quencies and Raman intensities agree well with the experimentally obtained data and assignments for 2 reported by Gillespie and Morton.² The experimental infrared spectrum of Cl_2F^+ , which was assigned to the symmetric form by Christe and Sawodny,¹ is incompatible with the calculated IR spectrum for 1. The Cl-F bond strength in 2 is predicted as 41.6 kcal/mol, significantly higher than in 1 (21.2 kcal/mol) but lower than in diatomic CIF (59.4 kcal/mol) and CIF⁺ (68.4 kcal/mol). The CI-Cl bond in 2 is quite strong (63.3 kcal/mol), even stronger than in Cl_2 (58.0 kcal/mol) but weaker than in Cl_2^+ (90.1 kcal/mol).

Acknowledgment. We thank Professors K. Dehnicke, C. Elschenbroich, and U. Müller for helpful comments and interesting discussions. Constructive criticism by one reviewer is acknowledged. This work has been supported by CONVEX, Silicon Graphics, and by the Fonds der Chemischen Industrie. Thanks are expressed to the IBM Düsseldorf Computing Center for providing computing resources.

> Contribution from the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Formation of Amine, Phosphine, and Thioether Adducts of Chlorotriborane(7)

Alan R. Dodds, Mansel A. Nelson, and Goji Kodama*

Received April 13, 1990

The chlorotriborane(7) (B_3H_6Cl) adduct of $N(CH_3)_3$ was formed by the reaction of B_4H_8 · $N(CH_3)_3$ with HCl in dichloromethane or with HgCl₂ in chloroform. The reaction of B_3H_7 · $N(CH_3)_3$ with BCl₃ in dichloromethane was found to be a better preparative method for B₃H₆Cl·N(CH₃)₃. The BCl₃ treatment was employed to convert the N(CH₃)₂H, N(CH₃)H₂, NH₃, and S(CH₃)₂ adducts of B₃H₇ into the corresponding adducts of B₃H₆Cl. In contrast, B₃H₇·P(CH₃)₃ and B₃H₇·PH₃ are inert to BCl₃. The B₃H₆Cl adducts of P(CH₃)₃ and PH₃ could be obtained by treating the B₃H₂ adducts with a mixture of HCl and BCl₃ in dichloromethane. The ¹¹B and ¹H NMR spectra of these B_3H_6Cl adducts showed that their structures were described as 1-(Lewis base)-2chlorotriborane(7).

Introduction

In an earlier report from this laboratory, the formation of trimethylamine-chlorotriborane(7) was mentioned briefly.¹ The compound was formed when $B_4H_8 \cdot N(CH_3)_3$ was treated with hydrogen chloride in dichloromethane. In literature prior to that time, the $B_3H_7Cl^-$ and $B_3H_7Br^-$ anions were the only halogenated derivatives of B_3H_7 adducts that were reported.² Subsequently, preparative studies of the neutral chlorotriborane adducts were pursued.3

In recent years, Morris and co-workers developed the chemistry of the above halogenated triborohydride anions and reported several new triborohyride anions, including pseudohalogen derivatives.⁴ The reaction chemistry of the $B_3H_8^-$ derivatives is of interest, since a variety of new borane derivatives are expected to be synthesized from these compounds. The corresponding derivatives of the neutral B_3H_7 adducts are throught to have different reactivities due to the absence of the negative charge, and they too may serve as the starting compounds for the syntheses of new boron hydride compounds. In this paper, the results of our preparative studies of chlorotriborane(7) adducts are described.

Results

(A) Trimethylamine-Chlorotriborane(7). (a) Formation of $B_3H_6CI-N(CH_3)_3$. Trimethylamine-chlorotriborane(7) was formed in the rections given in eqs 1-4. The reaction of B_4H_8 ·N(CH₃)₃ $B_{1}H_{1}N(CH_{1})_{1} + HCl -$

$$B_{4}H_{6} \cdot (CH_{3})_{3} + BCl_{3} = BCl_{3}H_{6}Cl \cdot N(CH_{3})_{3} + \frac{1}{2}B_{2}H_{6}^{1a} (1)$$

$$B_{3}H_{7} \cdot N(CH_{3})_{3} + BCl_{3} \xrightarrow{\text{in } CH_{2}Cl_{2}} B_{3}H_{6}Cl \cdot N(CH_{3})_{3} + BHCl_{2}^{"} (2)$$

$$B_{3}H_{7} \cdot N(CH_{3})_{3} + HCl \xrightarrow{BCl_{3}}{\text{in } CH_{2}Cl_{2}} B_{3}H_{6}Cl \cdot N(CH_{3})_{3} + H_{2} \quad (3)$$

$$B_{4}H_{8}\cdot N(CH_{3})_{3} + 2HgCl_{2} \xrightarrow[\text{in CHCl}_{3}]{} B_{3}H_{6}Cl \cdot N(CH_{3})_{3} + Hg_{2}Cl_{2} + "H_{2}BCl" (4)$$

with HCl was accompanied by another reaction (eq 5) that yielded $B_4H_8 \cdot N(CH_3)_3 + HCl \rightarrow CHCl$

$$B_{3}H_{7} \cdot N(CH_{3})_{3} + "BH_{2}Cl" (5)$$

 $B_3H_7 \cdot N(CH_3)_3$.^{1a} Thus, a mixture of $B_3H_7 \cdot N(CH_3)_3$ and B_3 -H₆Cl·N(CH₃)₃ (ca. 3:7 molar ratio) was obtained. Hydrogen bromide reacted with $B_4H_8 \cdot N(CH_3)_3$ in a manner similar to the HCl reaction (eqs 1 and 5), and $B_3H_6Br \cdot N(CH_3)_3$ and $B_3H_7 \cdot$ N(CH₃)₃ were produced.

The reaction expressed in eq 2 is currently the best method for the preparation of $B_3H_6Cl\cdot N(CH_3)_3$. The reaction proceeded to near completion at -80 °C. Performing the reaction at higher temperatures (-40 to -23 °C) with excess BCl₃ ensured the complete conversion of $B_3H_7 \cdot N(CH_3)_3$ to $B_3H_6Cl \cdot N(CH_3)_3$. Equation 3 could also be used for the $B_3H_6Cl\cdot N(CH_3)_3$ preparation; the reaction was completed at -80 °C within a short period of time. The chlorotriborane(7) adduct was also formed in the slow reaction of $B_3H_7 \cdot N(CH_3)_3$ with hydrogen chloride, in the absence of BCl₃, in CH₂Cl₂ at room temperature. However, many other boron hydride compounds were formed as the side products. In tetrahydrofuran, B₃H₇·N(CH₃)₃ was practically inert to HCl.⁵

^{(1) (}a) Dodds, A. R.; Kodama, G. Inorg. Chem. 1979, 18, 1465. (b) Dodds, (1) G. Bodama, G. Abstracts of Papers, 172nd National Meeting of the American Chemical Society San Francisco, CA; American Chemical Society: Washington, DC, 1976; INOR 90.
 (2) Ryschkewitsch, G. E.; Miller, V. A. J. Am. Chem. Soc. 1975, 97, 6258.
 (3) (a) Dodds, A. R. Ph.D. Dissertation, The University of Utah, Salt Lake Chemical UT, 1980 (b) Nitron M. Kodema, Salt Lake

City, UT, 1980. (b) Nelson, M. A.; Kodama, G. Abstracts of Papers, 184th National Meeting of the American Chemical Society, Kansas City, MO; American Chemical Society: Washington, DC, 1982; INOR

^{(4) (}a) Meina, D. G.; Morris, J. H. J. Chem. Soc., Dalton Trans. 1986, 2645. (b) Aruchaiya, M.; Morris, J. H.; Andrews, S. J.; Welch, D. A.; Welch, J. A. J. Chem. Soc., Dalton Trans. 1984, 2525. (c) Jacobsen, G. B.; Morris, J. H. Inorg. Chim. Acta 1982, 59, 207.

⁽⁵⁾ Dodds, A. R.; Kodama, G. Inorg. Chem. 1977, 16, 3353.

Table 1. ¹¹B and ¹H NMR Spectral Data for Methylamine Adducts of Chlorotriborane(7) in CH₂Cl₂ at 25 °C^a

	B ₁	B ₂	B ₃	H _c	Н _в	H _N	
B ₃ H ₆ Cl·N(CH ₃) ₃	-15.7	-7,9	-9.8	$2.60 (s)^{b}$	2.07 ^b		
B ₃ H ₆ Cl·(CH ₃) ₂ NH	-20.9	-3.4	-8.2	2.54 (d) ^c	2.03	3.90	
B ₃ H ₆ Cl·CH ₃ NH ₂	-25.3	-2.2	-5.9	2.50 $(t)^d$	2.05	3.89	
B ₃ H ₆ Cl·NH ₃	-30.0	+1.2	-5.1		2.16	4.43	

^aShifts in ppm from BF₃·O(C₂H₅)₂ for ¹¹B and from TMS for ¹H. ^bAt 20 °C. ^cJ_{HCNH} = 6.2 Hz. ^dJ_{HCNH} = 6.2 Hz.

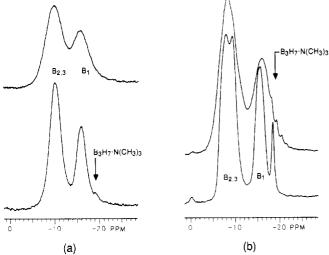


Figure 1. ¹¹B NMR (32.1-MHz) spectra of $B_3H_6Cl\cdot N(CH_3)_3$ in CH_2Cl_2 : (a) -40 °C; (b) +30 °C. The upper spectra are normal; the lower spectra are proton spin decoupled.

The reaction of B_4H_8 ·N(CH₃)₃ with HgCl₂ in chloroform is shown by the idealized equation (4). The trimethylamine adduct of B_3H_6 Cl was produced as the major product, the side products being BHCl₂·N(CH₃)₃, BH₂Cl·N(CH₃)₃, B₃H₇·N(CH₃)₃, B₅H₉, and B₆H₁₀. When this reaction was run in tetrahydrofuran, B₃H₆Cl·N(CH₃)₃ was not found in the products.

The trimethylamine adduct of B_3H_6Cl was a white solid that decomposed slowly at room temperature to form a yellow oily liquid. The adduct was sensitive to Lewis bases, and therefore the use of basic solvent should be avoided for the preparation of this compound.

(b) Mass and NMR Spectra of $B_3H_6Cl\cdot N(CH_3)_3$. A sample of $B_3H_6Cl\cdot N(CH_3)_3$ containing a small amount of $B_3H_7\cdot N(CH_3)_3$ showed the high mass cutoff at m/z 133, the center of the cluster of peaks being at m/z 131 [m/z (relative intensity): 133 (2.8), 132 (2.1), 131 (11.8), 130 (6.7), 129 (2.1)]. The calculated mass for ¹¹ $B_3H_6^{37}Cl\cdot N(^{12}CH_3)_3$ is 135. The pattern of the observed mass distribution suggested that successive loss of hydrogen atoms occurred within the instrument, as has been observed for other borane compounds.^{1a,6}

In Figure 1, the ¹¹B NMR spectra of $B_3H_6Cl\cdot N(CH_3)_3$ at -40 and +30 °C are shown. The spectrum at +30 °C shows the contamination of $B_3H_7\cdot N(CH_3)_3$ due to the decomposition of $B_3H_6Cl\cdot N(CH_3)_3$. The presence of three signals at -15.7, -9.8, and -7.9 ppm suggests that the compound is 1-trimethylamine-2-chlorotriborane(7). See Figure 2, where L = N(CH_3)_3. The B₂ signal shifted toward the high field as the temperature was lowered.⁷ Thus, the B₂ and B₃ signals appeared as a single broad signal at -40 °C with its peak position at -11.0 ppm. The ¹H{¹¹B} NMR spectrum of the compound at -40 °C showed two singlet signals at 2.12 (H_B) and 2.67 (H_C), indicating a rapid tautomeric migration of the borane hydrogen atoms.

(B) Trimethylphosphine–Chlorotriborane(7). (a) Formation of B_3H_6Cl ·P(CH₃)₃. The trimethylphosphine adduct of B_3H_7 was practically inert to BCl₃, even at room temperature. A mixture

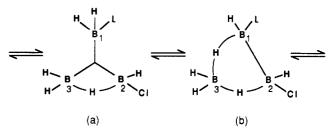


Figure 2. Structures proposed for the Lewis base (L) adducts of B_3H_6Cl .

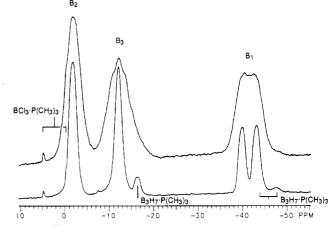


Figure 3. ¹¹B NMR (32.1-MHz) spectra of B_3H_6Cl ·P(CH₃)₃ in CH₂Cl₂ at +25 °C. The upper spectrum is normal; the lower spectrum is proton spin decoupled.

of B_3H_7 ·P(CH₃)₃ and HCl in CH₂Cl₂ gave off hydrogen gas *very* slowly at -80 °C, but no B_3H_6 Cl·P(CH₃)₃ was found in the reaction mixture. The chlorotriborane(7) adduct could successfully be prepared by treating B_3H_7 ·P(CH₃)₃ with HCl at -80 °C in the presence of BCl₃ (eq 6).

$$B_{3}H_{7} \cdot P(CH_{3})_{3} + HCl \xrightarrow{BCl_{3}} B_{3}H_{6}Cl \cdot P(CH_{3})_{3} + H_{2} \qquad (6)$$

(b) Mass and NMR Spectra of $B_3H_6Cl \cdot P(CH_3)_3$. The mass spectrum of $B_3H_6Cl \cdot P(CH_3)_3$ showed the highest mass cutoff at m/z 151, the center of the cluster being m/z 148 [m/z (relative intensity): 151 (1.8), 150 (7.0), 149 (14.3), 148 (36.6), 147 (28.3), 146 (7.9), 145 (1.7), 144 (2.5)]. Apparently, the successive loss of hydrogen atoms occurred for this compound also.

The ¹¹B NMR spectra of a B₃H₆Cl·P(CH₃)₃ solution in CH₂Cl₂ at +25 °C is shown in Figure 3. The compound can be described as 1-trimethylphosphine-2-chlorotriborane(7), and the signals at -41.3 ($J_{PB} = 102 \text{ Hz}$), -12.1, and -1.9 ppm are assigned to the B₁, B₃, and B₂ atoms, respectively. The ¹H{¹¹B} NMR spectrum of B₃H₆Cl·P(CH₃)₃ at +25 °C showed two doublet signals at 1.37 ppm (H_C; $J_{HCP} = 12 \text{ Hz}$) and 1.62 ppm (H_B; $J_{HBP} = 5.5 \text{ Hz}$). At -90 °C, the H_B signal remained as a single doublet.

(C) Chlorination of Other Lewis Base Adducts of Triborane(7). (a) Formation of the N(CH₃)₂H, N(CH₃)H₂, and NH₃ Adducts of B₃H₆Cl. The (CH₃)₂NH, CH₃NH₂, and NH₃ adducts of B₃H₇ produced corresponding amine adducts of chlorotriborane(7) when treated with BCl₃. The NMR data for these adducts are listed in Table I. Generally, the spectral features observed for these compounds are the same as that of B₃H₆Cl·N(CH₃)₃. The stability in CH₂Cl₂ decreased from the N(CH₃)₃ adduct to the NH₃ adduct. The amine adducts of BHCl₂ and B₃H₇ were slowly produced, and B₅H₉, B₄H₁₀, and B₂H₆ were found among the decomposition

⁽⁶⁾ Bishop, V. L.; Kodama, G. Inorg. Chem. 1981, 20, 2724.

⁽⁷⁾ The upfield movement of the peaks of BH₂Cl·N(CH₃)₃ and BHCl₂·N(CH₃)₃ with a decrease in temperature paralleled that observed for the B₂ signal.

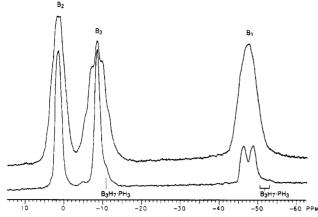


Figure 4. ¹¹B NMR (32.1-MHz) spectra of B₃H₆Cl·PH₃ in CH₂Cl₂ at +25 °C. The upper spectrum is normal; the lower spectrum is proton spin decoupled.

products when these solutions were aged (ca. 50 h) at room temperature.

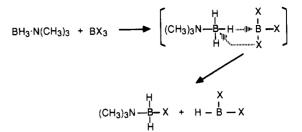
(b) Formation of $B_3H_6Cl \cdot S(CH_3)_2$. The $S(CH_3)_2$ adduct of B_3H_7 reacted with BCl₃ to give $B_3H_6Cl \cdot S(CH_3)_2$. The chlorotriborane adduct was characterized by its ¹¹B NMR spectrum, which gave signals at -26.6 (B₁), -7.9 (B₃), and +1.8 (B₂) ppm $[cf. -30.9 (B_1) and -11.7 ppm (B_{2,3}) for B_3H_7 \cdot S(CH_3)_2^8]$

(c) Formation of B_3H_6CI ·PH₃. The phosphine (PH₃) adduct of B_3H_7 did not react with HCl or with BCl₃, in CH₂Cl₂, even at room temperature. However, as in the case of $B_3H_7 \cdot P(CH_3)_3$, when treated with a mixture of HCl and BCl₃ in CH₂Cl₂, it was converted to B₃H₆Cl·PH₃. The ¹¹B spectrum of B₃H₆Cl·PH₃ at +25 °C showed the resonance signals at -47.2 ($J_{BP} = 80 \text{ Hz}$) (B₁), -8.3 (B₃), and +1.7 (B₂) ppm (Figure 4). At -60 °C, doublet and quartet features appeared on the B_2 and B_1 signals, respectively. In the ${}^{1}H{}^{11}B$ spectrum that was recorded at -60 °C, the borane hydrogen signal appeared as a broad hump centered at +1.82 ppm. At -100 °C, the signal was split into four signals at +3.43 (H_{B2}), +2.39 (H_{B3}), +1.25 (H_{B1}), and +0.13 (H_{μ}) ppm in a 1:2:2:1 intensity ratio. The signal for the PH₃ hydrogen atoms appeared at +4.63 ppm (d, J_{HP} = 412.5 Hz). These observations suggested that structure a in Figure 2 was appropriate for the low-temperature static structure.

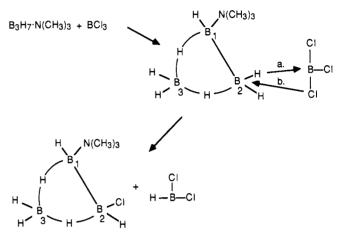
Discussion

The HCl and HCl/BCl₃ Reaction. The anionic adducts of triborane(7) are known to readily react with hydrogen chloride to give chloro derivatives of the anions according to the following equation, where $X = H^2$ Cl, NCS, NCO, NCBH₃,^{4b} and NCSe³

$$B_3H_7 \cdot X^- + HCl \rightarrow B_3H_6Cl \cdot X^- + H_2$$
(7)


On the other hand, neutral adducts of triborane(7) give off hydrogen gas very slowly when treated with hydrogen chloride, even though a rapid exchange of hydrogen atoms occurs between the borane adducts and HCl.⁵ Apparently, both the hydridic character of borane hydrogen atoms and the proton-donor activity of the reacting acid determine the ease of hydrogen gas elimination. Thus, H₂ elimination was effected when the proton-donor activity of HCl was enhanced by the addition of BCl₃. Furthermore, the reaction of B_3H_7 ·PH₃ with HCl in the presence of BCl₃ was slower than that of B_3H_7 ·P(CH₃)₃; the borane hydrogen atoms in the adduct of a weak base are less hydridic than those in a strong-base adduct

The BCl₃ Reaction. Noth and Beyer reported the halogenation of $BH_3 \cdot N(CH_3)_3$ with boron trihalide.¹⁰


$$H_3 \cdot N(CH_3)_3 + BX_3 \rightarrow BH_3 \cdot N(CH_3)_3 + "BH_2X" \quad (8)$$

This H-X exchange reaction appeared to proceed without rup-

Scheme I

Scheme II

turing the B-N bond. The proposed mechanism¹⁰ is illustrated in Scheme I.

This mechanism can conveniently be applied to the observed formation of the amine adducts of chlorotriborane(7). As illustrated in Scheme II, the first step of the exchange process is thought to be the coordination of the amine adduct to BCl₃ through the B_2 -H \rightarrow BCl₃ bond formation (step a in the scheme). This is followed by the back-coordination $B-Cl \rightarrow B_2$ (step b), which is accompanied by the cleavage of the B_2 -H and B-Cl bonds to yield $B_3H_6Cl\cdot N(CH_3)_3$ and "BCl₂H". The "BCl₂H" may further chlorinate B_3H_7 ·N(CH₃)₃ or disproportionate to B_2H_6 , B_2H_5Cl , and BCl_3 . The B_3H_7 adducts of amines and dimethyl sulfide are converted to the corresponding B₃H₆Cl adducts, presumably by the same mechanism.

In spite of the facile chlorination of the amine adducts of triborane(7) described above, the $B_3H_8^-$ anion (tetramethylammonium salt) did not give the $B_3H_7Cl^-$ anion when treated with BCl_3 in CH_2Cl_2 . Tetraborane(10) was the main constituent of the product mixture, other identifiable minor components being B_5H_9 , B_6H_{10} , and $HBCl_3^{-.3a}$ This mixture gradually changed, in a period of 3 weeks, to a mixture containing pentaborane(9) as the major component.^{3a} Apparently, as the BH hydrogen atom coordinated to BCl₃ (step a in Scheme II), H⁻ transfer occurred to form the HBCl₃⁻ ion, leaving behind the reactive B₃H₇ group, which underwent further reactions to form B_4H_{10} . Shore and co-workers developed a convenient method for the preparation of B_4H_{10} , in which the solid $B_3H_8^-$ salt was treated with boron trihalides.11

The PH₃ or P(CH₃)₃ adduct of B_3H_7 was not chlorinated by BCl₃; no reaction occurred. Interestingly, the base strength of the coordinated ligand does not appear to be the single factor that determines the reactivity of the triborane(7) adducts toward BCl₃. The base strength of $N(CH_3)_3$ toward boranes is stronger than that of phosphine (PH₃), but is weaker than that of $(PCH_3)_3$.^{6,12} However, neither of the B_3H_7 adducts of these two phosphines reacted with BCl₃. Further studies are needed to elucidate this

⁽⁸⁾ Kodama, G.; Saturnino, D. J. Inorg. Chem. 1975, 14, 2243. Ishii, M.; Kodama, G. Inorg. Chem. 1990, 29, 817.
(9) Andrew, S. J.; Welch, A. J. Inorg. Chim. Acta 1984, 88, 153.
(10) Nöth, H.; Beyer, H. Chem. Ber. 1960, 93, 2251.

⁽¹¹⁾ Toft, M. A.; Leach, J. B.; Himpsl, F. L.; Shore, S. G. Inorg. Chem. 1982, 21, 1952.

⁽¹²⁾ Coyle, T. D.; Stone, F. G. A. In Progress in Boron Chemistry; Steinberg, H., McCloskey, A. L., Eds.; MacMillan: New York, 1964; Vol. 1, Chapter 2.

seemingly anomalous behavior of the phosphine adducts.

The HgCl₂ Reaction. Mercuric chloride has been used to chlorinate the Lewis base adducts of borane(3).¹³ Application of this method to chlorinate $B_3H_7 \cdot N(CH_3)_3$ for the preparation of B₃H₆Cl·N(CH₃)₃ was not successful.^{3a} However, the treatment of B_4H_8 ·N(CH₃)₃ with HgCl₂ gave B_3H_6Cl ·N(CH₃)₃ (eq 4). No evidence for the formation of the chlorinated tetraborane(8) adduct, $B_4H_7Cl \cdot N(CH_3)_3$, could be found. Both B-B and B-H bonds appeared to undergo cleavages to the same extent by the HgCl₂ oxidation, and therefore the tetraborane structure was converted to the chlorotriborane(7) and chloroborane(3) adducts. Improvement of the yield of $B_3H_6Cl\cdot N(CH_3)_3$ in the HgCl₂ reaction was not pursued.

Fluxional Behavior of the Chlorotriborane(7) Adducts. The molecules of triborane(7) adducts are fluxional with respect to the tautomeric migration of hydrogen atoms around the threeboron framework. The adducts of strong bases such as B_3H_7 . $N(CH_3)_3$,¹⁴ B_3H_7 , $P(CH_3)_3$,⁶ and B_3H_8 ⁻¹⁵ show the rapid fluxional motion even at considerably low temperatures (below -80 °C). On the other hand, the fluxional motion of the adducts of weak bases such as B_1H_7 ·PH₃⁶ and B_3H_7 ·CO¹⁶ slows down at low temperatures.

The replacement of a hydrogen atom on the B_3H_7 unit by a chlorine atom appeared to have little effect on the ease of the hydrogen atom migration. In the case of B_3H_6Cl ·PH₃, the fluxionality seemed to be increased slightly. The ¹¹B NMR spectrum (32.1 MHz) of the parent adduct B_3H_7 ·PH₃ showed the static structure at -50 °C,⁶ whereas the static structure for B_3H_6Cl ·PH₃ was not observed until the solution was cooled to -60 °C. Further experimental studies of the substituent effects on the fluxionality of a variety of triborane derivatives would be of interest. A theoretical study on the fluxionality of triborane adducts was reported by Brown and Lipscomb.11

Experimental Section

Chemicals, Equipment, and General Procedure. Standard vacuum-line techniques were used throughout for the handling of the volatile compounds. Air-sensitive solids were handled in plastic bags filled with dry nitrogen gas. Tetraborane(10) was our laboratory stock.¹⁴ Boron trichloride and anhydrous HCl (Matheson Gas Products) were purified by fractional condensation before use. The B_3H_7 adducts of $N(CH_3)_3$, $P(CH_3)_{3,6} PH_{3,6}$ and $S(CH_3)_{2,8}^{8}$ were prepared by the reported procedures. Tetrahydrofuran, CH₂Cl₂, and S(CH₃)₂ were refluxed over LiAlH₄, P₄O₁₀, and CaH₂, respectively, and stored over molecular sieves in containers fitted with Teflon valves. These liquids were distilled directly into the vacuum line as needed. The ¹¹B and ¹H NMR spectra were recorded on a Varian XL-100-15 spectrometer. Generally, the B₃H₇ adducts were prepared in 10-mm-o.d. Pyrex tubes, unless otherwise stated. Each of the tubes was equipped with a stopcock or a Teflon valve. The adducts were then dissolved in the solvents, and then the other reactants were condensed into the tubes at -197 °C. The tubes were shaken in cold baths to mix the contents and were placed in the cold probe of the NMR instrument to monitor the reaction progresses.

Reaction of B_4H_8·N(CH₃)₃ with HCl. This reaction that gave B_3H_6 -Cl-N(CH₃)₃ was described in the earlier report.^{1a}

Reaction of B₄H_{8'}N(CH₃)₃ with HBr. A 1.06-mmol sample of B₄-H₈·N(CH₃)₃, prepared^{1a} in a 22-mm-o.d. Pyrex tube, was treated with 1.03 mmol of HBr in 3 mL of CH_2Cl_2 at -100 °C. A 0.34-mmol quantity of hydrogen gas was produced immediately. When the solution was warmed to -80 °C and then to 0 °C while being stirred, only a trace of additional hydrogen gas was evolved. Volatile components were condensed out from the reaction tube, first at 0 °C and finally at room temperature. A white solid residue, containing about 70% B₃H₆Br-N(CH₃)₃, was obtained in the reaction tube. Other compounds present in the solid were $B_3H_7 \cdot N(CH_3)_3$ and $BH_2Br \cdot N(CH_3)_3$ (-2.2 ppm, t, J_{BH} = 126 Hz). Fractionation of the volatile components yielded 0.22 mmol of B_2H_6 (IR).

The trimethylamine adduct of bromotriborane(7) was characterized by its ¹¹B NMR spectrum, which showed signals at -20.3, -13.7, and -6.9 ppm. Thus, the structure of this bromo derivative may be represented

used in 1.47-, 1.56-, and 1.71-mmol quantities, respectively, a 1.48-mmol quantity of hydrogen gas was given off within 5 min at -80 °C. When the reaction mixture was allowed to warm to room temperature, hydrogen gas evolution started again. The resulting solution contained only a small amount of B₃H₆Cl·P(CH₃)₃, other components being diborane, chlorodiboranes, BCl₃, and some unidentified boron compounds.

Reaction of B₃H₇·P(CH₃)₃ with HCl. A 1.10-mmol sample of B₃-H₇·P(CH₃)₃ was treated with a 2.91-mmol sample of HCl in 2 mL of CH₂Cl₂ at -80 °C. A 0.28-mmol quantity of hydrogen gas was evolved within 3.5 h. Volatile components were then pumped out from the

by that in Figure 2, in which Br is attached to the B_2 atom. The three signals are tentatively assigned to B₁, B₂, and B₃ atoms, respectively.¹⁸ The 'H NMR signals were seen at 2.09 (H_B) and 2.63 (H_C) ppm. The H_{B} signal remained as a singlet at -40 °C

Reaction of B₃H₇·N(CH₃)₃ with BCl₃ [Preparation of B₃H₆Cl·N-(CH₃)₃]. A 0.71-mmol sample of B₃H₇·N(CH₃)₃ was dissolved in 2 mL of CH₂Cl₂, and the mixture was treated with a 0.81-mmol sample of BCl₃ at -80 °C for 10 min. The ¹¹B NMR spectrum of this solution showed the presence of $B_3H_6Cl\cdot N(CH_3)_3$ and $B_3H_7\cdot N(CH_3)_3$ in an approximately 10:1 molar ratio. When the volatile components were removed from the tube by pumping at 0 °C, a white crystalline solid resulted. The solid was dissolved in a fresh, 2-mL portion of CH₂Cl₂, a 0.89-mmol sample of BCl₃ was condensed into the tube, and the mixture was agitated in a -80 °C bath. The NMR spectrum at -40 °C showed that the amount of $B_3H_7 \cdot N(CH_3)_3$ was considerably less than before (<5%). When the solution was warmed to -23 °C, the $B_3H_7 \cdot N(CH_3)_3$ signal became barely detectable within 30 min. When volatile components were removed from this reaction mixture at 0 °C and the resulting solid was redissolved in a fresh portion of CH_2Cl_2 , the $B_3H_7 \cdot N(CH_3)_3$ signal reappeared. For the mass spectrum analysis, a solid sample was sealed in a capillary tube, and then the capillary was introduced directly into the probe of the instrument.

Reaction of B₃H₂·N(CH₃)₃ with HCl/BCl₃. A 1.2-mmol sample of $B_3H_7 \cdot N(CH_3)_3$ was treated with samples of HCl (2.96 mmol) and BCl₃ (0.31 mmol) in 2 mL of CH₂Cl₂ at -80 °C. Within 15 min, 0.72 mmol of hydrogen gas was produced. Then, an additional 0.32-mmol sample of BCl₃ was condensed into the tube, and the mixture was allowed to react for 15 min at -80 °C. A total of 0.88 mmol of hydrogen gas was collected. No further hydrogen gas evolution was observed. Volatile components were removed from the reaction tube at room temperature, were fractionated, and were found to contain HCl and BCl₃ (IR). The residue was dissolved in a fresh portion of CH_2Cl_2 . The ¹¹B NMR spectrum of the solution was that of B₃H₆Cl·N(CH₃)₃ containing about 3% B3H7·N(CH3)

Reaction of B₄H₈·N(CH₃)₃ with HgCl₂. A 0.77-mmol sample of B₄H₈·N(CH₃)₃, prepared^{1a} in a 22-mm-o.d. Pyrex tube, was mixed with a 0.84-mmol sample of HgCl₂. The mixture was shaken with 5 mL of CHCl₁ at -63 °C. The solid reagents gradually dissolved, and a gray solid suspension formed as the reaction solution was warmed to 0 °C. The solution was held at 0 °C for 1 h and then warmed to room temperature for 15 min while being stirred. During this reaction, 0.08 mmol of hydrogen gas was evolved. Following storage at -80 °C for 38 h, the reaction mixture was filtered. The CHCl3-insoluble gray solid (112 mg) was identified as Hg_2Cl_2 contaminated by Hg. When about half of the volatile components were removed from the clear filtrate by pumping, 0.19 mmol of a mixture of B_2H_6 , chlorodiboranes, and HCl (IR) was separated. The ¹¹B NMR spectrum of the remaining filtrate at ambient temperature showed signals of $B_3H_6Cl\cdot N(CH_3)_3$ (the major component), BHCl₂·N(CH₃)₃, B₃H₇·N(CH₃)₃, and small amounts of BH₂Cl·N(CH₃)₃, B₆H₁₀, and B₅H₉.

Reaction of B3H7 P(CH3)3 with HCl/BCl3 [Preparation of B3H6Cl-P-(CH₃)₃]. A 0.63-mmol sample of B₃H₇·P(CH₃)₃ was treated with BCl₃ (0.73 mmol) and HCl (0.77 mmol) in 2 mL of CH_2Cl_2 at -80 °C. A rapid gas evolution was observed, and within 5 min a 0.59-mmol quantity of hydrogen gas was collected. The volatile components in the tube were then pumped at -80 °C and found to be CH₂Cl₂, BCl₃, and small amounts of mono- and dichlorodiboranes (IR). The residue was B3H6-Cl-P(CH₃)₃ contaminated with small amounts of B₃H₇·P(CH₃)₃ and BCl₃·P(CH₃)₃ (Figure 3). A small portion of this product was used for the mass spectral measurement. In another experiment, where B₁H₂·P(CH₁)₃, BCl₃, and HCl were

⁽¹³⁾ Wiggins, J. W.; Ryschkewitsch, G. E. Inorg. Chim. Acta 1970, 4, 33.

The choice between the -13.7 and -6.9 ppm signals for the bromine-(18)bonded boron atom (B_2) may be uncertain. The reasons for assigning the -13.7 ppm signal to B₂ are as follows: (1) The substituent effect of bromine on the ¹¹B chemical shift of boron atoms in many halogenated boron hydride compounds is consistently less than that of chlorine, and (2) the relatively small downfield shift of the -13.7 ppm signal with increasing temperature parallels that observed for BH2Br·N(CH3)3, which was present in the system.

inated with a small amount of BH2Cl·P(CH3)3 (¹¹B NMR). Reaction of B₃H₇·P(CH₃)₃ with BCl₃. A solution containing 0.76 mmol of B_3H_7 ·P(CH₃)₃ in about 2 mL of CH₂Cl₂ was treated with a 0.92-mmol sample of BCl₃ at -80 °C for 2 h. No change was observed (¹¹B NMR). The mixture was allowed to warm slowly to room temperature, and then the volatile components were removed by pumping. Small amounts of chlorodiboranes were found in the volatile components (IR). The solid residue was B₃H₇·P(CH₃)₃, and no B₃H₆Cl·P(CH₃)₃ was found (¹¹B NMR).

Formation of B₃H₆Cl·(CH₃)₂NH, B₁H₆Cl·CH₃NH₂, and B₃H₆Cl·NH₃. The chlorotriborane(7) adducts of dimethylamine, methylamine, and ammonia were prepared by the same procedure that was employed for the preparation of $\dot{B}_3H_6Cl\cdot N(CH_3)_3$. In a typical reaction, a 1.36-mmol sample of B_3H_7 ·N(CH₃)₂H, prepared in a 22-mm-o.d. Pyrex tube, was treated with a 0.75-mmol sample of BCl₃ in 3 mL of CH₂Cl₂ at -80 °C for 10 min. The resulting clear colorless solution was then warmed to 0 °C for 10 min while being stirred. Fractionation of the volatile components from the reaction tube at 0 °C yielded 0.20 mmol of B₂H₆. The resulting white solid product mixture contained B₃H₆Cl·(CH₃)₂NH (ca. 90%, ¹¹B NMR)

Formation of $B_3H_6Cl\cdot S(CH_3)_2$. A 0.62-mmol sample of $B_3H_7\cdot S(CH_3)_2$ was mixed with a 0.34-mmol sample of BCl₁ and 3 mL of CH₂Cl₂ at -80 °C, and the solution was allowed to warm to 0 °C. Then, volatile components were removed by pumping. The clear colorless liquid residue consisted of B_3H_6Cl -S(CH₃)₂ (ca. 80%), B_3H_7 -S(CH₃)₂, BHCl₂-S(CH₃)₂, and a small amount of BHCl₂ THF (¹¹B NMR).

(b) With BCl₃. A 1.2-mmol smple of B₃H₇·PH₃ was mixed with a 1.24-mmol sample of BCl_3 in 2 mL of CH_2Cl_2 . The mixture was kept at -23 °C for 15 min. The ¹¹B NMR spectrum of the solution at -23 °C showed that no reaction had occurred.

(c) With HCl/BCl₃. [Formation of B₃H₆Cl·PH₃]. To the mixture of B₁H₂·PH₁ and BCl₁ in (b) above was added a 2.45-mmol sample of HCl. As the mixture was allowed to warm to room temperature, 1.06 mmol of hydrogen gas was evolved. When the volatile components were removed from the reaction mixture at 0 °C, a clear liquid remained in the tube. The ¹¹B NMR spectrum of this liquid in CH₂Cl₂ is shown in Figure 4.

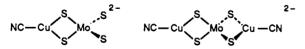
In a separate experiment, a 1.0-mmol sample of B₃H₇·PH₃ was treated with a mixture of HCl (2.22 mmol) and a BCl₃ (1.97 mmol) in CH₂Cl₂ at -80 °C. A 0.22-mmol quantity of hydrogen gas was evolved within a period of 0.5 h, and after an additional 0.5 h, a total of 0.33 mmol of hydrogen gas was collected. Then, volatile components were pumped out at -80 °C. The ¹¹B NMR spectrum of the residue in CH₂Cl₂ showed that it was a mixture of B₁H₆Cl·PH₁ and B₁H₇·PH₁ in a molar ratio of approximately 2:3.

Acknowledgment. This work was supported by the U.S. Army Research Office.

Contribution from the Department of Chemistry, LaTrobe University, Bundoora, Victoria 3083, Australia, and Department of Chemical and Analytical Science, Deakin University, Geelong, Victoria 3217, Australia

Electrochemistry of Cyanocopper Thiomolybdates and Thiotungstates: Redox-Based **Interconversion of Species**

Michael Kony,^{1a,b} Alan M. Bond,^{*,1c} and Anthony G. Wedd^{*,1a}


Received January 18, 1990

[MOS₄]²⁻ and its 1:1 and 1:2 CuCN adducts [(CN)CuS₂MOS₂]²⁻ and [(CN)CuS₂MOS₂Cu(CN)]²⁻ each exhibit electrochemically reversible one-electron reductions in MeCN at fast scan rates (>500 mV s⁻¹). At lower scan rates, the reduced adduct species are unstable to dissociation of CuCN, leading to interconversion of the three anions. The tungsten analogues show similar properties.

Introduction

Rich structural chemistries have emerged from the interaction of the thiomolybdate ligand $[MoS_4]^{2-}$ with metal fragments.^{2,3} Those involving iron and copper are well developed, interest being driven by the bioinorganic importance of FeMoS and CuMoS aggregates.

[MoS₄]²⁻ forms 1:1 and 1:2 adducts with CuCN:⁴

These anions are expected to be redox-active as a number of the related adducts formed with a variety of metal fragments undergo reduction processes.⁵ While those reduced species can sometimes be trapped and studied,⁵⁻⁷ they are invariably unstable

- (1) (a) La Trobe University. (b) Present address: Department of Chemistry, University of Tasmania, Hobart, Tasmania 7000, Australia. (c) Deakin University.
- (2) Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 934.
- (3) Garner, C. D. in Comprehensive Coordination Chemistry Wilkinson,
- G. Ed. Pergamon: London, 1987; Vol. 3, p 1421.
 Gheller, S. F.; Hambley, T. W.; Rodgers, J. R.; Brownlee, R. T. C.; O'Connor, M. J.; Snow, M. R.; Wedd, A. G. Inorg. Chem. 1984, 23, 2519
- Zanello, P. Coord. Chem. Rev. 1988, 87, 1. Bowmaker, G. A.; Boyd, P. D. W.; Campbell, G. K.; Zvagulis, M. J. (6) Chem. Soc., Dalton Trans. 1986, 1065.

on longer time scales and the nature of the subsequent chemical reactions is unknown.

Previous examination of $[MoS_4]^{2-}$ electrochemistry has shown complicated behavior (e.g. refs 8, 9). Conditions have been found in the present work for observation of a chemically and electrochemically reversible, one-electron reduction of $[MoS_4]^{2-}$ in MeCN. This has allowed a detailed examination of the electrochemistry of the CuCN adducts mentioned above and of their tungsten analogues. $[MoS_4]^{2-}$, $[(CN)CuS_2MoS_2]^{2-}$, and $[(CN)CuS_2MoS_2Cu(CN)]^{2-}$ each exhibit diffusion-controlled reversible one-electron reductions in MeCN at fast scan rates $(>500 \text{ mV s}^{-1})$. However, at slower scan rates, the reduced adduct species are unstable to dissociation of CuCN, leading to interconversion of the three anions.

Experimental Section

Abbreviations and parameter symbols are given in ref 10.

- (7) Coucouvanis, D.; Simtrou, E. D.; Stremple, P.; Ryan, M.; Swenson, D.; Baenziger, N. C.; Simopoulos, A.; Papaefthymiou, V.; Kostikas, A.; Petrouleas, V. Inorg. Chem. 1984, 23, 741.
- Pratt, D. E.; Laurie, S. H.; Dahm, R. H. Inorg. Chim. Acta 1987, 135, (8) L21.
- You, J.; Wu, D.; Liu, H. Polyhedron 1986, 5, 535. (9)
- Abbreviations: thf, tetrahydrofuran; SHE, standard hydrogen electrode; (10) Fc^+/Fc , ferrocenium/ferrocene; $E_{1/2}^-$, reversible half-wave potential; E_p , peak potential; ΔE_p , peak-to-peak separation; v, scan rate; i_L , limiting current; i_p , peak current; i_{pr} , reduction peak current; i_{po} , oxidation peak current; ω_r , rotation frequency; n, electrons per molecule.