 (3)	57(1)

Table 111. Selected Bond Lengths (A) and Angles for $[CpCoSCMe₃]$ ₂

is depicted in Figure 1, and it confirms the assignment. The crystallographic data, atomic coordinates, and selected structural